Waves in Linear Optical Media

Similar documents
Fundamentals of Nonlinear Optics ECED 6400 Lecture Notes c 2016 Sergey A. Ponomarenko

Chap. 2. Polarization of Optical Waves

Introduction to Polarization

Waves. Daniel S. Weile. ELEG 648 Waves. Department of Electrical and Computer Engineering University of Delaware. Plane Waves Reflection of Waves

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Electromagnetic Waves Across Interfaces

4: birefringence and phase matching

βi β r medium 1 θ i θ r y θ t β t

Wavepackets. Outline. - Review: Reflection & Refraction - Superposition of Plane Waves - Wavepackets - ΔΔk Δx Relations

Propagation of EM Waves in material media

Summary of Beam Optics

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when

Lecture 9. Transmission and Reflection. Reflection at a Boundary. Specific Boundary. Reflection at a Boundary

Theoretische Physik 2: Elektrodynamik (Prof. A-S. Smith) Home assignment 9

Electromagnetic Waves

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector

Electromagnetic fields and waves

Chap. 1 Fundamental Concepts

Electromagnetic Properties of Materials Part 2

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11 13

Simple medium: D = ɛe Dispersive medium: D = ɛ(ω)e Anisotropic medium: Permittivity as a tensor

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11-13

Electromagnetic Theory for Microwaves and Optoelectronics

Multilayer Reflectivity

CHAPTER 9 ELECTROMAGNETIC WAVES

A Review of Basic Electromagnetic Theories

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence

Electromagnetic Wave Propagation Lecture 3: Plane waves in isotropic and bianisotropic media

Chap. 4. Electromagnetic Propagation in Anisotropic Media

Chapter 2 Basic Optics

(a) Show that the amplitudes of the reflected and transmitted waves, corrrect to first order

Generalized reciprocal relations for transmission and reflection of light through a 1D stratified anisotropic metamaterial

Midterm Exam 2. Nov. 17, Optics I: Theory CPHY72250

Lecture 36 Date:

Polarimetry of homogeneous half-spaces 1

ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM. 28 April Examiner: Prof. Sean V. Hum. Duration: hours

Electromagnetic Waves

Brewster Angle and Total Internal Reflection

The Cooper Union Department of Electrical Engineering ECE135 Engineering Electromagnetics Exam II April 12, Z T E = η/ cos θ, Z T M = η cos θ

Wave Phenomena Physics 15c. Lecture 15 Reflection and Refraction

Chapter 1 - The Nature of Light

Reflection/Refraction

Electromagnetic Wave Propagation Lecture 5: Propagation in birefringent media

Electromagnetism II Lecture 7

FORTH. Essential electromagnetism for photonic metamaterials. Maria Kafesaki. Foundation for Research & Technology, Hellas, Greece (FORTH)

Physics 442. Electro-Magneto-Dynamics. M. Berrondo. Physics BYU

Polarizers and Retarders

ECE 604, Lecture 17. October 30, In this lecture, we will cover the following topics: Reflection and Transmission Single Interface Case

16. More About Polarization

9 The conservation theorems: Lecture 23

Nonlinear optics: a back-to-basics primer Lecture 1: linear optics

Brewster Angle and Total Internal Reflection

Electromagnetic Waves

Electromagnetic Wave Propagation Lecture 8: Propagation in birefringent media

Chapter 33. Electromagnetic Waves

Module 5 : Plane Waves at Media Interface. Lecture 36 : Reflection & Refraction from Dielectric Interface (Contd.) Objectives

Homework 1. Nano Optics, Fall Semester 2017 Photonics Laboratory, ETH Zürich

EECS 117. Lecture 23: Oblique Incidence and Reflection. Prof. Niknejad. University of California, Berkeley

Part VIII. Interaction with Solids

Numerical Simulation of Nonlinear Electromagnetic Wave Propagation in Nematic Liquid Crystal Cells

Solutions: Homework 7

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Propagation of Plane Waves

Review of Basic Principles of Electromagnetic Fields

Electromagnetic unidirectionality in magnetic photonic crystals

Guided Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Guided Waves

3 December Lesson 5.5

Chapter 9. Electromagnetic waves

4.1 Solving Maxwell s equations in linear, isotropic, homogeneous, circularly symmetric media

Jones calculus for optical system

Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials

EM waves: energy, resonators. Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves

Electromagnetic Waves

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields

Electromagnetic waves

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT

Absorption suppression in photonic crystals

Electromagnetic Theory for Microwaves and Optoelectronics

Chem8028(1314) - Spin Dynamics: Spin Interactions

EE 5337 Computational Electromagnetics. Preliminary Topics

Wave Phenomena Physics 15c

UNIT I ELECTROSTATIC FIELDS

Jackson 7.6 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Maxwell s Equations:

10 (4π 10 7 ) 2σ 2( = (1 + j)(.0104) = = j.0001 η c + η j.0104

Introduction to Condensed Matter Physics

Problem set 3. Electromagnetic waves

3 Constitutive Relations: Macroscopic Properties of Matter

( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001).

Simulations of liquid-crystal Fabry Perot etalons by an improved 4Ã4 matrix method

11/29/2010. Propagation in Anisotropic Media 3. Introduction. Introduction. Gabriel Popescu

Modal Phenomena of Surface and Bulk Polaritons in Magnetic-Semiconductor Superlattices

Waves in plasmas. S.M.Lea

Today in Physics 218: electromagnetic waves in linear media

Physics 214 Midterm Exam Solutions Winter 2017

II Theory Of Surface Plasmon Resonance (SPR)

Homogeneous Bianisotropic Medium, Dissipation and the Non-constancy of Speed of Light in Vacuum for Different Galilean Reference Systems

Microscopic-Macroscopic connection. Silvana Botti

Transcription:

1/53 Waves in Linear Optical Media Sergey A. Ponomarenko Dalhousie University c 2009 S. A. Ponomarenko

Outline Plane waves in free space. Polarization. Plane waves in linear lossy media. Dispersion relations for linear waves in dispersionless, homogeneous media. Waves in anisotropic media: Faraday rotation, uniaxial crystals. Waves in piecewise-continuous media: Fresnel theory. Brewster and surface plasmon-polariton modes. 2/53

Light propagation in free space Maxwell s equations (ME) in free space: E = µ 0 H t, H = ε 0 E t, E = 0, H = 0. Describe any classical optics phenomenon in free space! 3/53

Eliminating the magnetic field: ( E) = ( E) 2 E = µ 0 ε 0 2 E t 2. recalling that µ 0 ε 0 = 1/c 2, 4/53 2 E 1 2 E = 0. (1) c 2 t2 Wave equation in free space. There exist plane wave solutions

Plane wave solutions: E = E 0 e i(k r ωt), 5/53 H = H 0 e i(k r ωt), with the dispersion relation: k 2 = ω 2 /c 2 as well as the relations H 0 = (ê k E 0 ) η 0

E 0 = η 0 (ê k H 0 ). where η 0 = µ 0 /ε 0 (free space impedance). The transversality conditions: ê k E 0 = 0, ê k H 0 = 0. 6/53 K E Η

E = (E x ê x + E y ê y )e i(kz ωt), E x = E x e iφ x, E y = E y e iφ y. 7/53 φ x = φ y, linear polarization, E x = E y, φ x φ y = π/2, circular polarization Otherwise, elliptical polarization. The elliptic polarization is the most general case, E x = E y and φ x φ y.

E y E 8/53 â y â x E x E = Linear polarization, Ex 2 + Ey 2, θ = tan 1 (E y /E x ).

Circular polarization, E y E 9/53 o E x ê ± = êx ± iê y 2, ê ± ê = 0, ê ± ê ± = 1.

Elliptical polarization, E u E 10/53 E v E = (E + ê + + E ê )e i(kz ωt), E /E + = re iα.

Light propagation in linear isotropic lossy media Constitutive relations 11/53 and D = ε 0 ε(ω)e, B = µ 0 H, ε(ω) = ε (ω) + iε (ω), Maxwell s equations k E = 0, k H = 0,

k E = µ 0 ωh k H = ε 0 ε(ω)ωe. 12/53 Seeking inhomogeneous plane wave solutions E(z,t) = Re{E e i(kz iωt) } H(z,t) = Re{H e i(kz iωt) }

Dispersion relation k = β ± + iα ± /2. where 13/53 β ± = ± ω 2c ε 2 + ε 2 + ε and α ± = ± ω c ε 2 + ε 2 ε

The electric and magnetic field amplitudes: E = η(ê z H ), and H = (ê z E ), η η being a complex impedance of the medium 14/53 η = η 0 ε(ω) η = η 0 (ε 2 + ε 2 ) 1/4, tanθ η = ε /ε

E e - z o z 15/53 Linearly polarized plane wave and E(z,t) = ê x E e αz cos(βz ωt) H(z,t) = ê y E η e αz cos(βz ωt θ η ).

Lossless dielectrics, ε = 0 E(z,t) = ê x E cos(βz ωt), E H(z,t) = ê y cos(βz ωt). η Homogeneous plane wave with parameters λ = 2π/β, 16/53 v p = ω/β.

Light propagation in linear anisotropic media MEs in source-free nonmagnetic media E = B t, H = D t, D = 0, B = 0. B = µ 0 H 17/53

Eliminating magnetic field from MEs: and ( E) 2 E = µ 0 2 D t 2 D = 0, The electric flux density in such media: D i = 3 ε i j E j, j=1 18/53

Plane-wave solution for the field: and the flux density: E i = 1 2 E ie i(k r ωt) + c.c.,. D i = 1 2 j ε i j E j e i(k r ωt) + c.c.. Modes supported by the medium: ) (k i k j k 2 δ i j + ω2 c ε 2 i j E j = 0, j 19/53

or ky 2 + kz 2 ω2 ε c 2 xx k x k y ω2 ε c 2 yx k x k z ω2 E x E y E z j c 2 ε zx k x k y ω2 ε c 2 xy kx 2 + kz 2 ω2 ε c 2 yy k y k z ω2 ε c 2 zy k x k z ω2 ε c 2 xz k y k z ω2 ε c 2 yz kx 2 + ky 2 ω2 ε c 2 zz = 0 (2) ( [k 2 δ i j k ) ] ik j ω2 k 2 c ε 2 i j E j = 0, 20/53

or plus the transversality condition: k 2 y + k 2 z ω2 c 2 ε xx k x k y ω2 c 2 ε yx k x k z ω2 c 2 ε zx i, j k i ε i j E j = 0. Dispersion relations: ) Det (k i k j k 2 δ i j + ω2 c ε 2 i j = 0. k x k y ω2 ε c 2 xy kx 2 + kz 2 ω2 ε c 2 yy k y k z ω2 ε c 2 zy k x k z ω2 ε c 2 xz k y k z ω2 ε c 2 yz kx 2 + ky 2 ω2 ε c 2 zz = 0 21/53

Faraday rotation in external magnetic field The dielectric tensor (phenomenological) 22/53 ε i j (ω) = ε(ω)δ i j + ig(ω)e i jl B 0l, gb 0 ε. B 0 weak magnetic field. e i jk = { 1 even permutation of ijk; 1 odd permutation of ijk

Assume k = (0,0,k); Dispersion relation: k ± = k ± k, where 23/53 k = ω c ε(ω); k = ωg(ω)b 0 2 ε(ω)c. Eigenmodes are circularly polarized plane waves, E ± (z,t) = ê ± E 0 e i(k ±z ωt). Magnetic field breaks down the symmetry!

Evolution of a linearly polarized wave E(0,t) = E 0 ê x e iωt, By superposition at any plane z = const > 0: 24/53 E(z,t) = a + ê + e i(k +z ωt) + a ê e i(k z ωt), after some algebra: E(z,t) = E 0 ê r (z)e i(kz ωt), where ê r (z) = ê x cos kz ê y sin kz.

Linearly polarized wave with rotating polarization plane Rotation angle: φ = kl = V B 0 L, where V is the so-called Verdet constant: V = ωg(ω) 2c ε(ω). 25/53 Verdet constant gives the rate of rotation Application: polarization control.

Linear waves in uniaxial media Dielectric tensor of a uniaxial crystal with the principal axis along n: ε i j = ε n i n j + ε (δ i j n i n j ). 26/53 Illustration Choose n = (0,0,1) and k = (k x,0,k z ): ε 0 0 ε = 0 ε 0 0 0 ε

Ordinary waves: Dispersion relations 27/53 k = ω c ε. Extraordinary waves: ( k = ω sin 2 θ c ε + cos2 θ ε ) 1/2.

k x k 0 k x k e 28/53 k z k z ω 2 c 2 = k2 x ε + k2 z ε. Dispersion ellipse

Properties of extraordinary waves: Magnitude of the wave vector depends on the propagation direction. Propagation direction does not coincide with the energy flow direction S need not be parallel to k. Applications: Can be used for phase matching in secondharmonic generation processes. 29/53

Reflection of plane waves at normal incidence 30/53 E i x â K H i E r H r â K H t E t â K,,,,, 1 1 1 1 2 2 Medium 1 Medium 2 z

and Incident wave E i (z,t) = ê x E 0i e i(k iz ω i t), H i (z,t) = ê y E 0i η i e i(k iz ω i t). Reflected wave E r (z,t) = ê x E 0r e i(k rz+ω r t), H r (z,t) = ê y E 0r η r e i(k rz+ω r t). 31/53

Transmitted wave E t (z,t) = ê x E 0t e i(γ tz ω t t), H t (z,t) = ê y E 0t η t e i(γ tz ω t t). Boundary conditions 32/53 E 1τ z=0 = E 2τ z=0, H 1τ z=0 = H 2τ z=0. imply that e i(k iz ω i t) z=0 = e i(k rz+ω r t) z=0 = e i(γ tz ω t t) z=0.

Thus ω i = ω r = ω t = ω; and also k i = k r = k 1 = ω c ε1, γ t = γ 2 = β 2 + iα 2, η i = η r = η 1 = η 0 / ε 1, η t = η 2 = η 0 / ε 2, ε 2 = ε 2 + iε 2. 33/53

The transmission and reflection amplitudes and r E 0r E 0i = η 2 η 1 η 1 + η 2, t E 0t E 0i = 2η 2 η 1 + η 2. Energy flux conservation: 34/53 1 + r = t.

Perfect conductor, σ E i x 35/53 H i E r â K â K H r 1 2 z,, 1 1 1 No transmitted wave!

Refraction & reflection at oblique incidence z 36/53 Medium 2 (, ) 2 2 â n t k t Medium 1 (, ) 1 1 k i i r k r k i = k ix ê x + k iz ê z, k r = k rx ê x + k rz ê z, k t = k tx ê x + k tz ê z,

z Medium 2 (, ) 2 2 â n t k t 37/53 Medium 1 (, ) 1 1 k i i r k r e i(k i r ω i t) z=0 = e i(k r r ω r t) z=0 = e i(k t r ω t t) z=0.

z Medium 2 (, ) 2 2 â n t k t 38/53 Medium 1 (, ) 1 1 k i i r k r k ix = k rx = k tx = k x k ix = k rx = θ i = θ r Snell s law k ix = k tx = n 1 sinθ 1 = n 2 sinθ 2,

TM-polarized waves z 39/53 Medium 2 (, ) 2 2 z 0 t E t H t k t x Medium 1 (, ) 1 1 E i H i k i i r E r H r k r

Incident waves H i (r,t) = H 0i ê y e i(k i r ωt) E i (r,t) = η 1 H 0i (k iz ê x k x ê z )e i(ki r ωt), Reflected waves H r (r,t) = H 0r ê y e i(k r r ωt) E r (r,t) = η 1 H 0r ( k 1z e x k x e z )e i(kr r ωt), Transmitted waves H t (r,t) = H 0t ê y e i(k t r ωt) E t (r,t) = η 2 H 0t (k 2z e x k x e z )e i(kt r ωt), 40/53

TM-reflection and transmission amplitudes: and r T M = r = E 0r E 0i = ε 2k 1z ε 1 k 2z ε 2 k 1z + ε 1 k 2z, 41/53 t T M = t = E 0t E 0i = 2ε 2k 1z ε 2 k 1z + ε 1 k 2z Transmission and reflection coefficients: ε1 ε 2. R T M r T M 2, T T M t T M 2.

Reflectionless modes r T M = 0 =,ε 2 k 1z = ε 1 k 2z Brewster mode = Im{k 1z } = Im{k 2z } = 0 tanθ B = n 2 /n 1 ; where refractive indices are defined as 42/53 n s = ε s ; s = 1,2.

Surface plasmon polariton (SPP) modes 43/53 ε(ω) = { ε1 > 0, z > 0, ε 2 (ω) 0, z < 0.

Dispersion relation follows from and k jz = ε 2 k 1z = ε 1 k 2z k 2 0 ε j k 2 x j = 1,2 k 0 = ω/c SPP signature: k 2 x 0 k 2 jz 0 44/53

Dispersion relations: and ε 1 > 0, ε1 ε 2 k x = k 0 ε 1 + ε 2 ε 2 j k jz = k 0, j = 1,2. ε 1 + ε 2 SPP conditions: ε 1 + ε 2 < 0, ε 1 ε 2 < 0. ε 2 < ε 1 = metal-dielectric interface 45/53

Launching SPPs 46/53

TE-polarization z Medium 2 (, ) 2 2 E t k t 47/53 z 0 t H t x Medium 1 (, ) 1 1 E i k i H i i r H r E r k r

Incident waves E i (r,t) = E 0i ê y e i(k i r ωt) H i (r,t) = E 0i η 1 ( k 1z e x + k x e z )e i(k i r ωt), Reflected waves E r (r,t) = E 0r ê y e i(k r r ωt) H r (r,t) = E 0r η 1 (k 1z e x + k x e z )e i(k r r ωt), Transmitted waves E t (r,t) = E 0t ê y e i(k t r ωt) H t (r,t) = E 0t η 2 ( k 2z e x + k x e z )e i(k t r ωt). 48/53

Transmission and reflection amplitudes: and r T E = r = E 0r E 0i = k 1z k 2z k 1z + k 2z, t T E = t = E 0t E 0i = No Brewster angle or SPPs: 2k 1z k 1z + k 2z. 49/53 r T E 0,

Total internal reflection Incidence from more dense medium n 1 > n 2 Critical angle: 50/53 Under the condition θ c = sin 1 (n 2 /n 1 ), θ 1 > θ c, n k 2z = i k 2z = ik 2 1 2 sin 2 θ n 2 1 1, 2

TM-polarized incident wave Unimodular reflection amplitude r T M = e 2iφ T M 51/53 where ( ) φ T M = tan 1 ε1 k 2z ε 2 k 1z

TE-polarized incident wave Unimodular reflection amplitude r T E = e 2iφ T E, 52/53 and ( ) φ T E = tan 1 k2z k 1z

Energy flow across the interface? Time-averaged Poynting vector, S t (z) = 1 2 Re[E 0t(z) H 0t (z)]. 53/53 TM case: S t (z) = e x 4ε 2 k 2 1z k x k 0 (ε 2 2 k2 1z + ε2 1 k 2z 2 ) I ie 2 k 2z z, Propagates along the interface!