Testing Origin of Neutrino Mass at the LHC

Similar documents
Probing B/L Violations in Extended Scalar Models at the CERN LHC A Bottom-up Approach

Phenomenology of the Higgs Triplet Model at the LHC

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Higgs Bosons Phenomenology in the Higgs Triplet Model

arxiv: v1 [hep-ph] 16 Mar 2017

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

J. C. Vasquez CCTVal & USM

Probing the Majorana nature in radiative seesaw models at collider experiments

Higgs Searches at CMS

Non-Abelian SU(2) H and Two-Higgs Doublets

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Mass Models

Neutrino Mass Seesaw, Baryogenesis and LHC

Search for H ± and H ±± to other states than τ had ν in ATLAS

Searching for the Higgs at the LHC

University College London. Frank Deppisch. University College London

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS)

perturbativity Pankaj Sharma Based on : arxiv: st September, 2012 Higgs-electroweak precision, vacuum stability and perturbativity

Triplet Higgs Scenarios

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

RG evolution of neutrino parameters

Gauge Theories for Baryon Number.

Lepton Flavor Violation in Left-Right theory

Neutrino Mass in Strings

Neutrino masses respecting string constraints

Investigating Beyond Standard Model

Models of Neutrino Masses

Overview of theory of neutrino mass and of the 0νββ nuclear matrix elements.

Probing Seesaw and Leptonic CPV

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

Searches for Beyond SM Physics with ATLAS and CMS

Supersymmetry Breaking

Natural Nightmares for the LHC

Hiroaki SUGIYAMA (Univ. of Toyama, Japan) 1/21

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

The doubly charged scalar:

21th. December 2007 Seminar Univ. of Toyama. D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D )

Signature of light Z boson from scalar boson decay in local L µ L τ model at the ILC

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09

Duality in left-right symmetric seesaw

Gauge-Higgs Unification on Flat Space Revised

Inert Doublet Model:

Radiative corrections to the Higgs boson couplings in the Higgs triplet model

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014

Split Supersymmetry A Model Building Approach

Probing Higgs in Type III Seesaw at the Large Hadron Collider

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016)

Higgs searches at LEP: Beyond the SM and MSSM models. Pauline Gagnon Indiana University

Lecture 18 - Beyond the Standard Model

BSM Higgs in ATLAS and CMS

Dark Matter and Gauged Baryon Number

SUSY Phenomenology & Experimental searches

TeV Scale Seesaw with Loop Induced

Supersymmetric Seesaws

Highlights of Higgs Physics at LEP

12.2 Problem Set 2 Solutions

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Recent Developments in Little Higgs Searches. at LHC

13 HIGGS TRIPLETS 13.1 Introduction John F. Gunion and Chris Hays

Lepton non-universality at LEP and charged Higgs

Light scalar at the high energy and intensity frontiers: example in the minimal left-right model

University College London. Frank Deppisch. University College London

BSM Higgs Searches at ATLAS

arxiv: v1 [hep-ph] 6 Mar 2014

T -Parity in Little Higgs Models a

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Invisible Sterile Neutrinos

Review of Higgs results at LHC (ATLAS and CMS results)

The Standard Model of particle physics and beyond

Searching for neutral Higgs bosons in non-standard channels

DIRAC vs MAJORANA? Neutrinos are the only electrically neutral fermions. ff (quarks, charged leptons) If a fermion is charged, ff

PoS(EPS-HEP2011)250. Search for Higgs to WW (lνlν, lνqq) with the ATLAS Detector. Jonas Strandberg

Search for new dilepton resonances using ATLAS open data

U(1) Gauge Extensions of the Standard Model

Debasish Borah. (Based on with A. Dasgupta)

Testing leptogenesis at the LHC

Testing the low scale seesaw and leptogenesis

Mass degenerate Higgs Hunters explore the 2HDM. Howard E. Haber West Coast LHC Theory UC Riverside December 7, 2012

Alternatives to the GUT Seesaw

Gauged Flavor Symmetries

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool

Little Higgs Models Theory & Phenomenology

Baryonic LHC

Testing supersymmetric neutrino mass models at the LHC

Neutrino Masses in the Lepton Number Violating MSSM

BINARY TETRAHEDRAL GROUP (T )

Flavor, Minimality and Naturalness in Composite Higgs Models

Elementary Particles II

Introduction to the SM (5)

CMS Searches for New Physics

Running quark and lepton masses

Transcription:

王凱 ( ワンカイ ) 東京大学数物連携宇宙研究機構 高エネルギー加速器研究機構理論系つくば, 2008 年 11 月 11 日 Tao Han, Biswarup Mukhopadhyaya, Zongguo Si and KW Phys. Rev. D 76, 075013 (2007) [arxiv:0706.0441 [hep-ph]] Pavel Fileviez Pére, Tao Han, Guiyu Huang, Tong Li and KW Phys. Rev. D 78, 015018 (2008) [arxiv: 0805.3536 [hep-ph]]

Neutrino Mass: 1 st Evidence for Beyond SM Global Best Fit at 3σ level Schwetz 07 7.1 10 5 ev 2 < m21 2 < 8.3 10 5 ev 2 ; 2.0 10 3 ev 2 < m31 2 < 2.8 10 3 ev 2 0.26 < sin 2 θ 12 < 0.40; 0.34 < sin 2 θ 23 < 0.67; sin 2 θ 13 < 0.050 P i m i < 1.2 ev Something to keep in mind: Fermion mass

Lepton Number Violation (LNV) L Challenges: m t /m ν 10 12 sin 2 θ 23 Dirac or Majorana nature of neutrino Global U(1) L or U(1) B L U(1) L as global symmetry in SM. Quantum gravity will break U(1) L and generate MAJORANA neutrino mass: llh u H u /M Pl ; m ν 10 5 ev

Global U(1) L or U(1) B L Broken Global Symmetry U(1) L Chikashige, Mohapatra, Peccei, 80 Majoron, Problem? U(1) B L is the leading candidate for extra U(1) gauge symmetry. Once imposing anomaly free condition, upto an overall normalization, U(1) Y is the uniquely dened. No [SU(3) C ] 2 U(1) B L or [SU(2) L ] 2 U(1) B L anomalies No [U(1) Y ] 2 U(1) B L or U(1) Y [U(1) B L ] 2 anomalies ONLY TRACE TrU(1) B L and Cubic [U(1) B L ] 3 SU(5) respect U(1) B L. One can gauge U(1) B L by adding just ONE SM singlet!

Models Assumption: SM Higgs Type I seesaw y D lν c H u + M R ν c ν c, L = 2 M R 10 14 GeV, m ν MD 2 /M R Yanagida,79; Gell-Man et al.,79,glashow,80;mohapatra,senjanovic,80 Type II seesaw y ν l T iσ 2 l, L = 2 m ν = y ν v 10 10 GeV Minikowski,77;Cheng,Li,80; Mohapatra,Senjanovic,81;Sha et al., 81 Zee-Babu model, generates neutrino mass at two-loop L = 2Zee 80, Babu, 88 Type III seesaw, etc...

Triplet Model (Type II seesaw) Y = 2 SU(2) L Triplet, Majorana Neutrino Mass from = 1 ( ) H + 2H ++ 2 2H 0 H + y ν l T L C 1 iσ 2 l H ++ Wµ W ν : i 2g 2 2 v g µν ; H ++ l i l j : C 2Γ ++ ij P L

LNV Direct Test: 0νββ 1/M 4 W L y ν v /M 2 1/M4 W L m ν /M 2 y ν v M 2 5 10 8 GeV 1 M > 0.1GeV

Other Bounds on Triplet Higgs Masses/Couplings VEV CDF/D 0 Search bound: m H ++ > 120 GeV (4 muons/muons+tau) Lepton Flavor Violation Br(µ e e + e + ) < 10 12 ρ-parameter Gunion, et. al, 1990 Triplet vev breaks SU(2) L+R custodial symmetry ( ) 2 m W ρ = ; v < 1 GeV m Z cos θ W Or another real triplet to cancel. Georgi and Machacek, 1985

Triplet Model (Type II seesaw) Y = 2 SU(2) L Triplet = 1 ( ) H + 2H ++ 2 2H 0 H + Breaking U(1) B L y ν l T L C 1 iσ 2 l + µh T iσ 2 H + h.c. +... v = µ v 0 2 2M 2 H ++ l + l +, W + W + H + l + ν, W + h, W + Z, t b H 0 νν, ν ν, ZZ, W + W, H 1 H 1 (No tree level mass dierence among triplet Higgses. Otherwise H ++ H + W,H + H 2 W )

H ++ Decay BR: v vs yν Γ WW M 3 H (longitutinal); Γ ll M H

H + Decay BR

Neutrino and Triplet Leptonic Decay ( Y ν l T δ C iσ 2 l + h.c., where = + / 2 δ ++ δ 0 δ + / 2 ) No Majorana Phases sin θ 23

Doubly Charged (continued)

Neutrino Spectrum normal hierarchy inverted hierarchy (m 3 ) 2 (m 2 ) 2 (m 1 ) 2 ( m 2 ) sol ν e ( m 2 ) atm ν µ ( m 2 ) atm ν τ ( m 2 ) sol (m 2 ) 2 (m 1 ) 2 (m 3 ) 2

Majorana Phase Singly Charged Higgs BR is independent of Majorana phases.

Majorana Phase: a close look Γ + = cos θ + m diag ν V PMNS, Γ ++ = V v PMNS mdiag ν V PMNS 2 v Y j + = 3X Γ ij + 2 v, 2 Y ++ = 2v Γ ++ i=1 0 B V PMNS = @ c 12 c 13 c 13 s 12 e iδ s 13 c 12 s 13 s 23 e iδ c 23 s 12 c 12 c 23 e iδ s 12 s 13 s 23 c 13 s 23 s 12 s 23 e iδ c 12 c 23 s 13 c 23 s 12 s 13 e iδ c 12 s 23 c 13 c 23 1 C A diag(e i Φ 1 /2, 1, e i Φ 2 /2 )

Singly Charged

Decay length of H ++ v 10 4 GeV: secondary vertex; Not longlived

Distinguish Spectrum via LNV Higgs Decay

Part II Phenomenology Searching at the Large Hadron Collider

Production of Triplet Higgses q(p 1 ) + q(p 2 ) H ++ (k 1 ) + H (k 2 ) q(p 1 ) + q (p 2 ) H ++ (k 1 ) + H (k 2 ) q(p 1 ) + q (p 2 ) H + (k 1 ) + H 2 (k 2 ) Tree Level Cross-section of Triplet Higgses Production

Remarks on Production triplet vev v suppresion phase space suppression Gauge cancellation among diagrams (Longitutinal W)

Remarks on Production (continued) QCD correction for this mass range 25% (NLO K -factor 1.25) real photon emission (γγ H ++ H ) 10% σ(fb) 10 2 σ(fb) 10 4 10 3 1 10 2 10-2 10 1 10-4 10-6 200 400 600 M ++ H (GeV) 10-1 10-2 200 400 600 800 1000 M H ++ (GeV)

Photon-Photon σ γγ = σ elastic + σ inelastic + σ semi elastic σ elastic = σ inelastic = σ semi elastic = Z 1 Z 1 dz 1 dz 2 f γ/p (z 1 )f γ/p (z 2 )σ(γγ H ++ H ) τ τ/z 1 Z 1 Z 1 Z 1 Z 1 dx 1 dx 2 dz 1 τ τ/x 1 τ/x 1 /x 2 τ/x 1 /x 2 /z 1 dz 2 f q (x 1 )f q (x 2)f γ/q (z 1 )f γ/q (z 2 )σ(γγ H ++ H ) Z 1 Z 1 Z 1 dx 1 dz 1 dz 2 f q (x 1 )f γ/q (z 1 )f γ/p (z 2 )σ(γγ H ++ H ) τ τ/x 1 τ/x 1 /z 1 τ = 4m2 S Drees, Godbole 94

Search via Leptonic Decays Small vev limit v < 10 4 GeV All LNV, but not observable except for H ++ H ++ l + l + ; H + l + ν l ; H 2 νν µ,e and τ respectively H 2 invisible and always produced via H ± H 2, another missing ν from H +, impossible to reconstruct. pp H ++ H l + l + l ν, l + l + τ ν (l = e, µ) pp H ++ H l + l + l l, l + l + τ τ (l = e, µ)

4 Lepton (no τ nal state) p T (l max ) > 30 GeV and p T (l) min > 15 GeV η(l) < 2.5 R ll > 0.4 SM Background if there exists same avor, opposite sign dilepton ZZ/γ l + l l + l Veto events of M l + l M Z < 15 GeV After reconstruction, purely event counting

Trilepton (no τ nal state) p T (l max ) > 30 GeV and p T (l) min < 15 GeV η(l) < 2.5 R ll > 0.4 E T > 40 GeV SM Background if there exists same avor, opposite sign dilepton W ± Z/γ l ± νl + l, W ± W ± W l ± l + l + E T Veto events of M l + l M Z < 15 GeV

Trilepton M T = (E l T + E T ) 2 ( p l + p) 2 T

τ Reconstruction No other E T in nal state: pp H ++ H l + l + τ τ, l + l + µ τ, l + τ + τ τ Highly Boosted τ p invisible = κ p l ; each τ corresponds to one unknown Σ p T invisible = p T 2 independent equations M l + l + = Mrec τ τ ; 1 more equation UPTO THREE τs

µµττ and µµµτ

τ Identication Very dierent from τ ± from Lepton Number Conserving H ± decay. τ ± behaves just like τ ± from SM W ±. H τ ν (W τ ν τ ) : τ left-handed H + τ + ν (W + τ + ν τ ): τ + right-handed τ + R π+ ν τ τ L π ν τ pions are soft.

τ Leptonic decay H + τν l + E T Lepton p T H + l + E T l from H + Jaccobian Peak around M H /2 (may change due to boost) l from τ, purely boost eect, softer pt l selection (GeV) 50 75 100 100 150 200 l misidentication rate 2.9% 9.4% 17.6% 4.6% 12.4% 22.2% τ survival probability 57.0% 69.8% 78.8% 62.8% 75.7% 83.7% τ selection: p T < 100 GeV (for M + H = 300 GeV) p T < 200 GeV for M + H = 600 GeV

Measuring BR knowns: N, L (Integrate luminosity) indirect: reconstructed M σ(h ++ H ) N 4µ = L σ(pp H ++ H ) BR 2 (H ++ µ + µ + ) N 3µτ = L σ(pp H ++ H ) BR(H ++ µ + µ + )BR(H ++ µ + τ + )

Once the BRs are measured,... Even the Phase.

Conclusion We propose one scenario that the Triplet models for neutrino mass generation can be directly tested at the LHC. It predicts dierent phenomenology like doubly charged scalars that can decay into same sign dilepton. If the doubly charged Higgs and its LNV decay has been discovered, we will be able to extract information of neutrino mass and mixing from BR of triplet Higgses. Thank you!