ENGI 2422 Appendix A Formulæ Page A-01

Similar documents
DIFFERENCE EQUATIONS

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR

Solving Fuzzy Linear Fractional Programming Problem using LU Decomposition Method

A.P. Calculus Formulas. 1. floor function (def) Greatest integer that is less than or equal to x.

S.E. Sem. III [EXTC] Applied Mathematics - III

Derivation of the Metal-Semiconductor Junction Current

t to be equivalent in the sense of measurement if for all functions gt () with compact support, they integrate in the same way, i.e.

F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics

Physics 232 Exam II Mar. 28, 2005

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know

The sphere of radius a has the geographical form. r (,)=(acoscos,acossin,asin) T =(p(u)cos v, p(u)sin v,q(u) ) T.

Laplace Examples, Inverse, Rational Form

Lecture 25 Outline: LTI Systems: Causality, Stability, Feedback

A.P. Calculus Formulas Hanford High School, Richland, Washington revised 8/25/08

Simple Methods for Stability Analysis of Nonlinear Control Systems

Chapter Introduction. 2. Linear Combinations [4.1]

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Dividing Algebraic Fractions

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

1. Introduction and notations.

First assignment of MP-206

Thermal Stresses of Semi-Infinite Annular Beam: Direct Problem

Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as.

June Further Pure Mathematics FP2 Mark Scheme

X-Ray Notes, Part III

Chapter #2 EEE Subsea Control and Communication Systems

RESPONSE OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM SUBJECTED TO A TERMINAL SAWTOOTH APPLIED FORCE

Released Assessment Questions, 2017 QUESTIONS

UBI External Keyboard Technical Manual

Classification of Equations Characteristics

Solutions to assignment 3

LOCUS 1. Definite Integration CONCEPT NOTES. 01. Basic Properties. 02. More Properties. 03. Integration as Limit of a Sum

Curvilinear Motion: Normal and Tangential Components

Numerical Solution of Fuzzy Arbitrary Order Predator-Prey Equations

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

An immersed boundary method for mass transfer across permeable moving interfaces

Math 2414 Homework Set 7 Solutions 10 Points

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

All the Laplace Transform you will encounter has the following form: Rational function X(s)

The stress transfer calculations presented in the main text reports only our preferred

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

Integration and Differentiation

T h e C S E T I P r o j e c t

1a.- Solution: 1a.- (5 points) Plot ONLY three full periods of the square wave MUST include the principal region.

RESOLUTION NO OVERSIGHT BOARD FOR THE SUCCESSOR AGENCY TO THE REDEVELOPMENT AGENCY OF THE CITY OF SOUTH SAN FRANCISCO

(X i,y, i i ), i =1, 2,,n, Y i = min (Y i, C i ), i = I (Y i C i ) C i. Y i = min (C, Xi t θ 0 + i ) E [ρ α (Y t )] t ρ α (y) =(α I (y < 0))y I (A )

CH 45 INTRO TO FRACTIONS

SOME USEFUL MATHEMATICS

LAPLACE TRANSFORMS. 1. Basic transforms

Inspiration and formalism

H STO RY OF TH E SA NT

FM Applications of Integration 1.Centroid of Area

Coefficient Inequalities for Certain Subclasses. of Analytic Functions

Chapter 2. Review of Hydrodynamics and Vector Analysis

H (2a, a) (u 2a) 2 (E) Show that u v 4a. Explain why this implies that u v 4a, with equality if and only u a if u v 2a.

1.B Appendix to Chapter 1

NATURAL TRANSFORM AND SOLUTION OF INTEGRAL EQUATIONS FOR DISTRIBUTION SPACES

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

Derivatives of Inverse Trig Functions

Vibration Analysis of a Thick Ring Interacting with the Disk Treated as an Elastic Foundation

Thomas Whitham Sixth Form

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c)

AP Calculus Formulas Matawan Regional High School Calculus BC only material has a box around it.

Three Dimensional Coordinate Geometry

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

ELLIPSE. 1. If the latus rectum of an ellipse be equal to half of its minor axis, then its eccentricity is [Karnataka CET 2000]

Topic 4 Fourier Series. Today

Review for the Midterm Exam.

700 STATEMENT OF ECONOMIC

International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online

0 dx C. k dx kx C. e dx e C. u C. sec u. sec. u u 1. Ch 05 Summary Sheet Basic Integration Rules = Antiderivatives Pattern Recognition Related Rules:

4. Statements Reasons

Optimal Transform: The Karhunen-Loeve Transform (KLT)

Science & Technologies GENERAL BIRTH-DEATH PROCESS AND SOME OF THEIR EM (EXPETATION- MAXIMATION) ALGORITHM

CHAPTER 2 Quadratic diophantine equations with two unknowns

(1) (2) sin. nx Derivation of the Euler Formulas Preliminary Orthogonality of trigonometric system

EE Control Systems LECTURE 11

xp (X = x) = P (X = 1) = θ. Hence, the method of moments estimator of θ is

Name of the Student:

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION

EECE 301 Signals & Systems Prof. Mark Fowler

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

ENGI 9420 Engineering Analysis Assignment 2 Solutions

2013/5/22 ( ) ( ) ( ) 10.1 Crocco s equation for entropy. 10 Multi-dimensional compressible flows. Consdier inviscid flows with no body force.

Nonlocal Boundary Value Problem for Nonlinear Impulsive q k Symmetric Integrodifference Equation

MIL-DTL SERIES 2

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

EMPORIUM H O W I T W O R K S F I R S T T H I N G S F I R S T, Y O U N E E D T O R E G I S T E R.

ALLOWABLE STRESS DESIGN FLOWCHART FOR AISC MANUAL OF STEEL CONSTRUCTION, NINTH EDITION APPENDIX B BEARING STIFFENERS AND TRANSVERSE STIFFENERS DESIGN

Frequency-domain Characteristics of Discrete-time LTI Systems

P a g e 5 1 of R e p o r t P B 4 / 0 9

On Fractional Operational Calculus pertaining to the product of H- functions

Dynamics of Marine Biological Resources * * * REVIEW OF SOME MATHEMATICS * * *

MODERN CONTROL SYSTEMS

Development of Mathematical Formulas Correlating the Normal and Tangential Components of Acceleration with Its Rectangular (x-y) Components

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) AN APPLIED TWO-DIMENSIONAL B-SPLINE MODEL FOR INTERPOLATION OF DATA

Trapezoidal Rule of Integration

Trapezoidal Rule of Integration

Chapter 1 Fundamentals in Elasticity

Transcription:

ENGI 4 Appei A Formlæ Pge A- ENGI 4 Egieerig Mhemi Poiiliie for or Forml Shee Yo m ele iem from hi ome for pleme o or forml hee. However eigig or ow forml hee e vlle reviio eerie i ielf.. Fmel Eqio of ple hrogh poi P (where poiio veor of P) wih o-ero orml veor ABC : r i i or A B C D Eqio of lie hrogh poi P ( o o o ) (where poiio veor of P) prllel o o-ero veor v v v v3 : o o o r v or v v v3 If v he epre o he eqio o. If v he epre o he eqio o. If v 3 he epre o he eqio o. The i ge i priipl orml iorml veor poi o rve give r r() re r r T T T N B T N The r legh log he rve e fo from r The rvre κ i κ r r T T r N 3 r Coi Seio : ellipe mjor i mior i e < e < foi (±e ). ( i irle) : hperol verie (± ) mpoe ± / e > foi (±e ). 4 : prol vere ( ) fo ( ) e. i poi ( ); i he lie pir ± /.

ENGI 4 Appei A Formlæ Pge A- Qri Srfe : ellipoi (peil e re pheroi phere) : hperoloi of oe hee lige log i : hperoloi of wo hee lige log i : ellipi proloi : hperoli proloi : A igle poi he origi. : Nohig : Ellipi oe lige log he i; [mpoe o oh pe of hperoloi]. : Ellipi lier lige log he i. : Hperoli lier lige log he i. : Proli lier vere lie o he i. : Lie (he i) : Nohig : Ple pir (iereig log he i) : Prllel Ple Pir : Sigle Ple (he - oorie ple) : Nohig Srfe of Revolio f () roe ro. Eqio of rfe geere i ( ) ( ) ( ) f Are of rve rfe i ( ) ( ) ( ) A f f π.

ENGI 4 Appei A Formlæ Pge A-3 Trigoomeri ieiie Hperoli f ieiie θ e j oθ j iθ j j e e o oh j j j e e i j ih j i / o e / o / i o / o () o i () i () j e oh ih e e oh o j e e ih j i h ih / oh eh / oh h / ih oh / h oh () oh ih () ih h () h j o i e o o i ( i ) o ( ) ( ) e ( e ) e ( ) o ( o ) o (AB) o A o B i A i B o o i o i i (AB) i A o B o A i B i i o oh ih eh h h oh oh ih ( ih ) oh ( ) ( h ) eh ( eh ) eh h ( h ) h oh ( oh ) h oh (AB) oh A oh B ih A ih B oh oh ih oh ih ih (AB) ih A oh B oh A ih B ih ih oh

ENGI 4 Appei A Formlæ Pge A-4 Trigoomeri ieiie (o ) A B ( A B) A B o o i o i A o B (i(ab) i(ab)) / o A i B (i(ab) i(ab)) / o A o B (o(ab) o(ab)) / i A i B (o(ab) o(ab)) / i P i Q P Q P Q i o i P i Q P Q P Q o i o P oq P Q P Q o o o P oq P Q P Q i i Le ( / ) he i o Some Iegrl e C ( ) l C ( ) C > l ( ) ( ) e C f l f f ( ) ( ) C l e C o l i C e l e C l o C i ih C l C C h C l C C i C ih C l C

ENGI 4 Appei A Formlæ Pge A-5 Iegrio [or lr form] pr : v [ v ] v Some form h e oie from iegrio pr: ( l ) C l e i e ( i o) C e o e ( o i ) C m m m i o ( i o ( m ) i o ) m m m ( i o ( ) i o ) m A oher i-erivive h re reqire i qeio h o e oie from he ieiie ove will e pplie eiher irel or me of hi i he qeio. ( m ) Leii iff of iegrl: g( ) H( ) f ( ) g f H ( g( )) H ( f ( )) g( ) H( ) f ( )

ENGI 4 Appei A Formlæ Pge A-6. Pril Differeiio Chi rle: If f (... ) i g i (... m ) he j j j i j i i j i i i Grie: 3 ˆ ˆ ˆ I f f f f i j k Re of hge of f i he ireio of poi P i he ireiol erivive ˆ P P Df f i Joi (implii meho): Coverio from {... } o {... } efie impliil eqio f i (...... ). Fi ll iffereil f i he or he mri eqio. e e The Joi i. A B B A Joi (eplii meho): ( ) ( ) ABS e Joi

ENGI 4 Appei A Formlæ Pge A-7 M-Mi: Chek ll poi: - o he omi or; - where f i efie; - where f i efie; - where f. Seo erivive e ( poi where f ): f f D f f D > f > lol miimm D > f < lol mimm D < le poi D : e fil. Lgrge Mliplier: Ieif fio f (... ) o e mimie or miimie. Ieif ori() g(... ) k. Solve he em of eqio f λ g g k. Solio wih mlle (lrge) vle of f i he miimm (mimm).

ENGI 4 Appei A Formlæ Pge A-8 3. Fir Orer ODE M( ) N( ) Seprle if M ( ) f ( ) g( ) N( ) ( ) v( ) Lier: P h h ( ) R( ) ; olio e ( e R C) where h P Berolli: [o i hi emeer] P( ) R( ) ; w ree o lier P ( ) ( ) w R( ) ig w E if M N ; olio ( ) where M N Iegrig For: Ue I() o r o mke ( ) Q( ) or P e: P Q ( ) l I (ivli if he iegr i epee o ). Q Ue I() o r o mke ( ) Q( ) P e: Q P ( ) l I (ivli if he iegr i epee o ). P Reio of orer (miig erm): To olve P ( ) R( ) Reple p reple Reio of orer (miig erm): To olve P Q R Reple p reple p p p

ENGI 4 Appei A Formlæ Pge A-9 4. Seo Orer Lier ODE P [P Q oh o]: Ailir eqio: Solve λ P λ Q λ λ λ Complemer fio: ( ) Q( ) R( ) Rel ii roo (over-mpe): Ae λ λ Be Rel repee roo (riill mpe): ( A B) e λ Comple ojge pir of roo (λ ± j) (er-mpe): j j e Ae Be ( ) ( o i ) e C D Prilr olio eermie oeffiie: If R() e k he r P e k If R() ( polomil of egree ) he r P ( polomil of egree ) wih ll ( ) oeffiie o e eermie. If R() ( mliple of o k /or i k) he r P o k i k B: if pr (or ll) of P i ile i he C.F. he mlipl P. Prilr olio vriio of prmeer: Le W A B he fi W R W R R R P W W v v W W v he Geerl olio: P Iiil (or or) oiio omplee olio. or e Lple rform.

ENGI 4 Appei A Formlæ Pge A- 5. Some Ivere Lple Trform F () f () F () f () e ( ) f ( ) ( ù) ( ù) f () π e e ( )! e δ ( ) e ω ( ) ω ( ) ( ) ( ) ω ( ) ( ) ( )! H ( ) i ω ω e i ω ω e ih e o ω e oh o ( ω ) ( ω ) { F () f () f N() 3 f O()... () f () f () () } ω ω ω i ω ω 3 ( ω ) ( ω ) ω ( ω ) h h F( ) F ( e ) i ω ω o ω 3 ω i ω ω o ω Sqre wve perio mplie Triglr wve perio mplie Swooh wve perio mplie f f ( τ ) τ f ()

ENGI 4 Appei A Formlæ Pge A- ( { }) Fir hif heorem: wih F( ) L f ( ) The ivere Lple rform of F ( ) i e f (). Seo hif heorem: The ivere Lple rform of e F () i f () H (). Slig proper ( eeio of he fir hif heorem): The ivere Lple rform of F ( ) i e f. Perio i fio : If f () i perioi fio of fmel perio T he T he Lple r form of f () i e f ( ). T e Sifig proper of he Dir el fio: f ( ) δ ( ) f ( ) < or > Covolio: If he Lple rform of fio f () g () re F () G () repeivel he he ivere Lple rform of H () F () G () i he ovolio h () (f * g)() (g * f )() f ( τ ) g( τ ) τ f ( τ ) g( τ ) τ Alo: F ( ) σ ( e ) σ F () f ( ) f ( )

ENGI 4 Appei A Formlæ Pge A- 6. Mliple Iegrio If he rfe ei i σ f ( ) he he m i h ( ) q ( ) m f ( ) f ( ) g( ) p( ) where he ier iegrl m e evle fir. Polr oorie: ( ) (r o θ r i θ) A r r θ. Cere of m i ( ) where m M m M. m σ A M σ A M σ A D D D Cliril polr oorie: ( ) (r o φ r i φ ) V r r φ. Spheril polr oorie: ( ) (r i θ o φ r i θ i φ r o θ) V r iθ r θ φ. M m V. ρ V Aiiol Formle for Polr Coorie (if eee) ( ) (r o θ r i θ ) r iθ θ θ r oθ θ θ Ar legh r θ r oθ r iθ r L r θ θ α β β Are wep o r f (θ ): A r θ α ˆ ˆ rˆ θ θ θ θrˆ v r rˆ r θ ˆ θ ( ) ˆ ( ) ˆ ( ) ˆ r r θ r r θ r θ θ r r θ r ( r θ) ˆ θ r END OF APPENDIX A