Quantum magnonics with a macroscopic ferromagnetic sphere

Similar documents
光 - マグノン - マイクロ波 - 超伝導量子ビットのリンクあるいは量子ピタゴラスイッチ

Distributing Quantum Information with Microwave Resonators in Circuit QED

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Interface magnons with superconducting quantum circuits

.O. Demokritov niversität Münster, Germany

Supercondcting Qubits

Quantum computation and quantum information

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Quantum optics of many-body systems

Dynamical Casimir effect in superconducting circuits

Superconducting Qubits Lecture 4

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena

Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Optical Characterization of Solids

Superconducting Resonators and Their Applications in Quantum Engineering

Electron spins in nonmagnetic semiconductors

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

Decoherence in molecular magnets: Fe 8 and Mn 12

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Interaction between surface acoustic waves and a transmon qubit

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

arxiv: v1 [quant-ph] 26 Nov 2017

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Condensed Matter Without Matter Quantum Simulation with Photons

Superconducting Qubits

Lecture 2, March 1, 2018

Introduction to Circuit QED

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

10.5 Circuit quantum electrodynamics

Lecture 2, March 2, 2017

Controlling the Interaction of Light and Matter...

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

Quantum Optics. Manipulation of «simple» quantum systems

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Theory for investigating the dynamical Casimir effect in superconducting circuits

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

Quantum optics and optomechanics

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Cavity Quantum Electrodynamics with Superconducting Circuits

Strong tunable coupling between a charge and a phase qubit

Electronic Properties of Materials An Introduction for Engineers

Superconducting quantum bits. Péter Makk

Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator

Chapter 8 Magnetic Resonance

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM

Circuit QED with electrons on helium:

Damping of magnetization dynamics

Ferromagnetism and Anomalous Hall Effect in Graphene

Nitrogen-Vacancy Centers in Diamond A solid-state defect with applications from nanoscale-mri to quantum computing

Unidirectional spin-wave heat conveyer

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Quantum electromechanics with dielectric oscillators

Quantum Computation with Neutral Atoms Lectures 14-15

Spin Mechanics of Ferromagnets

Cavity Spintronics. Winnipeg. Outline of a simple story. Cavity Magnon Polariton

Entangled Macroscopic Quantum States in Two Superconducting Qubits

Cristaux dopés terres rares pour les mémoires quantiques

arxiv: v2 [cond-mat.mes-hall] 24 Jan 2011

Quantum Reservoir Engineering

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SUPPLEMENTARY INFORMATION

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Synthesizing arbitrary photon states in a superconducting resonator

Ferromagnetism and antiferromagnetism ferromagnetism (FM) antiferromagnetism (AFM) ferromagnetic domains nanomagnetic particles

Resonantly Enhanced Microwave Photonics

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Bottleneck accumulation of hybrid bosons in a ferrimagnet

Exploring parasitic Material Defects with superconducting Qubits

Short Course in Quantum Information Lecture 8 Physical Implementations

Integrated Optomechanical (and Superconducting) Quantum Circuits

Quantum Microwave Photonics:

Day 3: Ultracold atoms from a qubit perspective

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Entanglement Control of Superconducting Qubit Single Photon System

Cooperative Phenomena

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers

Quantum gates in rare-earth-ion doped crystals

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi

Spin Current and Spin Seebeck Effect

Lecture 11, May 11, 2017

Amplification, entanglement and storage of microwave radiation using superconducting circuits

Quantum Information NV Centers in Diamond General Introduction. Zlatko Minev & Nate Earnest April 2011

M.Sc. Physics

10.5 Circuit quantum electrodynamics

4-3 New Regime of Circuit Quantum Electro Dynamics

Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab

arxiv: v1 [quant-ph] 11 Nov 2014

Magnetic Resonance in Quantum Information

Ion trap quantum processor

Photonics applications II. Ion-doped ChGs

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

Spin Transport using Magneto-elastic Bosons Vitaliy I. Vasyuchka

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University

Transcription:

Quantum magnonics with a macroscopic ferromagnetic sphere Yasunobu Nakamura Superconducting Quantum Electronics Team Center for Emergent Matter Science (CEMS), RIKEN Research Center for Advanced Science and Technology (RCAST), The University of Tokyo

Quantum Information Physics & Engineering Lab @ UTokyo http://www.qc.rcast.u-tokyo.ac.jp/

The magnonists Ryosuke Mori Seiichiro Ishino Yutaka Tabuchi Dany Lachance-Quirion (Sherbrooke) Alto Osada Koji Usami Ryusuke Hisatomi

Quantum mechanics in macroscopic scale Quantum state control of collective excitation modes in solids Microscopic Charge Superconductivity Surface plasmon polariton Macroscopic Ordered phase Broken symmetry Spin Photon Atom Magnon Photon Phonon Ferromagnet Lattice order Spatially-extended rigid mode Large transition moment

Superconducting qubit nonlinear resonator LC resonator Josephson junction resonator Josephson junction = nonlinear inductor anharmonicity effective two-level system energy inductive energy = confinement potential charging energy = kinetic energy quantized states

Quantum interface between microwave and light Quantum repeater Quantum computing network

Hybrid quantum systems Superconducting quantum electronics Quantum magnonics Superconducting circuits Surface plasmon polariton Microwave Nonlinearity Quantum nanomechanics Ferromagnet Magnon Nanomechanics Phonon Light Quantum surface acoustics

Quantum magnonics

Hybrid with paramagnetic spin ensembles Spin ensemble of NV-centers in diamond Kubo et al. PRL 107, 220501 (2011). CEA Saclay R. Amsüss et al. PRL 107 060502 (2011). TUWien Zhu et al. Nature 478, 221 (2011). (NTT) Saito et al. Phys. Rev. Lett. 111, 107008 (2013). (NTT) Rare-earth doped crystal Optical quantum memory Er:Y 2 SiO 5 Pr:Y 2 SiO 5 Bushev et al. PRB 84, 060501(R) (2011) Karlsruhe Hedges et al. Nature 465, 1052 (2010) Otago

Hybrid with ferromagnetic magnons Paramagnet Low spin density 10 12-10 18 cm -3 Spatial mode defined by EM fields Ferromagnet High spin density 10 21-10 22 cm -3 Robust extended spatial mode

Two coupled spins 2-magnon 1-magnon 0-magnon

N coupled spins 2-magnon 1-magnon 0-magnon cf. Dicke, Phys. Rev. 93, 99 (1954)

N coupled spins Effective harmonic oscillator 2-magnon 1-magnon 0-magnon cf. Dicke, Phys. Rev. 93, 99 (1954)

Yttrium Iron Garnet (YIG) Ferrimagnetic insulator Narrow FMR line Transparent at infrared High Curie temperature: ~550 K Large spin density: 2.1 10 22 cm -3 Spintronics Microwave oscillators Optical isolators CANDOX Corporation FDK Corporation Kajiwara et al. Nature 2010

Hybrid with ferromagnet magnons Kittel mode YIG single crystal B ac B static ~300 mt Microwave resonator 1mm sphere

Experimental setup Superconducting coil ~mt @ 1mA YIG Permanent magnet (~300 mt) 1cm Yoke YIG Copper resonator Rectangular TE 101 mode YIG sphere Magnetostatic mode with uniform precession (Kittel mode) Resonator Y. Tabuchi S. Ishino

Experimental setup 10 mk plate CAVITY YOKE

Magnetic-field dependence Low temperature ~ 10 mk; 1 thermal magnon & photon Microwave power: ~0.9 photons in cavity 0.5-mm sphere Y. Tabuchi et al. PRL 113, 083603 (2014)

Coupling strength and cooperativity magnon photon Strong coupling condition magnon-polariton Parameter Value Cavity external coupling (κ 1 +κ 2 )/2π 1.6 MHz Cavity intrinsic loss κ int /2π 1.1 MHz Magnon linewidth γ S /2π 1.1 MHz Magnon-photon coupling g m /2π 47 MHz Cooperativity 4g 2 m /γ S (κ c + κ int ) 3.0 10 3

Sphere-size dependence of coupling strength Coupling strength per spin Estimation from vacuum fluctuation amplitude Y. Tabuchi et al. PRL 113, 083603 (2014)

Magnon linewidth vs. temperature ~ 500 khz @ 4.2 K Magnon-phonon (Kasuya-LeCraw) Surface roughness Slowly-relaxing impurity M. Sparks, Ferromagnetic-Relaxation Theory (1964); Data: E. G. Spencer et. al. Phys. Rev. Lett. 3, 32 (1959).

Magnon linewidth vs. temperature Coupling to ensemble of two-level systems Red: data cf. superconducting resonator, Martinis 2005 glass physics, Hunklinger ~1980 Theory: J. H. Van Vleck, J. Appl. Phys. 35, 882 (1964).

Coupling with a superconducting qubit

Inside the cavity SUPERCONDUCTING QUBIT(TRANSMON) YIG CRYSTAL

Qubit-magnon coupling Qubit-magnon coupling mediated by virtual photon excitation in cavity

Vacuum Rabi splitting qubit Y. Tabuchi et al. Science 349, 405 (2015)

Vacuum Rabi oscillations Y. Tabuchi et al. unpublished

Magnon-number-resolving spectroscopy D. Lachance-Quirion et al. unpublished TE102 Energy g m ω FFF g q ω q 3 m 2 m 1 m 0 m Magnon Ground state Qubit Excitation

(Quantum) optomagnonics

Optical detection of magnon excitations Microwave detection Laser Optical detection R. Hisatomi et al. arxiv:1601.03908; to appear in PRA

Optical detection of magnon excitations at 300 K Magnon Microwave cavity Microwave

Optical detection of magnon excitations at 300 K Light Magnon Microwave cavity

Coherent microwave generation via magnon Brillouin scattering at 300 K Quantized axis Laser 1550 nm Stimulated Brillouin Scattering AMP Efficiency ~ 10-10 Magnon number state 10 GHz Difference frequency (GHz) R. Hisatomi et al. arxiv:1601.03908; to appear in PRA

Cavity optomagnonics See also J. A. Haigh et al. PRA 92, 063845 (Cambridge) X. Zhang et al. arxiv:1510.03545 (Yale)

Coupling to whispering gallery mode Coupling to whispering gallery mode

Photonic chiral modes Chirality in WGM Junge et al. PRL 110, 213604 (2013) TUWien Chiral nanophotonic waveguide Petersen et al. Science 346, 67 (2014) TUWien

Beyond paraxial approximation dive = E + z E z = 0 E = iie z =0 for plane wave z Spin orbit interactions of light x Review: K. Y. Bliokh et al. Nat. Photo. 9, 796 (2015)

Angular momentum selection rule ETE = π ETM = σ+ e, n+1 e, n e, n-1 σ+ σπ σ+ π σ g, n+1 g, n g, n-1 B Blue sideband Red sideband A. Osada et al. arxiv:1510.01837; to appear in PRL

Non-reciprocal sideband generation TM-input A. Osada et al. arxiv:1510.01837; to appear in PRL

Non-reciprocal sideband generation TM-input ω TM < ω TE ω TM > ω TE A. Osada et al. arxiv:1510.01837; to appear in PRL

Role of geometric birefringence Geometrical birefringence TE (m) TM (m) TM(m+1) TM (m-1) TE (m+1) TM input

Microwave-light conversion via electro-optical WGM resonator LiNbO 3 Conversion efficiency ~ 10-3 A. Rueda et al. arxiv:1601.07261 (Erlangen)

Model π σ +

Possible optimization Set all detuning to zero, Ω TM -Ω TE -Ω m =0 x7000 Make a better cavity x3500 Reduce sample volume x100 Conversion efficiency ~ 1 10-3 +Larger g Verdet const.

Conclusions Quantum magnonics with ferromagnet Strong coupling with superconducting qubit Vacuum Rabi oscillations Magnon-number-resolving spectroscopy Optomagnonics Microwave-light conversion Cavity optomagnonics with WGM In progress Manipulation and measurement of non-classical states of magnon mode Optimization of optical coupling ErIG instead of YIG

Optical transitions in Yttrium and Erbium iron garnet YIG Fe 3+ ErIG ~400 nm Er 3+ ~1.5 μm ~1.5 μm

Optical absorption of REIG 1.5 μm Wood and Remeika, JAP 38, 1038 (1967) Bell Lab

Faraday rotation in ErIG ErIG @130K ErIG @295K 1.5 μm N.I. Tsidaeva, J. Alloys and Compounds 374 (2004) 160