Solutions for Tutorial 5 Dynamic Behavior of Typical Dynamic Systems

Similar documents
Solutions for Tutorial 4 Modelling of Non-Linear Systems

Solutions for Tutorial 3 Modelling of Dynamic Systems

Solutions for Tutorial 10 Stability Analysis

Spring 2006 Process Dynamics, Operations, and Control Lesson 5: Operability of Processes

Process Control, 3P4 Assignment 5

CHAPTER 10: STABILITY &TUNING

Class 27: Block Diagrams

A First Course on Kinetics and Reaction Engineering Unit 22. Analysis of Steady State CSTRs

Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati

General Physics I. Lecture 12: Applications of Oscillatory Motion. Prof. WAN, Xin ( 万歆 )

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati

Process Dynamics, Operations, and Control Lecture Notes 2

Dynamic Behavior. Chapter 5

Theoretical Models of Chemical Processes

Pre GATE Pre-GATE 2018

Distributed Parameter Systems

Open Loop Tuning Rules

A First Course on Kinetics and Reaction Engineering Unit 19. Analysis of Batch Reactors

Time Response Analysis (Part II)

Dr Ian R. Manchester

Introduction to Process Control

Consistent inventory control

Process Control, 3P4 Assignment 6

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW

6. The Momentum Equation

Process Solutions. Process Dynamics. The Fundamental Principle of Process Control. APC Techniques Dynamics 2-1. Page 2-1

Feedback Control of Linear SISO systems. Process Dynamics and Control

EE 422G - Signals and Systems Laboratory

Solving and Graphing Polynomials

Time scale separation and the link between open-loop and closed-loop dynamics

A First Course on Kinetics and Reaction Engineering. Class 20 on Unit 19

Analysis and Design of Control Systems in the Time Domain

Newton's Laws You should be able to state these laws using both words and equations.

Chemical Reaction Engineering

Lecture 10: Proportional, Integral and Derivative Actions

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

YTÜ Mechanical Engineering Department

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1

AN INTRODUCTION TO THE CONTROL THEORY

For a recycle reactor the relationship between the volume and other parameters is given by

The distortion observed in the bottom channel of Figure 1 can be predicted from the full transport equation, C t + u C. y D C. z, (1) x D C.

CHEMICAL and BIOMOLECULAR ENGINEERING 140 Exam 1 Friday, September 28, 2018 Closed Book. Name: Section:

Hydraulic (Fluid) Systems

A First Course on Kinetics and Reaction Engineering Example 11.5

Basic Analysis of Data

Self-consistent inventory control

Type-2 Fuzzy Logic Control of Continuous Stirred Tank Reactor

( ) ( = ) = ( ) ( ) ( )

Index. INDEX_p /15/02 3:08 PM Page 765

Advanced Transport Phenomena Module 6 - Lecture 28

DESIGN OF AN ON-LINE TITRATOR FOR NONLINEAR ph CONTROL

(a) Find the transfer function of the amplifier. Ans.: G(s) =

CONTROL OF MULTIVARIABLE PROCESSES

Introduction to Feedback Control

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus

Do we have any graphs that behave in this manner that we have already studied?

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

CHAPTER 13: FEEDBACK PERFORMANCE

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

To increase the concentration of product formed in a PFR, what should we do?

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz,

1. Introductory Material

Plantwide Control of Chemical Processes Prof. Nitin Kaistha Department of Chemical Engineering Indian Institute of Technology, Kanpur

Lab # 4 Time Response Analysis

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

ChE 6303 Advanced Process Control

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors

Analyzing Mass and Heat Transfer Equipment

Process Control Hardware Fundamentals

A First Course on Kinetics and Reaction Engineering Unit 33. Axial Dispersion Model

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang

Laboratory Exercise 1 DC servo

A First Course on Kinetics and Reaction Engineering Unit 14. Differential Data Analysis

YTÜ Mechanical Engineering Department

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11

Review: Nonideal Flow in a CSTR

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30

Unit 8 Day 1 Integral as Net Change

Reaction and Diffusion in a Porous Catalyst Pellet. by Richard K. Herz

2. Review on Material Balances

2 Particle dynamics. The particle is called free body if it is no in interaction with any other body or field.

Overview of Control System Design

H 0 r = -18,000 K cal/k mole Assume specific heats of all solutions are equal to that of water. [10]

Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati

Process Unit Control System Design

CE 329, Fall 2015 Second Mid-Term Exam

Chemical Reaction Engineering Lecture 5

3.8 Limits At Infinity

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Pressure Losses for Fluid Flow Through Abrupt Area. Contraction in Compact Heat Exchangers

Exponential functions: week 13 STEM

Process Control and Instrumentation Prof. A. K. Jana Department of Chemical Engineering Indian Institute of Technology, Kharagpur

y=5 y=1+x 2 AP Calculus Chapter 5 Testbank Part I. Multiple-Choice Questions

Mathematical Modeling of Chemical Processes. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University

Chapter 8. Feedback Controllers. Figure 8.1 Schematic diagram for a stirred-tank blending system.

CHAPTER FIVE REACTION ENGINEERING

Chapter 6 Laminar External Flow

Lab 5: Measuring Magnetic Field of Earth

Transcription:

olutions for Tutorial 5 Dynamic Behavior of Typical Dynamic ystems 5.1 First order ystem: A model for a first order system is given in the following equation. dy dt X in X out (5.1.1) What conditions have to be satisfied for the system to be self-regulating? A stable self-regulating system has an output variable that tends to a steady state after the input variable has reached an altered steady-state value. The system described in equation (5.1.1) will not necessarily be self-regulating. If both X in and X out are independent of Y, the derivative of the output variable is independent of the input variable. For eample, the following condition could occur. dy dt X in X out 5 2 3 ince the derivative is a constant, the output variable would increase without limit. Therefore, the system is non-self-regulating and is unstable. Let s look at a physical system that is stable and self-regulatory. The level in the tank is affected by the flow in to and out of the tank. The overall material balance has the form of equation (5.1.1) and gives the following for a tank with straight sides. F in Level F out dl F in F out dt As the level increases, the flow in decreases, which is a stabilizing effect. Also, as the level increases, the flow out increases, which is a stabilizing effect. This is a self-regulating, first-order system. Note that a self-regulating system is not guaranteed to behave well. For the level eample, a large increase in the flow in (due to an increase in the source pressure) will cause the level to increase. The flow out will also increase, but not necessarily enough to reach a constant level before the level overflows. We see that the magnitude of a disturbance will influence whether the variables in a selfregulating system remain within acceptable limits. 11/5/2005 Copyright 2000 by T. Marlin 1

We can draw two conclusions from Question 5.1. 1. We seek to design processes without non-self-regulating variables. (This is not always possible.) 2. We must control non-self-regulating variables. (This is possible; see Chapter 18 for details.) 5.2 econd and higher order systems can be over or under damped. Which is more likely to occur in chemical processes? X 1 X 2 X 3... X N+1 Most chemical processes are interconnections of first-order systems, resulting from material and energy balances. These interconnections involve interacting and non-interacting first order systems, which are overdamped. Therefore, the vast majority of chemical process - without feedback control - are overdamped. However, we will see that the application of feedback control to these processes can, and often does, result in underdamped systems. o, even though models developed in Chapters 3-5 are overdamped, engineers must deal with underdamped behavior. Most chemical process without control are overdamped. 5.3 You are working in a plant and need to estimate the delay for flow through a pipe. How can you evaluate the dead time? There are two obvious ways. 1. Measure the length of the pipe (L). Then, determine the velocity of the fluid in the pipe (v). For turbulent flow (with a flat velocity profile), the dead time would be θ L/v. 2. Perhaps, the pipe is underground, and we do not know the path taken. We can perform an eperiment to evaluate dead time. We can introduce a step change of a tracer component with a small flow rate, so that the tracer does not modify the process behavior. The dead time is the time between the introduction of the tracer at the inlet to the X out X in θ time θ dead time 11/5/2005 Copyright 2000 by T. Marlin 2

pipe and the first time that the tracer appeared at the pipe outlet. 5.4 Are the pressures in the vessels in Figure 5.4 self-regulating or non-self-regulating? The fluid is a gas, and the feed and ehaust pressures are constant. In answering this question, think about the response of the system to a change in the percent opening of the first valve. Qualitative analysis: We begin by recognizing that the flow rate through a pipevalve combination depends on the pressure difference (P in - P out ), assuming that the flow rate is sub-sonic. When the first valve opening is increased, the flow into the first vessel increases. The increase in vessel pressure will offer greater resistance to the flow in and a greater driving force for the flow out. Therefore, the vessel pressure is self-regulating. Modelling: The mass balance for the gas in a vessel is given by the following. d( mass) dt ρ infin ρout Fout ρincv ( vi 1 ) Pi 1 Pi ρoutcv ( vi ) Pi Pi + 1 Also, the mass in the vessel can be related to the pressure by the ideal gas law. If the temperature is assumed constant, the derivative of mass is simply a constant times the derivative of pressure. PV ( MW ) mass RT dp RT d( mass) dt V ( MW ) dt ubstituting, yields the epression that demonstrates the reliance of the pressure derivative on the pressure V ( MW ) dpi RT dt ρ incv ( vi 1 ) Pi 1 Pi ρoutcv ( vi ) Pi Pi + 1 Therefore, the pressure in each vessel is self-regulating. Note that the process is an interacting series of first-order systems. 11/5/2005 Copyright 2000 by T. Marlin 3

5.5 You have obtained the graph in Figure 5.5 by making a step to a valve opening and observing the dynamic response of the temperature. From the results of this eperiment, describe the physical process (order, dead time, etc.) 3 Change in Measured Output (K) 2 1 0-1 0 10 20 30 40 50 60 Change in valve opeining (%) 3 2 1 0-1 0 10 20 30 40 50 60 Time (min) Figure 5.5 The eperimental data gives us valuable information about the process. In fact, we will see in the upcoming topics that this type of information is eactly what is used for designing control systems. However, the data shows the input-output behavior only, and it does not provide sufficient information to enable us to reconstruct the complete process structure. Let s see what we can conclude about the process. The output variable attains steady state after a step change in the input. We conclude that the process is stable and self-regulatory. From the shape of the output to a step, which does not oscillate, we conclude that the process is overdamped. The output does not change perceptibly when the input variable is first changed. This indicates a dead time. However, we cannot be sure about the process structure that would yield this behavior. Recall that a series of first-order processes has a step response with essentially no change for an initial period; we call this apparent dead time. o, we conclude that the process has either an actual time delay, e.g., a pipe, or a higher order, overdamped process. Naturally, a combination of dead time and time constants is also possible. 11/5/2005 Copyright 2000 by T. Marlin 4

ince the output has no inverse response we conclude that no negative zeros in the transfer function. ince the output does not overshoot its final value, we conclude that positive zeros are not greater than the poles. In short, the step response is smooth and monotonic in spite of any parallel paths that might eist. We can determine the steady-state gain from the graph, which is K p (output)/ (input) 1.0 K/%open We can determine the speed of the response, which we characterize using the 63% time of the response. t ( θ + τ ) 15.0 min 63 % i i i As we see, we can learn a lot from the data, but we cannot describe the process eactly. 5.6 We have models for several processes which we decide to connect in the process structure shown in Figure 5.6. The input variable eperiences a step change of 3.5 % open. Describe the dynamic behavior based on qualitative and semi-quantitative analysis, that is, do not simulate the process. T f T R A 2 A-2 fuel v C P v(s) T f (s) T R (s) C P (s) A 2 (s) G 1 (s) G 2 (s) G 3 (s) G 4 (s) Figure 5.6 Valve opening Reactor feed temperature Reactor temperature Product Composition Product Composition Measurement 11/5/2005 Copyright 2000 by T. Marlin 5

The models for the system are given in the following. 1s 1.2e G1( s) 5s + 1 0.5s 0.80e G2 (2s + 1) 2s 1.5e G3( s) (3s + 1)(5s + 1) 0.5s 1.0e G4 (1s + 1)(2s + 1) We can determine a great deal about the dynamic response. The processes are in series; therefore the overall transfer function is the product of the individual process transfer functions. Each individual process is satble (negative poles), so the series is stable. The steady-state gain of the series is the product of the individual gains. Kp (1.2)(0.80)(1.5)(1.0) 1.44 mole fraction/%open From this result, we can calculate the steady-state change in the product composition for a 3.5% change in the valve opening. A1 1.44*3.5 5.04 mole fraction The shape of the dynamic response can be determined in a qualitative way. First, some dead time will eist. econd, the system is sith order and overdamped, because the roots of the denominator are all real. (Note they can be factored.) The speed of the process can be estimated from the 63% time of the step response, which is the sum of the dead times and time constants of the elements in the series. t (1 + 0.5 + 2 + 2 + 3 + 5 + 0.5 + 1+ 2) 17 minutes 63 % We could determine an approimate first-order with dead time model using the moments method in Appendi D, but this effort is not usually warranted. We already have a good understanding of the response, and we can simulate it easily if more precise results are required. 5.7 The recycle process shown in Figure 5.7 is to be analyzed in this question. feed Reaction: A B Rate: -r A kc A Product (pure B) F f F P Figure 5.7 Recycle (pure A) F r Any inerts appear here after separation 11/5/2005 Copyright 2000 by T. Marlin 6

Information: The initial steady-state reactor conversion in the isothermal, constant-volume CTR is 50%. Therefore, F f F R. The separator has first order dynamics. a. Determine the dynamic behavior of the concentration of an inert that enters in the fresh feed. The inert eits the separation unit in the bottoms stream that is the recycle; none leaves in the product stream. (To simplify the analysis, assume that the concentration of the inert is initially small, so that the chemical reaction and the total flow rates are not affected by changes in the inert concentration.) b. Determine the response of the concentration of the reactant to a change in the reactor temperature that reduces the reaction rate by 10%, i.e., from 50% to 45%. a. Qualitative analysis: We note inert material enters with the fresh feed and does not eit the process. Therefore, inert must accumulate in the process, leading to an increasing concentration. Thus, the inert composition is a non-selfregulatory variable. While the composition is initially small and might not affect the process, it will ultimately increase sufficiently to affect the reaction and separation. We know from our Material and Energy Balances course that a recycle system should have a purge to prevent an ecessive concentration of inert. Naturally, the purge can be costly due to loss of material; therefore, the purge rate is set to achieve the acceptable inert concentration. Quantitative analysis: For the inert component, component balances are required. Note that we take advantage of the assumption that the total flows and reaction rate are not affected, which is valid when the inert concentration is very small at the initial part of the transient. The following balances can be derived. Reactor feed concentration (mass fraction) (essentially steady-state miing): 0.50 0.50 fi freshi + recyclei Reactor outlet concentration (essentially, a miing tank): reactori 1 fi τ s + 1 R Recycle concentration (first order dynamics given in statement) 11/5/2005 Copyright 2000 by T. Marlin 7

recyclei 2 reactori τ s + 1 These equations can be combined to give a concentration response to a change in the fresh feed concentration. We will select the reactor feed concentration. We solve the linear equations simultaneously, by combining and eliminating variables (using methods introduced in Chapter 4). fi 0.50 0.50 0.50 freshi freshi freshi olve for fi (s), + 0.50 recyclei 2 + 0.50 τ s + 1 2 1 + 0.50 τ s + 1 τ s + 1 reactori 2 1 1 0.50 0.50 freshi τ s + 1 τ Rs + 1 fi Rearrange to yield a transfer function, fi freshi 1 0.50( τ s + 1)( τ Rs + 1) s τ τ s + ( τ + τ ) R R R fi The model for the reactor feed inert concentration has an 1/s in the transfer function. This is a pure integrator. The quantitative analysis confirms our conclusion from the qualitative analysis. b. Qualitative analysis: No reactant eits the process; therefore, all reactant must be consumed by the chemical reaction. ince the reactor temperature has decreased, the rate of chemical reaction decreases. Therefore, the initial response must be an increase of reactant in the system. Is reactant concentration also a pure integrator? The difference is the concentration in the reactor affects the reaction rate, the consumption of reactant A and production of product B. The reactant concentration increases until the reaction rate attains its original value. ince the temperature caused a 10% decrease in reaction rate, the concentration must increase enough for the rate (kc A ) to achieve a new steady state. To increase the concentration, the recycle flow rate must increase. The net effect is a reduction of the single-pass reactor conversion and an increase in the recycle flow rate, so that the overall conversion attains its previous value. 11/5/2005 Copyright 2000 by T. Marlin 8

In practice, the best single-pass conversion depends upon side reactions and energy costs for recycle. Quantitative Analysis: The models and analysis for this system is presented in the design eample in Chapter 25. The large increase in the recycle is demonstrated. The effect is sometimes called the snow-ball effect for the buildup of snow on a ball as it rolls downhill on snow-covered ground. ome control designs can avoid this behavior. 11/5/2005 Copyright 2000 by T. Marlin 9