Multi-Messenger Signatures of the R-Process

Similar documents
Delayed Outflows from BH Accretion Tori Following Neutron Star Binary Coalescence. Brian Metzger

The Central Engines of Short Duration Gamma-Ray Bursts

Brian Metzger Princeton University NASA Einstein Fellow

Important (!) Effects of Nucleosynthesis on the EM Signatures of Neutron Star Mergers. Brian Metzger

Probing the Creation of the Heavy Elements in Neutron Star Mergers

r-process nucleosynthesis in neutron star mergers and associated macronovae events

Short GRB and kilonova: did observations meet our theoretical predictions?

Electromagne,c Counterparts of Gravita,onal Wave Events

Mass ejection from neutron-star mergers in numerical relativity

14/11/2018. L Aquila - Multi-messenger studies of NS mergers, GRBs and magnetars. Simone Dall Osso

Implications of GW observations for short GRBs

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group

Ref. PRL 107, (2011)

ν-driven wind in the Aftermath of Neutron Star Merger

Nuclear physics input for the r-process

Synergy of GWs and EM signals

General Relativistic MHD Simulations of Neutron Star Mergers

GR SIMULATIONS OF COMPACT BINARY MERGERS. Bruno Giacomazzo JILA, University of Colorado, USA

Electromagnetic counterparts to binary neutron star mergers. Koutarou Kyutoku (KEK) Collaborators: Kunihito Ioka (KEK), Masaru Shibata (YITP)

Explosive nucleosynthesis of heavy elements:

Extreme Transients in the Multimessenger Era

The r-process of nucleosynthesis: overview of current status. Gail McLaughlin North Carolina State University

Nobuya Nishimura Keele University, UK

Gravitational Waves and Electromagnetic Signals from a Neutron Star Merger

Lobster X-ray Telescope Science. Julian Osborne

GENERAL RELATIVISTIC SIMULATIONS OF NS BINARIES. Bruno Giacomazzo University of Trento and INFN-TIFPA, Italy

Nuclear robustness of the r process in neutron-star mergers

Short gamma-ray bursts from binary neutron star mergers: the time-reversal scenario

Short Gamma-ray Bursts: Lessons Learned, Open Questions, and Constraints for the GW Era

Neutron star post-merger simulations: origin of kilonovae and the heavy elements

Nuclear physics impact on kilonova light curves

Gravitational waves (...and GRB central engines...) from neutron star mergers

Neutron-star mergers:

Astro2020 Science White Paper Kilonovae: nuv/optical/ir Counterparts of Neutron Star Binary Mergers with TSO

Simulations of neutron star mergers: Status and prospects

Optical/IR Counterparts of GW Signals (NS-NS and BH-NS mergers)

Light curves and spectra of kilonovae

Low Energy Neutrinos from Black Hole - Accretion Disks

Short GRBs: Progenitors, r-process Nucleosynthesis, and Gravitational Waves. Edo Berger Harvard University

Neutrinos in supernova evolution and nucleosynthesis

NS-NS and BH-NS Merger Simulations Lecture 3

Transient Events from Neutron Star Mergers

Nuclear astrophysics with binary neutron stars

MHD simulation for merger of binary neutron stars in numerical relativity

Nucleosynthesis in core-collapse supernovae

High Energy Astrophysics

Gravitational waves and dynamical mass ejection from binary neutron-star mergers

Nucleosynthesis in core-collapse supernovae. Almudena Arcones

Rosalba Perna. (Stony Brook University)

Gamma Ray Bursts. Progress & Prospects. Resmi Lekshmi. Indian Institute of Space Science & Technology Trivandrum

Identifying the Remnants of Neutron Star Mergers. Wen-fai Fong University of Arizona

Merger of binary neutron stars: Gravitational waves and electromagnetic counterparts Numerical-relativity study

Supernovae, Gamma-Ray Bursts, and Stellar Rotation

GRMHD simulations of remnant accretion disks from neutron star mergers

GW from GRBs Gravitational Radiation from Gamma-Ray Bursts

Cosmological Fast Radio Bursts from Binary White Dwarf Mergers

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016

Tomoya Takiwaki (RIKEN)

Three-dimensional simulation of magneto-rotationally driven core-collapse supernovae

The Mystery of Fast Radio Bursts and its possible resolution. Pawan Kumar

Nucleosynthesis in Jets from A Collapsar before The Formation of A Black Hole

Synergy with Gravitational Waves

Supernovae and Nucleosynthesis in Zero and Low Metal Stars. Stan Woosley and Alex Heger

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

The Dynamic Radio Sky: On the path to the SKA. A/Prof Tara Murphy ARC Future Fellow

arxiv:astro-ph/ v1 27 Jul 2004

Multimessenger Probes of Neutron Star Physics. David Tsang (U. Southampton)

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

GR SIMULATIONS OF BINARY NEUTRON STARS AND BINARY BLACK HOLES WITH WHISKY. Bruno Giacomazzo University of Trento, Italy

Kilonova Emission from Compact Binary Mergers: Opaci-es of Lanthanide-rich and Lanthanide-free Ejecta

GRAVITATIONAL WAVE ASTRONOMY

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us?

NS+NS/BH mergers: GW and em counterparts Models and observations needed

A kilonova associated with short-duration gamma-ray burst B.

Core-collapse supernovae are thermonuclear explosions

arxiv: v1 [astro-ph.he] 8 Jan 2015

Interpretation of Early Bursts

Ultra-stripped Type Ic supernovae generating double neutron stars

what powers the brightest supernovae?

Rosalba Perna. (University of

τ coll 10 V ff g cm 3 Core collapse triggered by K-captures, photodissociation 1000 km Collapse (only core inner ~1.5 MO) Free-fall 1010 g cm-3

NUCLEOSYNTHESIS INSIDE GAMMA-RAY BURST ACCRETION DISKS AND ASSOCIATED OUTFLOWS

Red or blue? A potential kilonova imprint of the delay until black hole formation following a neutron star merger

A Turbulent Dynamo in Rotating Magnetized Core-Collapse Supernovae

PUSHing CORE-COLLAPSE SUPERNOVAE TO EXPLOSIONS IN SPHERICAL SYMMETRY

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

Neutrinos and Nucleosynthesis from Black Hole Accretion Disks. Gail McLaughlin North Carolina State University

Lecture 3 Pulsars and pulsar wind nebulae

GRMHD SIMULATIONS OF NS-NS MERGERS. Bruno Giacomazzo University of Trento and INFN-TIFPA, Italy

Gamma-Ray Astronomy. Astro 129: Chapter 1a

Collapsar scenario and NS-NS mergers. Yuichiro Sekiguchi (YITP)

Spectrum of the Supernova Relic Neutrino Background

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

GR SIMULATIONS OF BNS MERGERS: GWs AND SHORT GRBs. Bruno Giacomazzo University of Trento and INFN-TIFPA, Italy

Pulsars - a new tool for astronomy and physics

arxiv: v2 [astro-ph.he] 3 Mar 2015

ISDT Report Time-domain Science

Formation and evolution of BH and accretion disk in Collapsar

Transcription:

Multi-Messenger Signatures of the R-Process Brian Metzger Columbia University In Collaboration with Rodrigo Fernandez, Eliot Quataert, Geoff Bower, Dan Kasen (UC Berkeley) Andrey Vlasov (Columbia), Almudena Arcones, Gabriel Martinez-Pinedo (Darmstadt) Edo Berger, Wen-Fai Fong (Harvard), Tony Piro, Dan Perley (Caltech) Dimitrios Giannios (Purdue), Shunsaku Horiuchi (VA Tech) Institute for Nuclear Theory R-Process Workshop, August 1, 2014

Where, Oh Where Has the R-Process Gone? Galactic r-process rate: M A >130 ~ 5 "10 #7 M! yr -1 (Qian 2000) Snedan et al. 2008 fractional contribution to the r-process Mergers SNe f NSM ~ f SN ~ # N NSM &# M ej & % (% ( $ 10 "4 yr -1 ' $ 10 "2 M! ' # N SN &# M ej & % $ 10 "2 yr -1 (% ( ' $ 10 "4 M! ' Hypernovae (MHD SNe?) f HNe ~ # N HNe &# M ej & % $ 10 "4 yr -1 (% ( ' $ 10 "2 M! '

Where, Oh Where Has the R-Process Gone? Galactic r-process rate: M A >130 ~ 5 "10 #7 M! yr -1 (Qian 2000) Snedan et al. 2008 fractional contribution to the r-process Mergers SNe f NSM ~ f SN ~ # N NSM &# M ej & % (% ( $ 10 "4 yr -1 ' $ 10 "2 M! ' # N SN &# M ej & % $ 10 "2 yr -1 (% ( ' $ 10 "4 M! ' Hypernovae (MHD SNe?) f HNe ~ # N HNe &# M ej & % $ 10 "4 yr -1 (% ( ' $ 10 "2 M! '

Neutrino Driven Wind Neutrinos heat proto-ns atmosphere (e.g. ν e + n p + e - ) drives outflow behind outgoing supernova shock (e.g. Qian & Woosley 96) Before SN Shock Launch After Shock Launch Neutrino-Heated Wind Burrows, Hayes, & Fryxell 1995

Conditions for Third Peak R-Process No Symmetry energy shift 1) need Y e < 0.5 Entropy S (kb baryon -1 ) Roberts et al. 2012 (see also Martinez-Pinedo et al. 2012) 2) α-rich freeze-out of requires Expansion Time τ (s) Thompson et al. 2001

Conditions for Third Peak R-Process No Symmetry energy shift 1) need Y e < 0.5 Entropy S (kb baryon -1 ) What is Missing? Roberts et al. 2012 (see also Martinez-Pinedo et al. 2012) 2) α-rich freeze-out of requires Expansion Time τ (s) Thompson et al. 2001

Magnetars Wind Profile for B dip = 10 15 G Dipole field B ~ 10 14-10 15 G Spin periods ~ 3-10 s (birth periods unconstrained) Birthrate ~10% CC-SNe (massive progenitors > 40 M )

rotational energy Are Magnetars Born Rapidly Spinning? "E rot = B2 8# $ 4# 3 R 3 ns E rot = 1 *2 $ P ' 2 I"2 ~ 3 #10 51 & ) ergs % 3 ms( ' "& * % B eq ~ 10 16 ), (&/2+ Field amplification via MRI or convective dynamo (Thompson & Duncan 1993) 2 ' P * ), ( 3 ms+ -2 G V c ΔΩ Dessart et al. 2006 Vink & Kuiper 2006 P 0 > 4 ms

Effects of Strong Magnetic Fields Helmet - Streamer Microphysics (EOS, ν Heating & Cooling) Important for B 10 16 G (Duan & Qian 2005) Ω

Effects of Strong Magnetic Fields Helmet - Streamer Ω Microphysics (EOS, ν Heating & Cooling) Important for B 10 16 G (Duan & Qian 2005) Magneto-Centrifugal Slinging (Weber & Davis 1967; Thompson, Chang & Quataert 2004) Outflow Co-Rotates with Neutron Star when B 2 8" > 1 2 # v 2 r Magneto-Centrifugal Acceleration ( Beads on a Wire ) R heat Top View R A

Neutrino Winds from Rotating Proto-Magnetars Vlasov, Metzger & Thompson 2014 Velocity θ = θ max θ = 0 Spherical Entropy Spherical θ = θ max Force-free magnetosphere: geometry depends on spin period P, but not on B-field strength

M = 1.4 M, R = 12 km Factor ~4 improvement for P~2-5 ms Additional GR boost by factor ~4 (not included) (e.g. Cardall & Fuller 1997) Vlasov, BDM, Thompson

Moderately-Rapidly Rotating Proto-Magnetars as R-Process Source Required ejecta mass per event Magnetars have massive progenitor stars more massive proto-ns higher S 3 /τ. Birth periods P > 4 ms consistent with energetics of magnetar supernova remnants. Rapidly rotating stars more prevalent early in chemical evolution of galaxy. - Growing evidence for super-luminous SNe powered by magnetars in low metallicity galaxies (e.g. Kasen & Bildsten 2010) Even if not dominant source, can nucleosynthesis constrain the birth periods of magnetars?

X-ray Decay Lines from R-Nuclei in SN Remnants Ripley, BDM, Arcones & Martinez-Pinedo 2014 (see also Qian et al. 1998, 1999) Supernova Remnants Ave. mass per event

X-ray Decay Lines from R-Nuclei in SN Remnants Ripley, BDM, Arcones & Martinez-Pinedo 2014 (see also Qian et al. 1998, 1999) Magnetars Remnants (assume M ej = 10-2 M ) Ave. mass per event

Where, Oh Where Has the R-Process Gone? Galactic r-process rate: M A >130 ~ 5 "10 #7 M! yr -1 (Qian 2000) Snedan et al. 2008 fractional contribution to the r-process Mergers SNe f NSM ~ f SN ~ # N NSM &# M ej & % (% ( $ 10 "4 yr -1 ' $ 10 "2 M! ' # N SN &# M ej & % $ 10 "2 yr -1 (% ( ' $ 10 "4 M! ' Hypernovae (MHD SNe?) f HNe ~ # N HNe &# M ej & % $ 10 "4 yr -1 (% ( ' $ 10 "2 M! '

Gravitational Waves " 1 P dp dt = 48 5 Binary Neutron Star Mergers G 3 M 2 c 5 a 4 NS Ω a NS Hulse-Taylor Pulsar 10 Known Galactic NS-NS Binaries (Lorimer 2008) T merge = 300 Myr N merge ~ 10-5 "10-4 yr -1 (e.g., Kalogera et al. 2004, Belczynski et al. 2002)

Binary Neutron Star Mergers Advanced LIGO / Virgo Range ~ 200-500 Mpc Detection Rate ~ 1-100 yr -1 LIGO (North America) Sky Error Regions ~ 10-100 deg 2 Nissanke et a. 2011 Virgo (Europe)

Gamma-Rays Radio Swift BAT FOV ~ 15% XRT slews in ~min GBM FOV ~ 60% Optical ( Now ) Soon: ZTF LOFAR FOV ~50% Optical (Future) Large Synoptic Survey Telescope (LSST) ~All sky mab<24.5 every ~3 d - Online >~2020

Neutron Star Binary Mergers Advanced LIGO/Virgo (>2016) Range ~ 200-500 Mpc Detection Rate ~ 1-100 yr -1 NS Ω NS BH NS LIGO (North America) Sky Error Regions ~ 10-100 deg 2 ~ 10 3-10 4 galaxies Nissanke et a. 2011 Virgo (Europe)

Numerical Simulation - Two 1.4 M NSs Courtesy M. Shibata (Kyoto)

Electromagnetic Counterparts of NS-NS/NS-BH Mergers Short GRB Kilonova Metzger & Berger 2012

Electromagnetic Counterparts of NS-NS/NS-BH Mergers Short GRB Kilonova Metzger & Berger 2012

Numerical Simulation - Two 1.4 M NSs Courtesy M. Shibata (Tokyo U)

Remnant Accretion Disk (e.g. Ruffert & Janka 1999; Shibata & Taniguchi 2006; Faber et al. 2006; Chawla et al. 2010; Duez et al. 2010; Foucart 2012; Deaton et al. 2013) Lee et al. 2004 Disk Mass ~0.01-0.1 M & Size ~ 10-100 km Hot (T > MeV) & Dense (ρ ~ 10 8-10 12 g cm -3 ) Neutrino Cooled: (τ ν ~ 0.01-100) Equilibrium e + + n " # e + p vs. Y e ~ 0.1 Accretion Rate " M t visc ~ 0.1 % $ ' # 3M! & 1/ 2 M ~ 10 "2 "10M! s -1 " ( % $ ' # 0.1& )1 3 / " R d % 2 " H /R% $ ' $ ' # 100 km& # 0.5 & e " + p # $ e + n )2 s Short GRB Engine?

Short GRBs are Rare in the LIGO Volume θ j Detection Rate >z (yr -1 )!!! Swift Short GRBs Metzger & Berger 2012 Redshift z Detectable fraction by all sky γ-ray telescope f " ~ 3.4 # $ 2 j 2 ~ 0.07 % $ ( j ' * & 0.2) 2

Electromagnetic Counterparts of NS-NS/NS-BH Mergers Short GRB Kilonova Metzger & Berger 2012

Neutron-Rich Ejecta Dynamical Tidal Tails (e.g. Janka et al. 1999; Lee & Kluzniak 1999; Ruffert & Janka 2001; Rosswog et al. 2004; Rosswog 2005; Shibata & Taniguchi 2006; Giacomazzo et al. 2009; Duez et al. 2010; East et al. 2012; Hotokezaka et al. 2013) Full GR / Simple EOS / Circular M ej ~ 10-4 - 0.1 M Y e " n p n p + n n < 0.1 Model M ej (10-3 M ) Hotokezaka et al. 2013 Newtonian / Realistic EOS / Eccentric

Neutron-Rich Ejecta Dynamical Tidal Tails (e.g. Janka et al. 1999; Lee & Kluzniak 1999; Ruffert & Janka 2001; Rosswog et al. 2004; Rosswog 2005; Shibata & Taniguchi 2006; Giacomazzo et al. 2009; Duez et al. 2010; East et al. 2012; Hotokezaka et al. 2013) Full GR / Simple EOS / Circular M ej ~ 10-4 - 0.1 M Y e " n p n p + n n < 0.1 Model M ej (10-3 M ) Hotokezaka et al. 2013 Newtonian / Realistic EOS / Eccentric Disk Outflows Neutrino-Powered (Early) (e.g. McLaughlin & Surman 05; Surman+08; BDM+08; Dessart+09) Recombination-Powered (Late) (e.g. Beloborodov 08; BDM+08, 09; Lee+09; Fernandez & BDM 13) Y e ~??? M ej = f w M d ~ 10-3 -10-2 (f w /0.1) M

as used in Metzger et al. 2010 (movie courtesy G. Martinez-Pinedo, A. Arcones) R-Process Network (neutron captures, photo-dissociations, α- and β-decays, fission)

Final Abundance Distribution 2nd Scaled solar abundances 3rd BDM et al. 2010 peaks at A ~ 130, 195

Radioactive Heating of Merger Ejecta (BDM et al. 2010; Roberts et al. 2011; Goriely et al. 2011; Korobkin et al. 2012; Bauswein et al. 2013) Y e = 0.1 t -1.2 Metzger et al. 2010 Dominant β-decays at t ~ 1 day: 132,134,135 I, 128,129 Sb, 129 Te, 135 Xe Relatively insensitive to details (Y e, expansion history, NSE or not)

How Supernovae Shine (Arnett 1982; Li & Paczynski 1998) ejecta with mass M, velocity v, thermal energy E = f Mc 2, opacity κ M }R V R = v t " = M 4# 3 R 3 " ~ #$R t diff ~ " R c ( ) "1/ 2 % M M! Peak (t = t diff ) t peak ~ 2 weeks v 10 4 km s -1 L peak ~ E(t peak)t ~ 10 43 ergs s -1 ( f )( v ) 1/ 2 peak 10-5 $ M 10 4 km s -1 M! # $ " # 1/ 2 & # ( % ) ' $ ) Fe 1/ 2 % " ' ( % $ ' & # ( Fe & Type Ia Supernova: v ~10 4 km s -1, M ej ~ M, f Ni Co ~ 10-5 t peak ~ week, L ~ 10 43 erg s -1 NS Merger: v ~ 0.1 c, M ej ~ 10-2 M, f ~ 3 10-6 t peak ~ 1 day, L ~ 10 42 erg s -1 1/ 2 & ( ' )1/ 2

Radioactive Heating of Merger Ejecta (BDM et al. 2010; Roberts et al. 2011; Goriely et al. 2011; Korobkin et al. 2012; Bauswein et al. 2013) Metzger et al. 2010 Dominant β-decays at t ~ 1 day: 132,134,135 I, 128,129 Sb, 129 Te, 135 Xe Relatively insensitive to details (Y e, expansion history, NSE or not)

Bolometric Luminosity kilo-nova Color Evolution Fe Opacity Blackbody Model BDM et al. 2010

High Opacity of the Lanthanides (Kasen et al. 2013; Tanaka & Hotokezaka 2013) lanthanides Fe Kasen et al. 2013

Bolometric Luminosity kilo-nova Color Evolution Fe Opacity Blackbody Model BDM et al. 2010

EM Counterpart Search following a GW Trigger Range of kilonova models with different ejecta mass M ej ~10-3 - 0.1 M and velocity v ~ 0.1-0.3 c BDM & Berger 2012 Requires depth J ~ 22-24 and short cadence

Bolometric Luminosity kilo-nova Color Evolution Fe Opacity Blackbody Model BDM et al. 2010

Bolometric Luminosity kilo-nova Color Evolution Fe Opacity Blackbody Model BDM et al. 2010 Y e > 0.25 Y e < 0.25

Neutron-Rich Ejecta Dynamical Tidal Tails (e.g. Janka et al. 1999; Lee & Kluzniak 1999; Ruffert & Janka 2001; Rosswog et al. 2004; Rosswog 2005; Shibata & Taniguchi 2006; Giacomazzo et al. 2009; Duez et al. 2010; East et al. 2012; Hotokezaka et al. 2013) Full GR / Simple EOS / Circular M ej ~ 10-4 - 0.1 M Y e " n p Y e " 0.05 n p + n n < 0.1 Model M ej (10-3 M ) Hotokezaka et al. 2013 Newtonian / Realistic EOS / Eccentric Disk Outflows Neutrino-Powered (Early) (e.g. McLaughlin & Surman 05; Surman+08; BDM+08; Dessart+09) Recombination-Powered (Late) (e.g. Beloborodov 08; BDM+08, 09; Lee+09; Fernandez & BDM 13) Y e ~??? M ej = f w M d ~ 10-3 -10-2 (f w /0.1) M

Two Component Blue Light Curve Red Barnes & Kasen 2013 Grossman+14 or disk winds: r-process or Fe? tidal tail: r-process

Remnant Torus Evolution (Fernandez & Metzger 2012, 2013) P-W potential with M BH = 3,10 M hydrodynamic α viscosity NSE recombination 2n+2p 4 He Equilibrium Torus M t ~ 0.01-0.1 M R 0 ~ 50 km uniform Y e = 0.1 run-time Δt ~ 1000-3000 t orb neutrino self-irradiation: light bulb + optical depth corrections: BH neutrino emission pattern R [2,2000] R g N r = 64 per decade N θ = 56

Delayed Disk Outflows M BH M out (with " recombination) M out (NO " recombination) Fernandez & BDM 13 Time (s) unbound outflow powered by viscous heating and α recombination neutrino heating subdominant outflow robust M ej ~ 0.05 M t V ej ~ 0.1 c compare with Just et al. (2014), who find M ej ~ 0.2 M t

Y e Freeze Out Outflow Composition t = 0.3 s t = 3 s t = 0.03 s still produces lanthanides Composition (Preliminary) Mass per bin (M )

Y e Freeze Out Outflow Composition Compare with: Just et al. 2014 t = 0.3 s t = 3 s t = 0.03 s still produces lanthanides Composition (Preliminary) Mass per bin (M )

Two Component Blue Light Curve Red Barnes & Kasen 2013 Grossman+14 or disk winds: r-process or Fe? tidal tail: r-process

Two Component Blue Light Curve Red Barnes & Kasen 2013 Grossman+13 disk winds: r-process or Fe? tidal tail: r-process

(Tanvir+13; de Ugarte Postigo+13 ; Fong+13 ) Tanvir et al. 2013 0.1 M 0.01 M

Two Component Blue Light Curve Red Barnes & Kasen 2013 Grossman+13 disk winds: r-process or Fe? tidal tail: r-process

Two Component Blue Light Curve Red Barnes & Kasen 2013 Grossman+13 or disk winds: r-process or Fe? tidal tail: r-process

Two Component Blue Light Curve Red tidal tail: r-process disk winds: r-process or Fe? ν ν NS ν ν " e + n #e $ + p Barnes & Kasen 2013 Grossman+13

Effect of Hypermassive Neutron Star Metzger & Fernandez 2014, see also Perego et al. 2014

Distribution of Ejecta Y e for Different Collapse Times t collapse = 0 t collapse = 30 ms t collapse = 100 ms

Imprint of the HMNS Lifetime equatorial 30 ms 100 ms 300 ms infinity strength of blue bump may encode HMNS lifetime ejecta mass up to ~10 times higher than prompt BH case

Stable Merger Remnant? (e.g. BDM+08; Ozel et al. 2010; Bucciantini et al. 2012; Zhang 13; Yu et al. 2013; Giacomazzo & Perna 13; Siegel 2014) Requires: low total mass binary, stiff EOS*, and/or mass loss during merger *supported by recent discovery of 2M NS by Demorest et al. 2011 Rotating at centrifugal break-up limit with spin period P ~ 1 ms Magnetic field amplified by rotational energy + convection Magnetar? Giacomazzo & Perna 2013

Short GRBs with Extended Emission 1/5 Swift Short Bursts have X-ray Tails GRB 050709 Rapid Variability Ongoing Engine Activity Energy up to ~30 times Burst Itself! Extended Emission GRB080503 S EE /S GRB ~ 30 Perley, BDM et al. 2009 BATSE Examples (Norris & Bonnell 2006)

Stable Merger Remnant? (e.g. BDM+08; Ozel et al. 2010; Bucciantini et al. 2012; Zhang 13; Yu et al. 2013; Giacomazzo & Perna 13; Siegel 2014) spin-down luminosity spin-down time : L sd = µ2 " 4 % P ( # 6 $10 49 ' * c 3 & 1 ms) : " sd = E rot L sd # 5 $ P 0 ' & ) % 1 ms( 2 +4 2 % B dip ( ' & 10 15 * erg s -1 G) $ B dip ' & % 10 15 ) G( -2 min Magnetar wind confined by merger ejecta Bucciantini, BDM et al. 2011 Jet Magnetar Wind Merger Ejecta Theoretical Light Curves vs. Observed X-ray Tails (magnetar wind model from Metzger et al. 2011) P 0 = 1.5 ms, B dip = 2 10 15 G

Radio constraints on stable merger remnants (BDM & Bower 2013) Rotational energy eventually transferred to ISM via relativistic shock bright radio emission We observed 7 short GRBs with VLA on timescales ~1-3 years after burst NO DETECTIONS stable remnant disfavored in 2 GRBs with high ISM densities Additional JVLA observations now would be much more constraining Upcoming radio surveys (e.g. ASKAP) will strongly constrain stable NS merger remnants indirectly probes EoS 1.4 GHz Luminosity (erg s -1 ) Rest-Frame Time Since GRB (years)

Timeline of Binary NS Mergers 1. Chirp enters LIGO Bandpass t (minus) ~ mins 2. Last Orbit, Plunge & Dynamical Ejecta t ~ ms 3. BH Formation ~ ms - 4. Accretion of Remnant Disk, Jet Formation (GRB) ~ 0.1-1 s 5. He-Recombination + Disk Evaporation ~ 0.3-3 s outflow Y e depends on NS collapse time 6. R-Process in Merger Ejecta ~ few s 7. Jet from Magnetar (X-rays) ~ min (or longer) 8. Disk Wind Kilonova prompt BH formation Y e < 0.25 (NIR, L ~ 10 41 erg s -1 ) ~ week delayed BH formation Y e > 0.25 (Optical, L ~ 10 42 erg s -1 ) ~ day stable magnetar (Optical, L ~ 10 44 erg s -1 ) ~ day 9. Tidal Tail Kilonova (IR) ~ week 10. Ejecta ISM Interaction (Radio) ~ years Much brighter if stable magnetar

Conclusions Strong B fields and rapid rotation alter the properties of proto-neutron star winds due to magneto-centrifugal acceleration. Both the dynamical timescale and entropy increase, increasing S 3 /t exp by a factor ~4. Moderately rapidly rotating proto-magnetars thus represent a promising r-process site, consistent with observations. The first direct detection of gravitational waves will likely be a binary NS merger, within the next ~3 years. Identifying an EM counterpart will be essential to maximize the scientific impact of this discovery. The most promising isotropic counterpart is an optical/ir transient ( kilonova ) powered by the radioactive decay of r-process nuclei. The radioactive heating of the ejecta is now well understood, but the photon opacity of r-process ejecta remains uncertain. The sensitive dependence of opacity on ejecta composition (lanthanide fraction) make kilonova colors a sensitive probe of physical processes at work during the merger, such as the delay until black hole formation.