Gravitational Renormalization in Large Extra Dimensions

Similar documents
The ultraviolet behavior of quantum gravity with fakeons

One-Loop Divergences of the Yang-Mills Theory Coupled to Gravitation (revised version of August 20, 2008)

Graviton Corrections to Maxwell s Equations. arxiv: (to appear PRD) Katie E. Leonard and R. P. Woodard (U. of Florida)

Unimodular Gravity and General Relativity UV divergent contributions to the scattering of massive scalar particles

Corrections to gauge theories in effective quantum gravity

Quantum Scalar Corrections to the Gravitational Potentials November on de Sitter 13, 2015 Background: 1 / 34

arxiv: v2 [hep-th] 2 Mar 2016

UV completion of the Standard Model

arxiv: v2 [hep-th] 21 Aug 2018

Emergent 4D gravity on covariant quantum spaces in the IKKT model

Higher-derivative relativistic quantum gravity

Heisenberg-Euler effective lagrangians

Two Fundamental Principles of Nature s Interactions

Asymptotic Safety in the ADM formalism of gravity

Supercurrents. Nathan Seiberg IAS

Decay constants and masses of light tensor mesons (J P = 2 + )

QFT Dimensional Analysis

Gravitational Čerenkov Notes

Finite-temperature Field Theory

Asymptotic safety of gravity and the Higgs boson mass. Mikhail Shaposhnikov Quarks 2010, Kolomna, June 6-12, 2010

Renormalization in Lorentz-violating field theory: external states

Emergent space-time and gravity in the IIB matrix model

A Brief Introduction to AdS/CFT Correspondence

Lecture September The second quantization of weak gravitational

Gravitational Waves and New Perspectives for Quantum Gravity

Perturbative Noncommutative Quantum Gravity. J. W. Moffat. Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

Gauss-Bonnet Gravity with Scalar Field in Four Dimensions

Quantum Gravity and the Renormalization Group

QFT Dimensional Analysis

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

arxiv: v1 [hep-th] 19 Dec 2018

Asymptotically Safe Gravity connecting continuum and Monte Carlo

A brief introduction to modified theories of gravity

On the Localization of a Renormalizable Translation Invariant U(1) NCGM

Kaluza-Klein Masses and Couplings: Radiative Corrections to Tree-Level Relations

A New Regulariation of N = 4 Super Yang-Mills Theory

Dynamical Domain Wall and Localization

On divergent 3-vertices in noncommutative SU(2) gauge theory

Concistency of Massive Gravity LAVINIA HEISENBERG

Quantum Fields in Curved Spacetime

GENERAL RELATIVITY: THE FIELD THEORY APPROACH

Lecturer: Bengt E W Nilsson

Espansione a grandi N per la gravità e 'softening' ultravioletto

Renormalization of the Yukawa Theory Physics 230A (Spring 2007), Hitoshi Murayama

Gravitation: Gravitation

Contact interactions in string theory and a reformulation of QED

Advanced Quantum Field Theory Example Sheet 1

ON ULTRAVIOLET STRUCTURE OF 6D SUPERSYMMETRIC GAUGE THEORIES. Ft. Lauderdale, December 18, 2015 PLAN

Higher-derivative relativistic quantum gravity

On Torsion Fields in Higher Derivative Quantum Gravity

How I learned to stop worrying and love the tachyon

FeynRules New models phenomenology made easy

arxiv:hep-th/ v1 2 Jul 2003

One-loop renormalization in a toy model of Hořava-Lifshitz gravity

Yang-Mills Gravity and Accelerated Cosmic Expansion* (Based on a Model with Generalized Gauge Symmetry)

LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS.

Critical exponents in quantum Einstein gravity

d = 3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories

NTNU Trondheim, Institutt for fysikk

Discrete and Continuum Quantum Gravity

QCD β Function. ǫ C. multiplet

Non-SUSY BSM: Lecture 1/2

GRAVITATION F10. Lecture Maxwell s Equations in Curved Space-Time 1.1. Recall that Maxwell equations in Lorentz covariant form are.

QCD Phases with Functional Methods

Gravity vs Yang-Mills theory. Kirill Krasnov (Nottingham)

A Short Note on D=3 N=1 Supergravity

arxiv:hep-th/ v1 2 May 1997

Warped Models in String Theory

Entanglement entropy in a holographic model of the Kondo effect

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

HIGHER SPIN PROBLEM IN FIELD THEORY

Finite Temperature Field Theory

UNIVERSITY OF COPENHAGEN The Faculty of Science. Doctor of Philosophy. Quantum gravity, effective fields and string theory

Variational Principle and Einstein s equations

ADVANCED QUANTUM FIELD THEORY. Exercises. Adel Bilal

An extended standard model and its Higgs geometry from the matrix model

THE RENORMALIZATION GROUP AND WEYL-INVARIANCE

Domain Wall Brane in Eddington Inspired Born-Infeld Gravity

0 T (L int (x 1 )...L int (x n )) = i

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds

Finite One-Loop Corrections and Perturbative Gauge Invariance in Quantum Gravity Coupled to Photon Fields

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

PAPER 309 GENERAL RELATIVITY

The Phase Diagram of the BMN Matrix Model

arxiv:hep-th/ Feb 2001

Functional Renormalization Group Equations from a Differential Operator Perspective

Chapter 13. Local Symmetry

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz

GENERAL-RELATIVITY AS AN EFFECTIVE- FIELD THEORY - THE LEADING QUANTUM CORRECTIONS

Constraints on matter from asymptotic safety

Brane Gravity from Bulk Vector Field

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Frolov: Mass-gap for black hole formation in

PHY 396 K. Solutions for problem set #6. Problem 1(a): Starting with eq. (3) proved in class and applying the Leibniz rule, we obtain

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

arxiv: v1 [physics.gen-ph] 3 Dec 2018

Light Propagation in the Averaged Universe. arxiv:

Yang-Mills Propagators in Landau Gauge at Non-Vanishing Temperature

The θ term. In particle physics and condensed matter physics. Anna Hallin. 601:SSP, Rutgers Anna Hallin The θ term 601:SSP, Rutgers / 18

Connections and geodesics in the space of metrics The exponential parametrization from a geometric perspective

Transcription:

Gravitational Renormalization in Large Extra Dimensions Humboldt Universität zu Berlin Institut für Physik October 1, 2009 D. Ebert, J. Plefka, and AR J. High Energy Phys. 0902 (2009) 028. T. Schuster and AR Phys. Rev. D 79 (2009) 125017. arxiv:0908.2422 [hep-th].

Outline 1 Introduction 2 Gravitational One Loop Divergences Yang-Mills Theory Scalar Field Fermions

Contents 1 Introduction 2 Gravitational One Loop Divergences Yang-Mills Theory Scalar Field Fermions

Renormalization loop diagrams are in general UV divergent Regularization by momentum cut-off Λ or dimensional regularization d = 4 ɛ Renormalization by adding counterterms introduces renormalization scale µ comparison with bare theory yield running of couplings g(µ) and other parameters, e. g. masses, which is encoded in the β function β g µ dg dµ

Gravitation Gravity as an effective field theory Perturbatively quantized Einstein gravity is famously nonrenormalizable Nevertheless it can be treated consistently as effective field theory [Donoghue 95] S grav = d d x { g Λ + 1 } R + c 1 R 2 + c 2 R µν R µν +... 16πG N The higher derivative terms arise in loop expansions, the values of their couplings are largely undetermined, e.g. c 1, c 2 10 74 [Stelle 78] Question in this framework: Does inclusion of gravity alter the running of the Standard Model couplings g Maxwell (µ), g YM (µ), Y Yukawa (µ), λ ϕ 4(µ),? [Robinson,Wilczek 06]

Gravitation Gravity as an effective field theory Perturbatively quantized Einstein gravity is famously nonrenormalizable Nevertheless it can be treated consistently as effective field theory [Donoghue 95] S grav = d d x { g Λ + 1 } R + c 1 R 2 + c 2 R µν R µν +... 16πG N The higher derivative terms arise in loop expansions, the values of their couplings are largely undetermined, e.g. c 1, c 2 10 74 [Stelle 78] Question in this framework: Does inclusion of gravity alter the running of the Standard Model couplings g Maxwell (µ), g YM (µ), Y Yukawa (µ), λ ϕ 4(µ),? [Robinson,Wilczek 06]

Gravitation In four dimensions g 1.4 1.2 1 0.8 0.6 0.4 0.2 [Robinson,Wilczek 06] in background field method and cut-off regularization: β g κ 2 = 1 16π 2 3 2 E2 κ 2 g [Pietrykowski 06], [Toms 07] and [Ebert, Plefka, AR 07] found independently: β g κ 2 = 0 0 2 4 6 8 10 12 14 16 18 20 log[10](e/gev)

Gravitation In four dimensions g 1.4 1.2 1 0.8 0.6 0.4 0.2 [Robinson,Wilczek 06] in background field method and cut-off regularization: β g κ 2 = 1 16π 2 3 2 E2 κ 2 g [Pietrykowski 06], [Toms 07] and [Ebert, Plefka, AR 07] found independently: β g κ 2 = 0 0 2 4 6 8 10 12 14 16 18 20 log[10](e/gev)

Gravitation The Einstein-Hilbert Action S = d d x g 2 R + L κ 2 matter (g µν, Φ) + L gf + L gh dimensionful coupling κ = 32πG N, [κ] = 1 d 2 Splitting the metric in flat background and graviton field: with h h α α. g µν η µν + κh µν ) g = 1 + κ 2 h + κ2 8 (h 2 2h αβ h αβ + O(κ 3 ) g µν = η µν κh µν + κ 2 h µα h α ν + O(κ 3 ) R = κ ( h µ ν h µν ) + O(κ 2 )

Gravitation The Einstein-Hilbert Action S = d d x g 2 R + L κ 2 matter (g µν, Φ) + L gf + L gh dimensionful coupling κ = 32πG N, [κ] = 1 d 2 Splitting the metric in flat background and graviton field: g µν η µν + κh µν ) g = 1 + κ 2 h + κ2 8 (h 2 2h αβ h αβ + O(κ 3 ) g µν = η µν κh µν + κ 2 h µα h α ν + O(κ 3 ) R = κ ( h µ ν h µν ) + O(κ 2 ) with h h α α. We use de Donder gauge: ν h µν 1 2 µh = 0

Gravitation Expansion in the field variables yields Feynman rules for vertices of arbitrary order in h: h 0 h 1 h 2 h 3 h 4 A 2 A 3...... A 4... z. B. L O(h,A 2 ) = κ µa a ν [ρ A a ( σ] h µρ η νσ + η µρ h νσ 1 2 h ηµρ η νσ) Which vertices are needed?

Gravitation Expansion in the field variables yields Feynman rules for vertices of arbitrary order in h: h 0 h 1 h 2 h 3 h 4 A 2 A 3...... A 4... z. B. L O(h,A 2 ) = κ µa a ν [ρ A a ( σ] h µρ η νσ + η µρ h νσ 1 2 h ηµρ η νσ) Which vertices are needed?

Large Extra Dimensions Space Time topology M = R 1,3 T δ The coordinates are denoted by X M = (x µ, y i ) In large extra dimension senarios the actual gravity scale can be much lower as the experienced Planck scale on the brane [ADD 98]: M(d=4) 2 = } (2πR)δ {{} V δ M D 2 (D)

Large Extra Dimensions S = d D xl bulk + d d xl brane For a generic Bulk field Φ: d D x 1 2 MΦ M Φ = d d x n Z δ with Φ(X) = V 1/2 δ n Z δ Φ( n) (x)e i n y R The induced brane metric 1 2 µφ ( n) µ Φ ( n) + 1 2 m2 ( n) Φ2 ( n) and m 2 ( n) = n n R 2 G MN (X) = η MN +κ (D) h MN (X) = g µν (x) = η µν +κ (d) n Z δ h ( n) + brane tension effects µν (x)

Large Extra Dimensions S = d D xl bulk + d d xl brane For a generic Bulk field Φ: d D x 1 2 MΦ M Φ = d d x n Z δ with Φ(X) = V 1/2 δ n Z δ Φ( n) (x)e i n y R The induced brane metric 1 2 µφ ( n) µ Φ ( n) + 1 2 m2 ( n) Φ2 ( n) and m 2 ( n) = n n R 2 G MN (X) = η MN +κ (D) h MN (X) = g µν (x) = η µν +κ (d) n Z δ h ( n) + brane tension effects µν (x)

Large Extra Dimensions S = d D xl bulk + d d xl brane For a generic Bulk field Φ: d D x 1 2 MΦ M Φ = d d x n Z δ with Φ(X) = V 1/2 δ n Z δ Φ( n) (x)e i n y R The induced brane metric 1 2 µφ ( n) µ Φ ( n) + 1 2 m2 ( n) Φ2 ( n) and m 2 ( n) = n n R 2 G MN (X) = η MN +κ (D) h MN (X) = g µν (x) = η µν +κ (d) n Z δ h ( n) + brane tension effects µν (x)

Contents 1 Introduction 2 Gravitational One Loop Divergences Yang-Mills Theory Scalar Field Fermions

Yang-Mills Theory The Yang-Mills Lagrangian L YM = 1 2 gg µν g ρσ tr[f µρ F νσ ] F µν = µ A ν ν A µ ig[a µ, A ν ] F a µν = µ A a ν ν A a µ + gf abc A b µa c ν Due to Slavonov-Taylor indentities only the renormalization of the two-point function is needed to calculate the gravity contribution to β g The higher derivative (HD) terms expected to appear at one-loop are { tr {D µ F µρ D ν F νρ } and tr F β α F γ β } F γ α.

Yang-Mills Theory Graviton Loop Corrections to the Gluon Two and Three Point Function (a) (b) 1 2 κ 2 (c) (d) (e) 1 2 gκ 2

Yang-Mills Theory Graviton Loop Corrections to the Gluon Two and Three Point Function (a) (b) 1 2 κ 2 (c) (d) (e) 1 2 gκ 2

Yang-Mills Theory Graviton Loop Corrections to the Gluon Two and Three Point Function (a) (b) 1 2 κ 2 (c) (d) (e) 1 2 gκ 2

Yang-Mills Theory Graviton Loop Corrections to the Gluon Two and Three Point Function (a) (b) 1 2 κ 2 (c) (d) (e) 1 2 gκ 2

Yang-Mills Theory Graviton Loop Corrections to the Gluon Two and Three Point Function (a) (b) 1 2 κ 2

Yang-Mills Theory The Gluon Graviton Vertices with Two Gluon Lines α β µ a ν b p q ν b µ a p γδ q αβ = iκδ ab[ P µν,αβ p q + η µν p (α q β) + 1 2 ηαβ p ν q µ p ν η µ(α q β) q µ η ν(α p β)] = i 2 κ2 δ ab[ (p ν q µ p q η µν )P αβ,γδ +p q(2i µν,α(γ η δ)β + 2I µν,β(γ η δ)α I µν,αβ η γδ I µν,γδ η αβ ) +2p (α q β) P µν,γδ + 2p (γ q δ) P µν,αβ + { 2p α η ν[µ η β](γ q δ) + 2p γ η ν[µ η δ](α q β) p ν (q α P µβ,γδ + q β P αµ,γδ +q γ P αβ,µδ + q δ P αβ,γµ ) } + {(p, µ) (q, ν)} ] where we have defined P µν,αβ 1 2 (ηµα η νβ + η µβ η να η µν η αβ ).

Yang-Mills Theory Field-Strength Renormalization κ 2 = iδ ab (q 2 η µν q µ q ν ) + iδ ab q 2 (q 2 η µν q µ q ν ) + = iκ 2 d 4 8d ( d 2 4d + 8 + (d 2)(d 8) (D 2) = iκ 2 (d 2) 2 ( 3 d 2(d + 2)(D 2) + δ d (4 3 2 d)) n ) n d d k (2π) d 1 k 2 m 2 n d d k 1 (2π) d k 2 (k 2 m n 2)

Yang-Mills Theory Field-Strength Renormalization κ 2 = iδ ab (q 2 η µν q µ q ν ) + iδ ab q 2 (q 2 η µν q µ q ν ) + = iκ 2 d 4 8d ( d 2 4d + 8 + (d 2)(d 8) (D 2) ) n d d k 1 (2π) d k 2 m n 2 Gravitational contribution to the YM β function in 4+δ dimensions β g κ 2 = 0

Yang-Mills Theory Field-Strength Renormalization κ 2 = iδ ab (q 2 η µν q µ q ν ) + iδ ab q 2 (q 2 η µν q µ q ν ) + = 2 (4π) D/2 1 Γ( D 2 ) d 4 (D 2) 2 ( (d 3)(d 2) + δ d (d2 4d + 8) ) Λ D 2 µ D 2 M D 2 (D) Gravitational contribution to the YM β function in 4+δ dimensions β g κ 2 = 0

Yang-Mills Theory Graviton Loop Corrections to the Gluon Two and Three Point Function (c) (d) (e) 1 2 gκ 2

Yang-Mills Theory The Divergences of the Three Gluon Graphs κ 2 = g f abc[ η µν (p ρ (2p q + p k + 3q k) q ρ (2q p + q k + 3p k)) +... (k µ k ν (p q) ρ +... ) 3(p ρ q µ k ν p ν q ρ k µ ) ] In four (brane) dimensions the only counterterm needed in one-loop Einstein-Yang-Mills theory is L c.t. YM = 1 (4π) 1+δ/2 Γ ( 8 Λ δ µ δ δ 2 + 1) 3δ M δ+2 tr {D µ F µρ D ν F νρ } (4+δ)

Yang-Mills Theory The Divergences of the Three Gluon Graphs κ 2 = g f abc[ η µν (p ρ (2p q + p k + 3q k) q ρ (2q p + q k + 3p k)) +... (k µ k ν (p q) ρ +... ) 3(p ρ q µ k ν p ν q ρ k µ ) ] In four (brane) dimensions the only counterterm needed in one-loop Einstein-Yang-Mills theory is L c.t. YM = 1 (4π) 1+δ/2 Γ ( 8 Λ δ µ δ δ 2 + 1) 3δ M δ+2 tr {D µ F µρ D ν F νρ } (4+δ)

Scalar Field L s = gg µν [ (D µ φ) D ν φ m 2 φ φ φ + λ 2 (φ φ) 2 ] D µ = µ iga µ The higher derivative terms expected to appear at one-loop are (D µ φ) D µ φ, (D 2 φ) D 2 φ, ig(d µ φ) F µν D ν φ, g 2 φ F µν F µν φ.

Scalar Field (D µ φ) D µ φ, (D 2 φ) D 2 φ, ig(d µ φ) F µν D ν φ, g 2 φ F µν F µν φ

Scalar Field (D µ φ) D µ φ, (D 2 φ) D 2 φ, ig(d µ φ) F µν D ν φ, g 2 φ F µν F µν φ

Scalar Field + crossed + crossed + crossed + crossed + crossed + crossed + crossed + crossed + crossed + crossed + crossed + crossed (D µ φ) D µ φ, (D 2 φ) D 2 φ, ig(d µ φ) F µν D ν φ, g 2 φ F µν F µν φ

Scalar Field Scalar field-strength and HD renormalization m φ = 0 L c.t. s = [ i 2(8 + 5δ) (4π) 1+δ/2 Γ ( δ 2 + 2) (δ + 2) 2 (D µφ) D µ φ Λδ+2 µ δ+2 M δ+2 { (D 2 φ) D 2 φ 1 3 ig(d µφ) F µν D ν φ + 1 6 g2 φ F µν F µν φ (4+δ) } Λ δ µ δ ] M δ+2 (4+δ) Note: Without extra dimension (δ = 0) the HD corrections vanish.

Scalar Field Renormalization of the ϕ 4 coupling for a real scalar L r = Z ϕ 1 2 ϕ 2 ϕ Z m 2 ϕ 1 2 m2 ϕϕ 2 Z ϕ 4 λ 4! ϕ4 +... Z ϕ 1 = Z m 2 ϕ 1 = Z ϕ 4 1 = κ2 2 16π 2 m2 ϕ d 4 κ2 2 16π 2 m2 ϕ d 4 κ2 2 16π 2 4m2 ϕ d 4 β Function β λ κ 2 = κ2 4π 2 m2 ϕλ

Fermions L f = g ψ(i /D m ψ Yϕ)ψ /D = γ a e µ a D µ D µ = µ iω µ iga µ The higher derivative terms expected to appear at one-loop are iψ /Dψ, iψ /D /D /Dψ, iψ /DD 2 ψ, iψd 2 /Dψ, iψd µ /DD µ ψ.

Fermions iψ /Dψ, iψ /D /D /Dψ, iψ /DD 2 ψ, iψd 2 /Dψ, iψd µ /DD µ ψ

Fermions Fermionic field-strength and HD renormalization m ψ = 0 L c.t. f = i (4π) 1+δ/2 Γ ( δ 2 + 2) ψ { + (10 + 49 [ 3(11 + 9δ) (δ + 2) 2 Λ δ+2 µ δ+2 M δ+2 (4+δ) 8 δ) /D /D /D ( 58 3 + 143 12 δ) /DD2 /D+ + ( 41 3 + 109 12 δ)d2 /D + ( 41 3 + 109 12 δ)d µ /DD µ} Λ δ µ δ δ M δ+2 (4+δ) ] ψ

Fermions Renormalization of the Yukawa coupling for uncharged fermion and scalar L r = Z ψ ψi/ ψ Z mψ m ψ ψψ Z ϕψψ Y ϕψψ +...

Fermions Z ψ 1 = κ2 1 2 16π 2 4 m2 ψ d 4 Z mψ 1 = κ2 1 2 16π 2 4 m2 ψ d 4 Z ϕψψ 1 = κ2 16π 2 ( 3 4 m2 ψ + 1 2 4 m2 ϕ) d 4 β Function β Y κ 2 = κ2 16π 2 (m2 ψ 1 2 m2 ϕ)y

Summary and Outlook The Yang-Mills β-function receives no contributions form gravitational self-coupling. Yukawa and ϕ 4 interactions receive gravitational corrections The spectrum of HD corrections is not restricted to Lee-Wick terms. Next step: Non-Perturbative Methods Functional Renormalization Group Equation µ µ Γ µ[φ] = 1 [ 2 Tr µ R ( ) ] µ Γ (2) µ [Φ]R µ µ [Wetterich 93,Reuter 98]

Thank you!