Research Article Particle Swarm Optimization-Proximal Point Algorithm for Nonlinear Complementarity Problems

Similar documents
Hybrid particle swarm algorithm for solving nonlinear constraint. optimization problem [5].

Research Article Modified T-F Function Method for Finding Global Minimizer on Unconstrained Optimization

Research Article Nonlinear Conjugate Gradient Methods with Wolfe Type Line Search

Research Article Finding Global Minima with a Filled Function Approach for Non-Smooth Global Optimization

Research Article Solving the Matrix Nearness Problem in the Maximum Norm by Applying a Projection and Contraction Method

Research Article A Novel Differential Evolution Invasive Weed Optimization Algorithm for Solving Nonlinear Equations Systems

Research Article The Solution Set Characterization and Error Bound for the Extended Mixed Linear Complementarity Problem

Research Article A New Global Optimization Algorithm for Solving Generalized Geometric Programming

Research Article A Novel Filled Function Method for Nonlinear Equations

Research Article Identifying a Global Optimizer with Filled Function for Nonlinear Integer Programming

On the Convergence and O(1/N) Complexity of a Class of Nonlinear Proximal Point Algorithms for Monotonic Variational Inequalities

Research Article Existence of Periodic Positive Solutions for Abstract Difference Equations

Research Article Data-Driven Fault Diagnosis Method for Power Transformers Using Modified Kriging Model

Research Article Constrained Solutions of a System of Matrix Equations

GENERALIZED second-order cone complementarity

Spectral gradient projection method for solving nonlinear monotone equations

20 J.-S. CHEN, C.-H. KO AND X.-R. WU. : R 2 R is given by. Recently, the generalized Fischer-Burmeister function ϕ p : R2 R, which includes

Research Article Strong Convergence of a Projected Gradient Method

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

A derivative-free nonmonotone line search and its application to the spectral residual method

The Parameters Selection of PSO Algorithm influencing On performance of Fault Diagnosis

A class of Smoothing Method for Linear Second-Order Cone Programming

A note on the unique solution of linear complementarity problem

Research Article Residual Iterative Method for Solving Absolute Value Equations

KingSaudBinAbdulazizUniversityforHealthScience,Riyadh11481,SaudiArabia. Correspondence should be addressed to Raghib Abu-Saris;

Research Article Circle-Uniqueness of Pythagorean Orthogonality in Normed Linear Spaces

Journal of Engineering Science and Technology Review 7 (1) (2014)

Research Article A Note about the General Meromorphic Solutions of the Fisher Equation

An improved generalized Newton method for absolute value equations

Finite Convergence for Feasible Solution Sequence of Variational Inequality Problems

A PENALIZED FISCHER-BURMEISTER NCP-FUNCTION. September 1997 (revised May 1998 and March 1999)

Research Article Sufficient Optimality and Sensitivity Analysis of a Parameterized Min-Max Programming

Research Article Modified Halfspace-Relaxation Projection Methods for Solving the Split Feasibility Problem

Beta Damping Quantum Behaved Particle Swarm Optimization

Research Article An Auxiliary Function Method for Global Minimization in Integer Programming

Research Article Bessel Equation in the Semiunbounded Interval x [x 0, ]: Solving in the Neighbourhood of an Irregular Singular Point

Research Article A New Class of Meromorphic Functions Associated with Spirallike Functions

Research Article A Two-Grid Method for Finite Element Solutions of Nonlinear Parabolic Equations

Research Article Design of PDC Controllers by Matrix Reversibility for Synchronization of Yin and Yang Chaotic Takagi-Sugeno Fuzzy Henon Maps

Research Article Existence and Duality of Generalized ε-vector Equilibrium Problems

A Method of HVAC Process Object Identification Based on PSO

A Bregman alternating direction method of multipliers for sparse probabilistic Boolean network problem

Acceleration of Levenberg-Marquardt method training of chaotic systems fuzzy modeling

Step lengths in BFGS method for monotone gradients

Binary Particle Swarm Optimization with Crossover Operation for Discrete Optimization

Research Article Sharp Bounds by the Generalized Logarithmic Mean for the Geometric Weighted Mean of the Geometric and Harmonic Means

A Wavelet Neural Network Forecasting Model Based On ARIMA

Research Article On New Wilker-Type Inequalities

Research Article A Two-Step Matrix-Free Secant Method for Solving Large-Scale Systems of Nonlinear Equations

Bulletin of the. Iranian Mathematical Society

Research Article A New Roper-Suffridge Extension Operator on a Reinhardt Domain

Research Article Adaptive Control of Chaos in Chua s Circuit

Research Article Two Different Classes of Wronskian Conditions to a (3 + 1)-Dimensional Generalized Shallow Water Equation

Research Article An Optimized Grey GM(2,1) Model and Forecasting of Highway Subgrade Settlement

Research Article Stabilizing of Subspaces Based on DPGA and Chaos Genetic Algorithm for Optimizing State Feedback Controller

4TE3/6TE3. Algorithms for. Continuous Optimization

Research Article Convergence Theorems for Infinite Family of Multivalued Quasi-Nonexpansive Mappings in Uniformly Convex Banach Spaces

Research Article New Oscillation Criteria for Second-Order Neutral Delay Differential Equations with Positive and Negative Coefficients

A Novel Inexact Smoothing Method for Second-Order Cone Complementarity Problems

OPTIMAL POWER FLOW BASED ON PARTICLE SWARM OPTIMIZATION

Research Article Degenerate-Generalized Likelihood Ratio Test for One-Sided Composite Hypotheses

Research Article Attracting Periodic Cycles for an Optimal Fourth-Order Nonlinear Solver

A Unified Approach to Proximal Algorithms using Bregman Distance

Research Article Remarks on the Regularity Criterion of the Navier-Stokes Equations with Nonlinear Damping

A filled function method for finding a global minimizer on global integer optimization

A double projection method for solving variational inequalities without monotonicity

Error bounds for symmetric cone complementarity problems

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces

OPTIMAL DISPATCH OF REAL POWER GENERATION USING PARTICLE SWARM OPTIMIZATION: A CASE STUDY OF EGBIN THERMAL STATION

Verification of a hypothesis about unification and simplification for position updating formulas in particle swarm optimization.

DESIGN AND OPTIMIZATION OF EQUAL SPLIT BROADBAND MICROSTRIP WILKINSON POWER DI- VIDER USING ENHANCED PARTICLE SWARM OPTI- MIZATION ALGORITHM

Research Article Uniqueness Theorems on Difference Monomials of Entire Functions

Research Article A Characterization of E-Benson Proper Efficiency via Nonlinear Scalarization in Vector Optimization

Research Article Powering Multiparameter Homotopy-Based Simulation with a Fast Path-Following Technique

A Smoothing Newton Method for Solving Absolute Value Equations

Research Article The Dirichlet Problem on the Upper Half-Space

Research Article Weighted Measurement Fusion White Noise Deconvolution Filter with Correlated Noise for Multisensor Stochastic Systems

An accelerated Newton method of high-order convergence for solving a class of weakly nonlinear complementarity problems

PROXIMAL POINT ALGORITHMS INVOLVING FIXED POINT OF NONSPREADING-TYPE MULTIVALUED MAPPINGS IN HILBERT SPACES

Performance Evaluation of IIR Filter Design Using Multi-Swarm PSO

Research Article Hybrid Algorithm of Fixed Point for Weak Relatively Nonexpansive Multivalued Mappings and Applications

Solving Separable Nonlinear Equations Using LU Factorization

Research Article Strong Convergence of Parallel Iterative Algorithm with Mean Errors for Two Finite Families of Ćirić Quasi-Contractive Operators

Newton-type Methods for Solving the Nonsmooth Equations with Finitely Many Maximum Functions

Research Article Global Existence and Boundedness of Solutions to a Second-Order Nonlinear Differential System

Research Article Iterative Approximation of Common Fixed Points of Two Nonself Asymptotically Nonexpansive Mappings

A proximal-like algorithm for a class of nonconvex programming

A Hybrid Time-delay Prediction Method for Networked Control System

A Brief Overview of Practical Optimization Algorithms in the Context of Relaxation

Research Article A Note on Optimality Conditions for DC Programs Involving Composite Functions

Research Article Partial Pole Placement in LMI Region

Research Article Positive Solutions for Neumann Boundary Value Problems of Second-Order Impulsive Differential Equations in Banach Spaces

Research Article On the Stability Property of the Infection-Free Equilibrium of a Viral Infection Model

A Particle Swarm Optimization (PSO) Primer

ACTA UNIVERSITATIS APULENSIS No 11/2006

Research Article On Decomposable Measures Induced by Metrics

Research Article Optimality Conditions of Vector Set-Valued Optimization Problem Involving Relative Interior

New hybrid conjugate gradient methods with the generalized Wolfe line search

Research Article A Fictitious Play Algorithm for Matrix Games with Fuzzy Payoffs

Research Article On a Quasi-Neutral Approximation to the Incompressible Euler Equations

Transcription:

Mathematical Problems in Engineering Volume 2013, Article ID 808965, 5 pages http://dx.doi.org/10.1155/2013/808965 Research Article Particle Swarm Optimization-Proximal Point Algorithm for Nonlinear Complementarity Problems Chai Jun-Feng 1,2 and Wang Shu-Yan 1 1 College of Computer Science and Technology, Xi an University of Posts and Telecommunications, Xi an 710121, China 2 College of Science, Xi an University of Posts and Telecommunications, Xi an 710121, China Correspondence should be addressed to Chai Jun-Feng; chai222@xupt.edu.cn Received 27 April 2013; Accepted 28 November 2013 Academic Editor: Jian Guo Zhou Copyright 2013 C. Jun-Feng and W. Shu-Yan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A new algorithm is presented for solving the nonlinear complementarity problem by combining the particle swarm and proximal point algorithm, which is called the particle swarm optimization-proximal point algorithm. The algorithm mainly transforms nonlinear complementarity problems into unconstrained optimization problems of smooth functions using the maximum entropy function and then optimizes the problem using the proximal point algorithm as the outer algorithm and particle swarm algorithm as the inner algorithm. The numerical results show that the algorithm has a fast convergence speed and good numerical stability, so it is an effective algorithm for solving nonlinear complementarity problems. 1. Introduction The nonlinear complementarity problem is an important class of nonsmooth optimization problems and is widely used in mechanical, engineering, and economic fields. The algorithm research has attracted great attention from scholars at home and abroad. Algorithms for solving such problems mainly include the Lemke algorithm, homotopy method, projection algorithm, Newton algorithm, and interior point algorithm [1 10]. These algorithms were mostly based on the gradient method and relied on the selection of an initial point. How to select the appropriate initial point is a very difficult problem; therefore, in recent years, many scholars at home and abroad have been dedicated to the bionic intelligent algorithm not depending on the initial point and the gradient information. In 1995, Kennedy and Eberhart proposed the particle swarm algorithm (PSO) [11] of the predatory behavior of birds for the first time. It was similar to the genetic algorithm, an optimization tool based on iteration; its advantages were being easy to understand, easy to implement, and no need to adjust many parameters, and it was widely recognized by academic circles, who then put forward some improved algorithms. At present, the algorithm has been successfully applied in function optimization, neural network training, fuzzy system control, and so forth. In 2008, Zhang and Zhou [12] proposed a mixed algorithm for solving nonlinear minimax problems by combing the particle swarm optimization algorithm with the maximum entropy function method, and then Zhang extended the method to solve nonlinear L-1 norm minimization problems [13] and nonlinear complementarity problems [14] and achieved good results. But these algorithms were random algorithms depending on the probability essentially, where the entropy function was only playing the role of conversing problems. Sun et al. [15]. proposed a social cognitive optimization algorithm (SCO) based on entropy function for solving nonlinear complementarity problems. Yamashita et al. [16] proposedanewtechnique that utilizes a sequence generated with the PPA algorithm in 2004. And these algorithms cannot guarantee convergence to global optimal point with one hundred percent certainty even if the entropy function is a convex function. Proximal point algorithm is a global convergent algorithm for solving the convex optimization problem. Based on this, this paper researches a particle swarm optimization and proximal point algorithm for the discrete nonlinear complementary problem with every component function being

2 Mathematical Problems in Engineering aconvexfunction,andtheconvergencetoglobaloptimal point with one hundred percent is guaranteed. First of all, the nonlinear complementary problem is transformed into an unconstrained optimization problem of a smooth function using the maximum entropy function, and then we construct the particle swarm optimization-proximal point algorithm by combing the particle swarm optimization algorithm with the proximal point algorithm, effectively giving full play to their respective advantages and optimizing the problem using the mixed algorithm. The numerical results show that the algorithm is a new effective algorithm with a fast convergence rate and good numerical stability. 2. The Smoothing of Nonlinear Complementary Problem Let f:r n R n be continuously differentiable; the nonlinear complementarity problem (NCP (f) ) solves x R n,in order to make x 0, f(x) 0, x T f (x) =0, (1) when f(x) = Mx+q(where M is an n nmatrix and q R n is constant vector), the NCP becomes linear complementarity problem, that is, LCP(q, M). Definition 1 (see [2]). If φ(a, b) : R 2 Rsatisfies φ (a, b) =0 a 0, b 0, ab=0, (2) then φ(a, b) is an NCP function. Common NCP functions are as follows: (1) φ(a, b) = a 2 +b 2 a b Fisher-Burmeister function; (2) φ(a, b) = λ( a 2 +b 2 a b)+(1 λ)a + b + ; λ (0, 1) punishment Fisher-Burmeister function; (3) φ(a, b) = ab + (1/2)min 2 {0, a + b} differentiable NCP function. We can transform solving the NCP(F) into solving the nonlinear equations by using Fisher-Burmeister function as follows: [ [ φ(x 1,f 1 (x)). φ(x n,f n (x)) ] =0. (3) ] Equation (3) can be transformed into the optimization problem min x max { 1 i n φ(x i,f i (x)) }, (4) where each component φ(x i,f i (x)) is smooth function of vector x Ω R n. However, the problem is a complex of nondifferentiable optimization problems. We can transform the nonlinear complementary problem into smooth optimization problem by using the maximum entropy function method as follows. Definition 2 (see [9, 10]). Let F p (x) = 1 p ln { n i=1 exp [p φ(x i,f i (x)) ]} (5) be maximum entropy function on x Ω R n in (3); that is, F p (x) = 1 p ln { n i=1 exp [pφ (x i,f i (x))] + exp [ pφ (x i,f i (x))]}. Theorem 3 (see [9, 10]). Function F p (x) goes along with the increase of parameter p monotone decrease for any x Ω R n and is limited to max 1 i n { φ(x i,f i (x)) } (p ); that is, (6) F s (x) F r (x), s r lim F p p (x) = max { 1 i n φ(x i,f i (x)) }. (7) The initial ideas of entropy function method originated from the published paper of Kreisselmeier and Steinhauser [17] in 1979. The engineering and technical personnel like it athomeandabroadbecauseitiseasytopreparecommon software for solving many types of optimization problems, and it can provide the solution accuracy required with some convexity conditions. Since the 1980s, the method is widely used in structural optimization and engineering design and otherfields.inrecentyears,themethodgainedthebetter results for solving constrained and unconstrained minimax problems, linear programming problems, and semi-infinite programming. Large enough p by the above theorem shows that we can use maximum entropy function instead of the objective function max 1 i n { φ(x i,f i (x)) }; then the previous nonsmooth problems are changed into a differentiable function of unconstrained optimization problems. As is known to all, when p is limited, we can get the approximate solution of the original problem, but when p is appropriate we can guarantee high precision. For a problem with constraints, it can use the penalty function method into unconstrained problems. 3. The Idea of PSO Algorithm PSO algorithm [11] is an evolutionary computation technique, originated from the behavior of birds preying. It is similar to the genetic algorithm, an optimization tool based on iteration. The system is initialized with a set of random solutions; through the iterative searching for the optimal value, there is no crossover and mutation in the genetic algorithm, but by searching with particles in solution space following the optimal particle, its optimization has been widely recognized by academe. In an n-dimensional target search space, there are m particles forming a group, where the ith particle in the tth iteration is expressed as a vector x t i = (x t i1,xt i2,...,xt in ), i = 1,2,...,m.Thepositionof each particle is a potential solution; flying speed is the ndimensional vector V t i = (V t i1, Vt i2,...,vt in ) correspondingly.

Mathematical Problems in Engineering 3 In each iteration, note that P ij = (p i1,p i2,...,p in ) is the optimalpositionofsearchingfortheithparticle itself so far; P lj =(p l1,p l2,...,p ln ) is the optimal position of the whole particle swarm so far. In the (t+1)th iteration, the speed and position update of the ith particle are V t+1 in = V t in +c 1r 1 (p in x t in )+c 2r 2 (p ln x t in ), (8) x t+1 in =x t in + Vt+1 in, (9) where i=[1,m], j=[1,n], c 1 and c 2 are two learning factors, and r 1 and r 2 are pseudorandom numbers distributed on [0, 1] Uniformly. V is [ V max, V max ],wherev max is constant, set by the user themselves. Shi and Eberhart presented the inertia weight PSO [18]: V t+1 in =ωv t in +c 1r 1 (p in x t in )+c 2r 2 (p ln x t in ), (10) where ω is inertia weight in (10), controlling the previous velocity influence on the current speed. When ω is bigger, the influence of previous velocity is greater, and ability of global search of algorithm is weak; when ω is smaller, the influence of previous velocity is smaller, and ability of global search of algorithm is stronger. We can jump out of local minima by adjusting the size of ω. Equation (9) was improved in [19]: x t+1 is =x t is + (rand [ ]+k) Vt+1 is +10 6 rand [ ]. (11) Termination condition is the minimum adaptive threshold predetermined, which meets the maximum number of iterations or the optimal location searched by particle swarm according to the specific problems. 4. The Idea of PPA Algorithm In 1970, Martinet [20] proposed the proximal point algorithm, which is a global convergence algorithm for a convex optimization problem; then Rockafellar [21] researchedand extended the algorithm. Consider the following optimization problem: min (x,y) f(x,y), (12) where f:r n+m (,+ ] is a closed regular convex function. Proximal point algorithm (PPA) produces the iterative sequence {(x k,y k )} for solving (12),whichisasfollows: (x k+1,y k+1 ) = arg x,y R m+n ++ (x 0,y 0 ) R m+n ++ min {f (x, y) + λ k D ((x, y), (x k,y k ))}, (13) where D(, ) is a distance function; the proximal point algorithm uses D(, ) = (1/2) (x, y) (x k,y k ) 2 early. In recent years, many scholars put forward similar distance functions (x 0, y 0 ), P>0 λ 0 >0, k=1, ε>0 Solve (3.2) by using PSO algorithm f(x k+1,y k+1 ) f(x k,y k ) < ε Stop Yes Figure 1 to meet the convexity, such as Bregman function, similar to entropy function. Proximal point algorithm is a classical deterministic algorithm. If the optimization problem is a convex optimization problem, the iterative sequence {(x k,y k )} produced by the algorithm converges to the global optimal point. This paper assumes that each component of the nonlinear complementarity problem (12) is a convex function;then the corresponding entropy function is a convex function; thus, we can ensure that the iterative sequences converge to global optimal with proximal point algorithm as the outer algorithm. 5. Particle Swarm Optimization-Proximal Point Algorithm for Nonlinear Complementarity Problems Combined with the proximal point algorithm, the particle swarm optimization-proximal point algorithm for nonlinear complementarityproblemsisasfollows. 5.1. The Stepsof the OuterAlgorithm (SeeFigure 1) (1) Take initial point for x 0, the parameters p>0, λ k >0; let k:=1. (2)TakePSOalgorithminordertosolvetheproblemof adjacent point iteration, we get x k+1. (3) Check whether it has reached the requirements of precision, if it has, the algorithm stops; otherwise, k:=k+1,to2. 5.2. The Inner Particle Swarm Algorithm (1) Initialize the particle swarm of N, andsettheinitial position and velocity of each particle. (2) Calculate fitness value of each particle. No

4 Mathematical Problems in Engineering Table 1: The results of PSO-PPA algorithm. The outer loop iterations Initial point 1 (1, 0, 0, 1) 2 3 4 5 (1.1790201038, 0.0068455036, 0.0000055800, 0.6045299720) (1.2101577213, 0.0022014145, 0.0001818586, 0.5342482555) (1.2195605704, 0.0007725633, 0.0000130606, 0.5120492976) (1.2226661602, 0.0002767613, 0.0000920251, 0.5049481660) The worst solution of the inner PSO algorithm in ten times (1.1790201038, 0.0068455036, 0.0000055800, 0.6045299720) (1.2101577213, 0.0022014145, 0.0001818586, 0.5342482555) (1.2195605704, 0.0007725633, 0.0000130606, 0.5120492976) (1.2226661602, 0.0002767613, 0.0000920251, 0.5049481660) (1.2239072839, 0.0000734086, 0.0000772042, 0.5019298651) Optimal value searched 0.1098997373 0.0042986078 0.0004426942 0.0000553309 0.0000094730 Table 2: The results of [14, 15] and PSO-PPA algorithm. Algorithm Optimal value searched The worst value searched The maximum error Success rate of searching PSO-PPA Paper [14] Paper [15] (1.2239072839, 0.0000734086, 0.0000772042, 0.5019298651) (1.224742519, 0.000012080, 0.000018770, 0.500004143) (1.224744606, 0.000000071, 0.000000052, 0.500000107) (1.1176276505, 0.0010057554, 1.8089038585, 0.1817841525) (1.232680714, 0.000079050, 0.089067552, 0.476712152) / / 8.6629E 4 100% 1.2856E 2 80% 3.827E 7 100% (3) Compare the fitness value of each particle with the optimal position P ij experienced if good, as the current optimal position. (4) Compare the fitness value of each particle with the optimal position P ij global experienced if good, as the current global optimal position. (5)Evolvethepositionandspeedofparticleby(9) and (10). (6) If the termination condition is satisfied, we output the solution; otherwise, it returns to (2). 6. Numerical Results We take a nonlinear complementary problem with four different functions in [2, 3, 5, 7] to verify the validity of the new algorithm, and the comparative results with those of [14 16] are as follows. Example [2, 3, 5, 7]. Consider f 1 (x) =3x 2 1 +2x 1x 2 +2x 2 2 +x 3 +3x 4 6, f 2 (x) =2x 2 1 +x 1 +x 2 2 + 10x 3 +2x 4 2, f 3 (x) =3x 2 1 +x 1x 2 +2x 2 2 +2x 3 +9x 4 9, f 4 (x) =x 2 1 +3x2 2 +2x 3 +3x 4 3. (14) The solution of the problem is ( 6/2, 0, 0, 1/2) T and (1,0,3,0) T.Here,p is 10 5, the two learning factors are c 1 = c 2 =2,whereω reduces from 1.0 to 0.4, group size is 20, the number of maximum evolution is 100, and the search range is [ 2, 2]. We programme the algorithm using VC++6.0 in Windows XP with CPU being Pentium 4 2.93 GHz and memory being 512 MB; the results are in Table 1,wheretheinner algorithm runs after 10 times, taking the worst solution as the initial iteration point in the next step, and required accuracy is 0.0001. Data analysis: the algorithms in papers [2, 3, 5, 7]wereall deterministic algorithms; therefore, there is no comparison with the worst solution and success rate of searching in Table 2. We calculate the maximum error by F p(x) f(x), wherewetaketheworstsolutionintentimesasthecalculation error. From Table 1, we know that it needed 5 iterations of outer circulation and 100 the maximum iteration times in inner circulation. The paper [14] needs 5000 generations of evolution, but the computing speed of our algorithm is much more faster than it. The pure PPA algorithm could not find the advantages probably for nonmonotonic NCP problems, which is proved in [16], so we find the near solution with PSO firstly and then solve iteratively by using PSO-PPA algorithm for nonmonotonic NCP problems. Compared with pure PPA algorithm, the PSO-PPA algorithm do not need the initial point, and its optimizationspeed isfaster. TheresultsareinTable 3. 7. Conclusion In this paper, first of all, we use the maximum entropy function method for smoothing and then propose a new efficient algorithm for solving nonlinear complementarity problems combined with the proximal point algorithm, without using the initial point and derivative information. This algorithm not only provides a new algorithm for nonlinear complementarity problems, but also expands the application

Mathematical Problems in Engineering 5 The outer loop frequency Table 3: The results of PSO-PPA algorithm and PPA algorithm [16]. Here, we take the initial point (4, 4, 4, 4), and α = 0.8. The results of PPA algorithm [16] The optimal solutions of the inner PSO algorithm Optimal value searched of PSO-PPA algorithm 0 7.8e + 00 No initial point 0.0000452980 1 1.3e + 00 (1.2219250440, 0.00078655, 0.0001577908, 0.5062041930) 0.0000204037 2 2.7e 01 (1.2241342825, 0.0002446163, 0.0010401665, 0.5009627573) 0.0000041382 3 1.1 01 (1.2244250916, 0.0001641937, 0.0017222716, 0.5002389457) 0.0000034146 4 6.8e 02 (1.2243865723, 0.0001146427, 0.0019498208, 0.5001595384) 0.0000033836 range of the particle swarm algorithm. The experimental data shows that the algorithm has a fast convergence rate and good numerical stability and is an effective algorithm for nonlinear complementarity problems. Acknowledgments The work is being supported by the Scientific Research Foundation of the Education Department in Shaanxi Province of China (Grants nos. 11JK0493 and 12JK0887) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grants nos. S2014JC9168 and S2014JC9190). References [1] N. H. Xiu and Z. Y. Gao, The New Advances in Methods for Complementarity Problems, Advances in Mathematics, vol. 28, no. 3, pp. 193 210, 1999. [2] J.Y.Han,N.H.Xiu,andH.D.Qi,The Theory and Algorithm of Nonlinear Complementary, Shanghai Science and Technology Press, Shanghai, China, 2006. [3] Q. Biao, W. Chang-yu, and Z. Shu-xia, A method for solving nonlinear complementarity problems and its convergence properties, Mathematica Numerica Sinica,vol.28,no.3,pp.247 258, 2006. [4] C. Guo-qing and C. Bing, A new ncp-function for box constrained variational inequalitys and a related newdon-type method, Mathematica Numerica Sinica, vol. 24, pp. 91 104, 2002. [5] Z. Li-mei, A differential equation approach to solving nonlinear complementarity problem based on aggregate function, Mathematics in Practice and Theory,vol.36,no.2,pp.238 243, 2006. [6] B. Chen and N. Xiu, A global linear and local quadratic noninterior continuation method for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions, SIAMJournalonOptimization,vol.9,no.3,pp.605 623,1999. [7] M. Chang-feng, L. Guo-ping, and C. Mei-si, A positve interiorpoint algorithm for nonlinear complementarity problems, Applied Mathematics and Mechanics,vol.24,no.3,pp.315 322, 2003. [8] C. Kanzow and H. Pieper, Jacobian smoothing methods for nonlinear complementarity problems, SIAM Journal on Optimization,vol.9,no.2,pp.342 373,1999. [9] Z. Huang and Z. Shen, Entropy method for one sort of nonlinear minimax problem, Chinese Science Bulletin, vol. 41, no. 21, pp. 1550 1554, 1996. [10] L. Xing-si, The effective solution of a class of non-differentiable optimization problems, Science in China A, vol. 24, no. 4, pp. 371 377, 1994. [11] J. Kennedy and R. Eberhart, Particle swarm optimization, in Proceedings of the IEEE International Conference on Neural Networks, pp. 1942 1948, IEEE Press, December 1995. [12] J. K. Zhang, L. F. Li, and C. Zhou, Improved particle swarm optimization for class of nonlinear min-max problems, Journal of Computer Applications,vol.24,no.5,pp.1194 1196,2008. [13] J. K. Zhang, Maximum entropy particle swarm optimization for nonlinear l-1 norm minimization problem, Computer Engineering and Applications, vol. 45, no. 13, pp. 62 64, 2009. [14] J. K. Zhang, Particle swarm optimization for nonlinear complementarity problems, Computer Engineering and Applications,vol.45,no.27,pp.43 45,2009. [15]J.Z.Sun,S.Y.Wang,J.K.Zhangetal., SCOalgorithm based on entropy function for NCP, Computer Engineering and Applications,vol.46,no.21,pp.40 42,2010. [16] N. Yamashita, H. Dan, and M. Fukushima, On the identification of degenerate indices in the nonlinear complementarity problem with the proximal point algorithm, Mathematical Programming A,vol.99,no.2,pp.377 397,2004. [17] G. Kreisselmeier and R. Steinhauser, Systematic control design by optimizing a performance index, in Proceedings of the IFAC SymposiumonComputerAidedDesignofControlSystems,pp. 113 117, Zurich, Switzerland, 1979. [18] Y. Shi and R. Eberhart, Modified particle swarm optimizer, in Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC 98), pp. 69 73, IEEE Press, Piscataway, NJ, USA, May 1998. [19] J. K. Zhang, S. Y. Liu, and X. Q. Zhang, Improved particle swarm optimization, Computer Engineering and Design, vol. 21, no. 8, pp. 41 57, 2007. [20] B. Martinet, Régularisation d inéquations variationnelles par approximations successives, RIRO, vol. 4, pp. 154 159, 1970. [21] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization,vol.14, no.5,pp.877 898,1976.

Advances in Operations Research Advances in Decision Sciences Applied Mathematics Algebra Probability and Statistics The Scientific World Journal International Differential Equations Submit your manuscripts at International Advances in Combinatorics Mathematical Physics Complex Analysis International Mathematics and Mathematical Sciences Mathematical Problems in Engineering Mathematics Discrete Mathematics Discrete Dynamics in Nature and Society Function Spaces Abstract and Applied Analysis International Stochastic Analysis Optimization