214A HOMEWORK KIM, SUNGJIN

Similar documents
Extension theorems for homomorphisms

Algebraic Geometry I Lectures 14 and 15

Reid 5.2. Describe the irreducible components of V (J) for J = (y 2 x 4, x 2 2x 3 x 2 y + 2xy + y 2 y) in k[x, y, z]. Here k is algebraically closed.

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

Algebraic Geometry Spring 2009

HARTSHORNE EXERCISES

Lecture 3: Flat Morphisms

MATH 8254 ALGEBRAIC GEOMETRY HOMEWORK 1

SOLUTIONS TO ALGEBRAIC GEOMETRY AND ARITHMETIC CURVES BY QING LIU. I will collect my solutions to some of the exercises in this book in this document.

Math 418 Algebraic Geometry Notes

Algebraic varieties and schemes over any scheme. Non singular varieties

Exercises of the Algebraic Geometry course held by Prof. Ugo Bruzzo. Alex Massarenti

MATH 221 NOTES BRENT HO. Date: January 3, 2009.

1. Algebraic vector bundles. Affine Varieties

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ.

The most important result in this section is undoubtedly the following theorem.

1 Flat, Smooth, Unramified, and Étale Morphisms

PROBLEMS, MATH 214A. Affine and quasi-affine varieties

Section Blowing Up

SCHEMES. David Harari. Tsinghua, February-March 2005

Yuriy Drozd. Intriduction to Algebraic Geometry. Kaiserslautern 1998/99

Rings and groups. Ya. Sysak

Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra

ALGEBRAIC GROUPS. Disclaimer: There are millions of errors in these notes!

AN INTRODUCTION TO AFFINE SCHEMES

Summer Algebraic Geometry Seminar

ALGEBRAIC GEOMETRY: GLOSSARY AND EXAMPLES

ABSTRACT NONSINGULAR CURVES

CHAPTER 1. AFFINE ALGEBRAIC VARIETIES

Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35

The Proj Construction

Algebraic Geometry Spring 2009

This is a closed subset of X Y, by Proposition 6.5(b), since it is equal to the inverse image of the diagonal under the regular map:

Algebraic Geometry Spring 2009

(1) A frac = b : a, b A, b 0. We can define addition and multiplication of fractions as we normally would. a b + c d

GLUING SCHEMES AND A SCHEME WITHOUT CLOSED POINTS

ALGEBRA EXERCISES, PhD EXAMINATION LEVEL

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 9: SCHEMES AND THEIR MODULES.

A course in. Algebraic Geometry. Taught by C. Birkar. Michaelmas 2012

Math 203A - Solution Set 3

10. Smooth Varieties. 82 Andreas Gathmann

Dimension Theory. Mathematics 683, Fall 2013

Section Divisors

NOTES ON FINITE FIELDS

(dim Z j dim Z j 1 ) 1 j i

Arithmetic Algebraic Geometry

Synopsis of material from EGA Chapter II, 4. Proposition (4.1.6). The canonical homomorphism ( ) is surjective [(3.2.4)].

FORMAL GLUEING OF MODULE CATEGORIES

Smooth morphisms. Peter Bruin 21 February 2007

Modules over a Scheme

(1) is an invertible sheaf on X, which is generated by the global sections

ADVANCED COMMUTATIVE ALGEBRA: PROBLEM SETS

3. The Sheaf of Regular Functions

Homological Methods in Commutative Algebra

RINGS: SUMMARY OF MATERIAL

5 Dedekind extensions

2. Intersection Multiplicities

Algebraic Geometry: MIDTERM SOLUTIONS

Math Midterm Solutions

Math 121 Homework 2 Solutions

LINE BUNDLES ON PROJECTIVE SPACE

0.1 Spec of a monoid

Zariski s Main Theorem and some applications

MATH 233B, FLATNESS AND SMOOTHNESS.

Chapter 8. P-adic numbers. 8.1 Absolute values

n P say, then (X A Y ) P

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 4: MORE ABOUT VARIETIES AND REGULAR FUNCTIONS.

which is a group homomorphism, such that if W V U, then

Math 120 HW 9 Solutions

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 25

MATH32062 Notes. 1 Affine algebraic varieties. 1.1 Definition of affine algebraic varieties

TROPICAL SCHEME THEORY

D-MATH Algebraic Geometry FS 2018 Prof. Emmanuel Kowalski. Solutions Sheet 1. Classical Varieties

FILTERED RINGS AND MODULES. GRADINGS AND COMPLETIONS.

Section Projective Morphisms

7 Orders in Dedekind domains, primes in Galois extensions

Ring Theory Problems. A σ

Systems of linear equations. We start with some linear algebra. Let K be a field. We consider a system of linear homogeneous equations over K,

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman

Math 145. Codimension

SUMMER COURSE IN MOTIVIC HOMOTOPY THEORY

Math 762 Spring h Y (Z 1 ) (1) h X (Z 2 ) h X (Z 1 ) Φ Z 1. h Y (Z 2 )

NOTES ON DIOPHANTINE APPROXIMATION

Advanced Algebra II. Mar. 2, 2007 (Fri.) 1. commutative ring theory In this chapter, rings are assume to be commutative with identity.

Algebraic Varieties. Chapter Algebraic Varieties

Infinite-Dimensional Triangularization

MATH 326: RINGS AND MODULES STEFAN GILLE

Algebraic function fields

Weierstrass preparation theorem and singularities in the space of non-degenerate arcs

CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998

Synopsis of material from EGA Chapter II, 5

CHEVALLEY S THEOREM AND COMPLETE VARIETIES

An Introduction to Rigid Analytic Geometry

HYPERSURFACES IN PROJECTIVE SCHEMES AND A MOVING LEMMA

2. Prime and Maximal Ideals

Algebra Homework, Edition 2 9 September 2010

ALGEBRAIC GEOMETRY (NMAG401) Contents. 2. Polynomial and rational maps 9 3. Hilbert s Nullstellensatz and consequences 23 References 30

4.4 Noetherian Rings

MATRIX LIE GROUPS AND LIE GROUPS

Chapter 2 Linear Transformations

Transcription:

214A HOMEWORK KIM, SUNGJIN 1.1 Let A = k[[t ]] be the ring of formal power series with coefficients in a field k. Determine SpecA. Proof. We begin with a claim that A = { a i T i A : a i k, and a 0 k }. Let a i T i A, then there exists b i T i A such that ( a i T i )( b i T i ) = 1. The constant term in both side should agree, so we have a 0 b 0 = 1, giving that a 0 k. Conversely, let a 0 k. By multiplying a 1 0, we can assume that a 0 = 1. Let g = i 1 a it i, then we have a i T i = 1 g. The formal power series for i 0 gi is the desired inverse for a i T i. Thus, our claim is proved. Let P A be a nonzero prime ideal in A. Denote the number min{n N : T n P } by n(p ). By our previous claim, we have n(p ) 1, and we also have T n(p ) P. n(p ) 2 cannot happen because P is a prime ideal. Thus, we must have n(p ) = 1, i.e. T P. It follows that P = (T ). Hence SpecA = {(0), (T )}. 1.2 Let φ : A B be a homomorphism of finitely generated algebras over a field k. Show that the image of a closed point under Specφ is a closed point. Proof. Let m be a maximal ideal in B, it suffices to show that Specφ(m) = φ 1 (m) is a maximal ideal in A. By 1st isomorphism theorem, φ induces an embedding A/φ 1 (m) B/m. Then Weak Nullstellensatz shows that B/m is a finite field extension of k. It follows that A/φ 1 (m) is an integral domain which is finite dimensional k-vector space. For any a (A/φ 1 (m)) {0}, the set {1, a, a 2, } is linearly dependent over k. Thus, a satisfies a polynomial equation i N c ia i = 0 with c i k and c 0 = 0. This implies that a 1 i N c ia i 1 = c 0 k. Hence a is invertible in A/φ 1 (m), giving that A/φ 1 (m) is a field. 1.3 Let k = R be the field of real numbers. Let A = k[x, Y ]/(X 2 + Y 2 + 1). We wish to describe SpecA. Let x, y be the respective images of X, Y in A. (a) Let m be a maximal ideal of A. Show that there exist a, b, c, d k such that x 2 + ax + b, y 2 + cy + d m. Using the relation x 2 + y 2 + 1 = 0, show that m contains an element f = αx + βy + γ with (α, β) = (0, 0). Deduce from this that m = fa. Proof. Note that A/m = C. This is because it is a finite extension of k by Weak Nullstellensatz, and it contain x, y with x 2 + y 2 + 1 = 0. Thus, it is clear that x, y satisfy some quadratic equation over k. We add up those quadratic equations to obtain ax + cy + b + d 1 = 0 A/m. (Case1) (a, c) = (0, 0): We may take f = ax + cy + b + d 1 m. (Case2) a = c = 0, and hence b+d = 1: Either x, y A/m are both pure imaginary, or one of them is real. Note that x, y are not both 0. Thus, we can find α, β, γ such that αx + βy + γ = 0 A/m. 1

2 KIM, SUNGJIN We now consider A/fA, assume that f = αx + βy + γ with α = 0. Then A/fA becomes k[x, Y ]/(X 2 + Y 2 + 1, f) = k[x]/(x 2 + (( β/α)x γ/α) 2 + 1) = C. Therefore, fa is a maximal ideal in A, and combined with fa m, we have m = fa. (b) Show that the map (α, β, γ) (αx+βy+γ)a establishes a bijection between the subset P(k 3 ) {(0, 0, 1)} of the projective space P(k 3 ) and the set of maximal ideals of A. Proof. The same argument that we showed m = fa in part (a), shows that the map is well-defined. Moreover, part (a) itself shows surjectivity. Suppose that two distinct members (α, β, γ) and (α, β, γ ) in P(k 3 ) {(0, 0, 1)} map to the same maximal ideal m in A. We may consider the following cases without loss of generality, (Case1) α = α = 1, β = β, γ = γ : This gives a contradiction, since γ γ k m cannot hold. (Case2) α = α = 1, β = β : By subtraction, we obtain a real number y 0 such that y 0 A/m. Plugging in y = y 0, we obtain a real number x 0 such that x 0 A/m. Furthermore, x 2 0 + y0 2 + 1 = 0 must hold, which is a contradiction. (Case3) α = 1, β = 0, α = 0, β = 1: This also give two real numbers x 0, y 0 A/m with x 2 0 + y0 2 + 1 = 0, which is a contradiction. Hence, the map is injective. (c) Let p be a non-maximal prime ideal of A. Show that the canonical homomorphism k[x] A is finite and injective. Deduce from this that p k[x] = 0. Let g p, and let g n + a n 1 g n 1 + + a 0 = 0 be an integral equation with a i k[x]. Show that a 0 = 0. Conclude that p = 0. Proof. The homomorphism k[x] A is injective, since its kernel is k[x] (X 2 + Y 2 + 1) = 0. It is clear that A is an integral extension of k[x]. It is also true that A/p is an integral extension of k[x]/p k[x]. They are both integral domains. Since A/p is not a field, k[x]/p k[x] is not a field. In k[x], only non-maximal prime ideal is (0). Thus, p k[x] = 0. Suppose p contains a nonzero member g. Choose the integral equation for g with minimal degree n. From the integral equation, we have a 0 p k[x]. Thus a 0 = 0. Dividing g gives another integral equation for g with degree n 1. This contradicts minimality of n. Hence, p must be 0. 1.8 Let φ : A B be an integral homomorphism. (a) Show that Specφ : SpecB SpecA maps a closed point to a closed point, and that any preimage of a closed point is a closed point. Proof. We use a lemma: A B is integral extension, A and B are integral domains. Then A is a field if and only if B is a field. Let p B be a prime ideal. Then φ induces an embedding A/φ 1 (p) B/p. Since A/φ 1 (p) and B/p are both integral domains, the lemma applies. Thus, A/φ 1 (p) is a field if and only if B/p is a field. Equivalently, φ 1 (p) is a closed point(i.e. maximal ideal) if and only if p is a closed point. (b) Let p SpecA. Show that the canonical homomorphism A p B A A p is integral.

214A HOMEWORK 3 Proof. It is enough to show that any simple tensor b A a is integral over A p. Consider an integral equation for b, namely i n a ib i = 0 with a i A, a 0 = 0, and a n = 1. Then clearly, ( i n a ib i ) A a = 0. This implies i n a i(b A a) i = 0. Hence b A a is integral over A p. (c) Let T = φ(a p). Let us suppose that φ is injective. Show that T is a multiplicative subset of B, and that B A A p = T 1 B = 0. Deduce from this that Specφ is surjective if φ is integral and injective. Proof. Let φ be the canonical homomorphism in part (b). Note that if q MaxT 1 B, then φ 1 (q ) is a maximal ideal in A p. In fact, φ 1 (q ) = pa p, since A p is a local ring. Consider the diagram, A φ B ε A p Apply Spec( ) to this diagram, SpecT 1 B = φ Spec φ ε T 1 B SpecAp Specε By commutativity, we have Hence, Specφ is surjective. SpecB = Specφ Specε SpecA Specε Spec φ(q ) = Specφ Specε(q ) = p. 1.9 Let A be a finitely generated algebra over a field k. (a) Let us suppose that A is finite over k. Show that SpecA is a finite set, of cardinality bounded from above by the dimension dim k A of A as a vector space. Show that every prime ideal of A is maximal. Proof. Suppose that we could find r = dim k A+1 distinct maximal ideals m 1,, m r. Then, m i + m j = A for i = j. We can construct a strictly descending chain of ideals m 1 m 1 m 2 m 1 m 2 m r. This makes a strictly increasing chain of kvector spaces A/m 1 A/m 1 m 2 A/m 1 m 2 m r. However, this implies that r dim k A/m 1 m 2 m r dim k A = r 1, which leads to a contradiction. Hence, the number of distinct maximal ideals in A is bounded above by dim k A. Now, we show that every prime ideal p in A is indeed maximal. A/p is an integral domain which is finite dimensional k-vector space. For any a (A/p) {0}, the set {1, a, a 2, } is linearly dependent over k. Thus, a satisfies a polynomial equation i N c ia i = 0 with c i k and c 0 = 0(This is possible, since A/p is an integral domain). This implies that a 1 i N c ia i 1 = c 0 k. Hence a is invertible in A/p, giving that A/p is a field. (b) Show that Speck[T 1,, T d ] is infinite if d 1.

4 KIM, SUNGJIN Proof. We begin with proving that Speck[T ] is infinite. If k is infinite, then (T a) is maximal ideal for any a k, thus Speck[T ] is infinite. If k is finite, still we have k is infinite. This implies that there are infinitely many irreducible polynomials in k[t ], thus Speck[T ] is infinite in this case too. For the case d 2, we define an injective function given by Speck[T 1 ] Speck[T 1,, T d ] (p(t 1 )) (p(t 1 ), T 2,, T d ) Hence, Speck[T 1,, T d ] is infinite if d 1. (c) Show that SpecA is finite if and only if A is finite over k. Proof. ( ) This is done in part (a). ( ) Suppose that A is infinite over k. Then A is transcendental over k. Noether Normalization Theorem applies to obtain T 1,, T d which are algebraically independent over k, and an integral extension k[t 1,, T d ] k[t 1,, T d, t d+1,, t r ] = A. Similarly as in (b), we can form an injective map Speck[T 1,, T d ] Speck[T 1,, T d, t d+1,, t r ] P P + (t d+1,, t r ). By part (b), it follows that SpecA is infinite. 2.2 Let F be a sheaf on X. Let s, t F(X). Show that the set of x X such that s x = t x is open in X. Proof. Let x X, and s x = t x. Then there exists an open neighborhood U x of x such that s Ux = t Ux. For any y U x, consider the natural map F(X) F y. Since this natural map is given by a F(X) [X, a] where [X, a] denotes the equivalence class represented by (X, a). But, s Ux = t Ux implies that s y = [X, s] = [U x, s Ux ] = [U x, t Ux ] = [X, t] = t y. Hence, the set of x X such that s x = t x is open in X. 2.7 Let B be a base of open subsets on a topological space X. Let F, G be two sheaves on X. Suppose that for every u B there exists a homomorphism α(u) : F(U) G(U) which is compatible with restrictions. Show that this extends in a unique way to a homomorphism of sheaves α : F G. Show that if α(u) is surjective(resp. injective) for every U B, then α is surjective (resp. injective). Proof. Note that every open set U X is a union of members in B, say U = i U i, where U i B. Let β i F(U i ), and β j F(U j ), and β i Ui U j = β j Ui U j for all i, j, which data uniquely determine β F(U)( F is a sheaf). We know that g i = α(u i )(β i ) G(U i ), g j = α(u j )(β j ) G(U j ), and α(u i U j )(β i Ui U j ) = α(u i U j )(β j Ui U j ) G(U i U j ). Since the homomorphism α is compatible with restrictions on members of B, we have g i Ui U j = α(u i U j )(β i Ui U j ) = α(u i U j )(β j Ui U j ) = g j Ui U j. Thus, this data uniquely determine g G(U)( G is a sheaf). Define α(u)(β) = g, then this is the unique extension to a homomorphism of sheaves α : F G. We use the fact that sequence of sheaves F G H is exact if and only if F x G x H x is exact for each x X. In fact, α(u) is surjective(resp. injective) for every U B imply F x G x 0(resp. 0 F x G x ) is exact

214A HOMEWORK 5 for each x X. This in turn, implies that F G 0(resp. 0 F G) is an exact sequence in sheaves. Hence α is surjective(resp. injective). 2.11 Let X, Y be two ringed topological spaces. We suppose given an open covering {U i } i of X and morphisms f i : U i Y such that f i Ui U j = f j Ui U j (as morphisms) for every i, j. Show that there exists a unique morphism f : X Y such that f Ui = f i. This is the glueing of the morphisms f i. Proof. We define f : X Y by f(x) = f i (x) where x U i for some i. The glueing data f i Ui U j = f j Ui U j gives that f : X Y is a continuous function. Moreover, continuous function with this property has to be unique. The morphism of sheaves f # i : O Y f i O Ui gives the ring homomorphism f # i (V ) : O Y (V ) O Ui (f 1 i (V )) = O X (f 1 (V ) U i ). The glueing data gives that f i # U i U j (V ) : O Y (V ) O X (f 1 (V ) U i U j ) = f j # U i U j (V ) : O Y (V ) O X (f 1 (V ) U i U j ). Together with the compatibility of restriction, α O Y (V ) a i O X (f 1 (V ) U i ) has the glueing data a i Ui U j = a j Ui U j. Since O X (f 1 (V ) ) is a sheaf, we obtain a unique a O X (f 1 (V )) such that a Ui = a i for each i. Define f # : O Y f O X by α O Y (V ) a O X (f 1 (V )). Then (f, f # ) : (X, O X ) (Y, O Y ) is the desired morphism of ringed topological spaces. 3.19 Let K be a number field. Let O K be the ring of integers of K. Using the finiteness theorem of the class group cl(k), show that every open subset of SpecO K is principal. Deduce from this that every open subscheme of SpecO K is affine. Proof. Let U be an open subset of SpecO K, then (SpecO K ) U = V (I) for some ideal I O K. This ideal I belongs to an ideal class [Q] cl(k). Thus, there are a, b O K {0} such that ai = bq. This implies that I = (b/a)q, and there is some n 0 such that I n = (b/a) n Q n = γo K for some γ K (In particular, we can take n = #cl(k)). Since I n O K, we have γo K O K. This proves that γ O K, and that I n is a principal ideal. Hence, V (I) = V (I n ) = V (γo K ) is a principal closed subset, or equivalently, U = D(γ) is a principal open set. Therefore, every open subscheme U = D(γ) of SpecO K is isomorphic to SpecO K [1/γ], which is affine. 4.1 Let k be a field and P k[t 1,, T n ]. Show that Spec(k[T 1,, T n ]/(P )) is reduced (resp. irreducible; resp. integral) if and only if P has no square factor (resp. admits only one irreducible factor; resp. is irreducible). Proof. Let A = k[t 1,, T n ]/(P ), and q SpecA. Then the following are equivalent: (1) O A,q = A q is reduced for all q SpecA. (2) Only nilpotent element in A q is 0. (3) {q Speck[T 1,, T n ] : (P ) q q} = (P ). (4) P has no square factor. Equivalence of (1),(2), and (3) is direct from definition. We show the equivalence of (3), and (4). This follows from {q Speck[T 1,, T n ] : (P ) q q} = (P 0 ), where P 0 is the product of all irreducible factors of P.

6 KIM, SUNGJIN Remark that SpecA = is irreducible if and only if (0) is prime. Equivalently, {q Speck[T 1,, T n ] : (P ) q } = (P 0 ) is prime. Similarly as before, P 0 is the product of all irreducible factors of P. Now, (P 0 ) is prime if and only if there is only one irreducible factor in P. A is integral if and only if A is both reduced and irreducible. Therefore, A is integral if and only if P has no square factor and admits only one irreducible factor, i.e. P is irreducible.