Condensation du chrome et collisions assistées par champs radio-fréquence

Similar documents
A Chromium BEC in strong RF fields

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Dipolar chromium BECs, and magnetism

Confining ultracold atoms on a ring in reduced dimensions

A study of the BEC-BCS crossover region with Lithium 6

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

1. Cold Collision Basics

From laser cooling to BEC First experiments of superfluid hydrodynamics

Fluids with dipolar coupling

Lecture 3. Bose-Einstein condensation Ultracold molecules

COPYRIGHTED MATERIAL. Index

Ultracold atoms and molecules

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Lecture 4. Feshbach resonances Ultracold molecules

Large Spin (quantum) Magnetism

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Experiments with an Ultracold Three-Component Fermi Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Quantum Computing with neutral atoms and artificial ions

YbRb A Candidate for an Ultracold Paramagnetic Molecule

Ultracold molecules - a new frontier for quantum & chemical physics

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Ultracold Fermi Gases with unbalanced spin populations

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

A Mixture of Bose and Fermi Superfluids. C. Salomon

Low-dimensional Bose gases Part 1: BEC and interactions

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Evidence for Efimov Quantum states

Ultracold chromium atoms: From Feshbach resonances to a dipolar Bose-Einstein condensate

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

Ytterbium quantum gases in Florence

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

Why ultracold molecules?

Superfluidity in interacting Fermi gases

Cold fermions, Feshbach resonance, and molecular condensates (II)

The amazing story of Laser Cooling and Trapping

Quantum superpositions and correlations in coupled atomic-molecular BECs

Laser Cooling of Thulium Atoms

Spontaneous Symmetry Breaking in Bose-Einstein Condensates

A Mixture of Bose and Fermi Superfluids. C. Salomon

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Magnetic resonance in Dense Atomic Hydrogen Gas

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

arxiv:quant-ph/ v2 5 Feb 2001

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Atomic Physics (Phys 551) Final Exam Solutions

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

NanoKelvin Quantum Engineering

(Noise) correlations in optical lattices

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates

Laser induced manipulation of atom pair interaction

Multi-Body Interacting Bosons. Dmitry Petrov Laboratoire Physique Théorique et Modèles Statistiques (Orsay)

Design and realization of exotic quantum phases in atomic gases

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Cavity decay rate in presence of a Slow-Light medium

Superfluidity of a 2D Bose gas (arxiv: v1)

Atomic magnetometers: new twists to the old story. Michael Romalis Princeton University

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Laser Cooling and Trapping of Atoms

Laser cooling and trapping

POLAR MOLECULES NEAR QUANTUM DEGENERACY *

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Experimental Demonstration of Spinor Slow Light

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Bose gas in atom-chip experiment: from ideal gas to quasi-condensate

Introduction to cold atoms and Bose-Einstein condensation (II)

A.4 - Elements of collision theory 181

Hong-Ou-Mandel effect with matter waves

Cold Molecules and Controlled Ultracold Chemistry. Jeremy Hutson, Durham University

FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1

Cooperative Phenomena

Contents Ultracold Fermi Gases: Properties and Techniques Index

Emergence of chaotic scattering in ultracold lanthanides.

Many-Body Physics with Quantum Gases

BEC meets Cavity QED

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

Quantum Computation with Neutral Atoms Lectures 14-15

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998

Okinawa School in Physics 2017 Coherent Quantum Dynamics. Cold Rydberg gases

Modeling cold collisions Atoms Molecules

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Recent advances on ultracold fermions

All-optical formation of a Bose-Einstein condensate for applications in scanning electron microscopy

RYDBERG BLOCKADE IN AN ARRAY OF OPTICAL TWEEZERS

Ultra-Cold Plasma: Ion Motion

Lectures on Quantum Gases. Chapter 5. Feshbach resonances. Jook Walraven. Van der Waals Zeeman Institute University of Amsterdam

Workshop on Topics in Quantum Turbulence March Experiments on Bose Condensates

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

Excitation of high angular momentum Rydberg states

Vortices and other topological defects in ultracold atomic gases

Lifetimes of ultralong range Rydberg molecules in a dense Bose Einstein condensate

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Transcription:

Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Condensation du chrome et collisions assistées par champs radio-fréquence Q. Beaufils B. Laburthe B. Pasquiou Paolo Pedri E. Maréchal O. Gorceix G. Bismut L. Vernac Have left: J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaboration: Anne Crubellier (Laboratoire Aimé Cotton)

Chromium : S=3 Large sensitivity to (rf) magnetic fields g = = 3,..., 3 J m S Initial motivation for chromium: strong magnetic traps Doyle, Phys. Rev. A 57, R373 (998) No hyperfine structure Simplification (?) for MOT Purely linear Zeeman effect; simple description of rf-dressed states

Large magnetic dipole-dipole interactions ε dd BEC: Stuttgart 004 Villetaneuse 007 = V V dipolaire contact = 0.6 répulsive Stuttgart: modification of self-similar expansion attractive Pfau, PRL 95, 50406 (005) Tune contact interactions using Feshbach resonances: dipolar interaction larger than Van-der-Waals interaction Nature. 448, 67 (007) Stuttgart: d-wave collapse Pfau, PRL 0, 08040 (008) And collective excitations, Tc, solitons, vortices, Mott physics, D or D physics

Large inelastic losses Large dipole-dipole interactions + No hyperfine interactions = V dd μ = S 4π R 0 3cos ( θ ) ( g J μb ) 3 Anisotropic dipole-dipole interactions a nice system to study inelastic collisions Different partial waves are coupled Δl = Control of inelastic collisions (energy of output channel, geometry) - Feshbach resonances due to dipole-dipole interactions Pfau, Appl. Phys. B, 77, 765 (003) Pfau, Nature Physics, 765 (006)

Rich spinor physics An new phase diagram: Santos and Pfau PRL 96, 90404 (006) ΔE = ΔmSμBB Effect of dipole-dipole interactions: collisions with change of total magnetization (Einstein-de-Haas effect) Need of an extremely good control of B (or of the difference of energy between Zeeman substates) Ueda, PRL 96, 080405 (006)

I Condensation tout-optique du chrome II Contrôle de collisions inélastiques par champs radio-fréquence -Relaxation dipolaire -Association de molécules III Contrôle du facteur de Landé par champs radiofréquence

An atom: 5 Cr 7 P 4 An oven A Zeeman slower 7 P 3 650 nm Oven at 550 C (Rb 50 C) A small MOT 45 nm (Rb=780 nm) 7 S 3 47 nm 5 S,D 600 () () 550 N = 4.0 6 (Rb=0 9 or 0 ) Stuttgart roadmap: Load a magnetic trap And evaporate Z 500 450 500 550 600 650 700 750 A dipole trap A BEC every 5 s All optical evaporation A crossed dipole trap

Cr Magneto-optical traps 5 Cr R. Chicireanu et al.phys. Rev. A 73, 053406 (006) 53 Cr N = 4.0 6 bosons Loading rate = 3.5 0 8 atoms/s N = 5.0 5 fermions Loading rate = 0 7 atoms/s Very short loading times (0 à 00 ms) and small number of atoms : decay towards metastable states repumpers (laser diodes at 663 and 654 nm) Inelastic collisions (dominant process) λ β π v to 3 orders of magnitude than alkalis Comparable values for He*.

Our approach: cw accumulation of metastable atoms in an optical trap Metastable atoms shielded from light assisted collisions The optical trap: IPG fiberized laser 50W @ 075 nm Horizontal beam - ~40 µm waist Depth : ~ 500μK (parametric excitations) R Chicireanu et al., Euro Phys J D 45, 89 (007)

Two improvements: (i) Cancel magnetic forces with an rf field What for : Load all magnetic sublevels, and limit inelastic collisions by reducing the peak atomic density!!! 50 Watts of rf!!! How : During loading of the OT, magnetic forces are averaged out by rapidly spin flipping the atoms RF Sweep m>0 m<0 (similarities Paul trap) 7 P 4 (ii) Depump towards metastable state : 5 S What we expect : A lower inelastic loss parameter? A larger loading rate? 7 P 3 45nm 633nm 663nm 47nm 5 S 7 S 3

Loading a dipole trap: Summary Load 5 D 4 et 5 D 3 :, million atoms (i) RF Sweeps : million atoms Loading rate : 0 7 s - Loading rate : 0 7 s - Q. Beaufils et al., Phys. Rev. A 77, 05343 (008) (i)*(ii) Load 5 D 4 et 5 S and rf sweeps 5 to 6 million atoms Loading rate :.50 8 s - Loading rate = ¼ MOT loading rate But phase-space density ~0-6

Repump in 7 S 3 and polarize in m=-3 (suppression of all two-body losses) MOT 500 mw Horizontal trap 35 W Vertical Trap 0 0 0 00 ms 6 s Loading Evaporation Crossing both OT arms 6s Relative polarization of the laser beams matters! Phase Sapce Density 0-0 - 0-3 0-4 4 6 Time (s) 8 0

Thomas Fermi Radii (µm) 00 0.00-0.05 75-0.0-0.5-0.0 Tc=50 nk Pure BEC: 50-0.5-0.30 0 50 00 50 00 50-0.3 0 000 to 0 000 atoms 5 0-0.4-0.5-0.6-0.7 0 50 00 50 00 50 5 0 5 0 5 30 Time (ms) Chemical potentential of about khz ö 4 khz (recompressed trap) In situ TF radii 4 and 5 microns Density : 6.0 3 at/cm 3 ö.0 4 at/cm 3 Condensates lifetime: a few seconds. Q. Beaufils et al., Phys.Rev. A 77, 0660(R) (008)

I Condensation tout-optique du chrome II Contrôle de collisions inélastiques par champs radio-fréquence -Relaxation dipolaire -Association de molécules III Contrôle du facteur de Landé par champs radiofréquence

What is dipolar relaxation? ( ),3 3,,3 3 + ( ) 3 0 ). )(. 3(. 4 R u S u S S S g V R R B J dd r r = μ π μ - Only two channels for dipolar relaxation in m=3 (no relaxation in m=-3): ( ) i f i f B J dd k k k k h m g S V + = 4 5 8 0 3 πh μ μ π,,3 3 ( ) i f i f B J dd k k k k h m g S V + = 4 5 8 0 πh μ μ π B g E B J μ = Δ B g E B J μ = Δ = Δl In the Born approximation Pfau, Appl. Phys. B, 77, 765 (003) Rotate the BEC? (Einstein-de-Haas) ( ) ( ) ( ) + + + + + + + + + + + +. 4 3 S r S r zs S r S r zs S S S S S S z z z z rotation! Dipole-dipole interactions exchange Control of inelastic collisions (energy of final state, geometry) ( ) iy x r + = + = Δl

Experimental procedure; typical results BEC m=+3, vary time detect BEC m=-3 Lose BEC 0 4 9 8 90x0-3 Atom Number 7 6 5 4 3 Width (u.a.) 80 70 60 50 Decrease of TF radius (N goes down) 0 dn dt 0 = βn 40 60 Time (ms) Γn 80 dn dt 00 = ΓN 0 0 /5 5 mω β 4π h a 40 60 Temps (ms) 6/5 N 7 /5 80 00 Fit gives β

Comparison theory / experiment 0 9 8 7 6 / β exp β Born 5 4 3 It has been shown (Pfau, Appl. Phys. B, 77, 765 (003) that the Born approximation is ok for B<G and B> 0 G not in between! (see Shlyapnikov, PRA 53, 447 (996)) 0. 3 4 5 6 7 Champ magnétique (G) 3 4 5 6 7

Interpretation Gap ~ V dd a S E f in = = S = 6, m = 6, l = 0 g J μ B B out = S = 6, m = 5, l = R in V eff ( R) = l( l + ) h μr R in = a S Zero coupling Determination of scattering lengths S=6 and S=4 (in progress, Anne Crubellier) NB: two output channels (Δm=, Δm=), with two different output energies. Selective cancellation of a given channel for a given magnetic field!

Perspectives: dipolar relaxation in reduced dimension (D gaz) D Lattice (retro-reflected Verdi laser) Cr BEC diffracted by lattice BEC m=+3, vary time Δmg J μ B B < hω L st BZ detect BEC m=-3 Band mapping Dipolar relaxation in reduced dimension (D) Lose BEC (D thermal gas) Stay in first Brillouin zone, i.e., stay in lowest band : no vibrational excitation in lattice!

Conclusions: - Rates are well understood. - Typical output (Zeeman) energy much larger than chemical potential 3,3, l = 0 l = ( 3, +,3 ), ΔE = g J μb B 3,3, l = 0,, l = ΔE = g J μb B The spin magnetic moment is transferred into orbital interatomic moment. Can we measure this rotation? Ueda, PRL 96, 080405 (006) Can we «store» the produced energy? - Into a vibration excitation of the lattice: apparently not - Use rf-dressed states : dipolar relaxation between manyfolds

Collision properties of off-resonantly rf dressed states : Elastic s-wave collisions: Rf does not couple different molecular potentials -> s-wave elastic collisions should be unchanged. r B rf (t) μ r (t) r dμ r r = g Jμ B rf(t) dt r μ = cste Dipolar interactions: répulsive attractive No rf 3cos( θ) φ θ Rf perpendicular to static field : a new geometrical dependence! Ω Ω 3cos( θ) + J0 3cos( θ)sin( θ)cos( φ) J ω ω 0

Inelastic collision properties of off-resonantly rf dressed states : /e lifetime (ms) 9 8 7 6 5 4 3 00 9 8 7 6 Beware of the lowest energy state argument!! N+ N ω 5 4 3 6 7 8 0. 3 4 5 6 7 8 3 4 N- W/w See also Verhaar, PRA, 53, 4343 (996)

Interpretation: an rf-assisted dipolar relaxation Gap ~ Ω J V dd ω in = S = 6, m = 6, l = 0, N Similar mechanism than dipolar relaxation in = S = 6, m = + 6, l = 0 E f = hω g rf J μ B B out = S = 6, m = 5, l =, N out = S = 6, m = + 5, l = σ Within first order Born approximation: rf N N ', m m' Ω dipolarrelaxation = J N N ' ( m m') σ m m' ω In collaboration with Anne Crubellier (LAC Ifraf) and Paolo Pedri (Ifraf postdoc in our group) ( E = ( m m') g μ B ( N N' ) hω ) f J B (B rf parallel to B) rf

σ rf N N ', m m'.0x0-8 Ω dipolarrelaxation = J N N ' ( m m') σ m m' ω ( E = ( m m') g μ B ( N N' ) hω ) f Analytic calculation by Paolo Pedri, no adjustable parameter J B rf Tw o body loss parameter (m^3/s) 0.8 0.6 0.4 0. 0.0 Dipolar relaxation between dressed states: Control: Coupling Output energy: E f J Ω ( ω N N ' m m' ) = ( m m') g μ B J B ( N N' ) hωrf 0 Ω/ω 3 4

Why Bessel functions? r B rf r // B 0 H = H Analytical expression for dressed state (from C. Cohen-Tannoudji) + + + hω0s z + hωa a + λsz ( a a) mol + mλ + M, N = exp ( a a ) M, N hω First order perturbation theory: Another equivalent approach (Floquet analysis) K Ω, J ω ( ω Ω) = K ( ) 0 + H dd Modulate the eigenenergy of an eigenstate: ih dψ dt m = ( H + mδh cos( ω ) rf t Ψm e.g. different Zeeman states t i Ω Ω Ψ ω t ωrf t ( ) = Ψ exp = Ψ n + 0 + sin( ) ω exp rf n ω 0 rf Resonant coupling between m= and m=0 with echange of N photons n () i J ( i( ( ω nω) t) ) J N Ω ωrf

Une proposition pour voir l effet Einstein de Haas: Mettre en rotation le condensat par relaxation dipolaire assistée par photons rf! On sait faire des condensats de chrome La relaxation dipolaire crée du moment orbital, mais aussi une énergie magnétique >> μ On sait contrôler la relaxation dipolaire par champs rf: -l amplitude de transition Ω J N N ' ( m m' ) ω -l énergie dans le canal de sortie! E f = ( m m') g μ B J B ( N N' ) hωrf On veut E f μ Contrôle de B au voisinage de 0 au khz près (difficile) Contrôle de B au voisinage de 00 khz au khz près (facile) + rf

I Condensation tout-optique du chrome II Contrôle de collisions inélastiques par champs radio-fréquence -Relaxation dipolaire -Association de molécules III Contrôle du facteur de Landé par champs radiofréquence

(digression) Un autre cas de collision inélastique en présence de champ rf: l association rf de molécules Un champ magnétique est modulé au voisinage d une résonance de Feshbach Production résonante de molécules froides quand hω rf = E b Énergie de liaison Mais la rf ne couple pas deux potentiels moléculaires différents! (règle de sélection) Ni deux états vibrationnels d un même potentiel (orthogonalité) C est l opérateur qui couple les spins (dipôle-dipôle, hyperfin) qui couple les états. La résonance est assurée par l émission ou l absorption d un photon rf. See also: S. T. Thomson et al., PRL 90404 (005), C. Ospelkaus et al., PRL 97, 040 (006), F. Lang et al., Nature Physics 4, 3 (008), T. M. Hanna et al., PRA, 03606 (007), C. Weber et al., PRA 78, 0660(R) (008), C. Klempt et al., PRA 78, 0660(R) (008) Notre contribution : une interprétation en terme d atomes habillés, et une formule universelle pour l association de molécules.

Feshbach resonances in chromium Pfau, J. Mod Opt. 54, 647 (007), Phys. Rev. Lett. 94, 830 (005) This talk

0.4 A Feshbach resonance in d-wave collisions Energy (arb.) 0.3 0. 0. 0.0-0. S = 6; m = 5; l = 0 > S g μ B S = 6; m = 6; l = ; m =+ > S B l At ultra-low temperature scattering is inhibited in l>0, because atoms need to tunnel through a centrifugal barrier to collide: collisions are «s-wave». In a «d-wave» Feshbach resonance, tunneling is resonantly increased by the presence of a bound molecular state. -0. 3 4 Internuclear distance (arb.) To probe a feshbach resonance: 3 body losses Tunneling to short internuclear distance is increased by a Feshbach resonance. A third atom triggers superelastic collisions, leading to three-body losses, as the kinetic gained greatly exceeds the trap depth Superelastic collision

Interpretation Γm ( ε ) = π Ψbound Vdd Ψ ε Thermal averaging, when Γ ) m ( ε 0 << Γ d << π Γm ( ε ) Γd σ ( k) = k ( ε ε ) + ( Γ ( ε ) + Γ ) Feshbach coupling ε k B T 0 (l+ ) / m d / 4 Γd = nγ d Superelastic rate F. H. Mies et al., PRA, 6, 07 (000) P. S. Julienne and F. H. Mies, J. Opt. Soc. Am. B. 6, 57 (989). π (l + ) ε 0 K T = Γ ( ) m( ε 0) exp hqt kbt Calculation with no adjustable parameter (adiabatic elimination of Γ d ) (Anne Crubellier LAC) Γ m (ε) n& = αγ ( 3 nλ ) n m db psd Losses = Rate of coupling to the molecular bound state = Rate of association through the barrier

00 40x0 80 x0 - Γ Γ m m Theory 5 ( ε ) = 7.3 0 k B T @ T = 8μK Experiment 5 ( 5.5 ± 3) 0 k B T @ T = μk ( ε ) = 8 3 - K (m s ) 60 40 Three-body losse parameter strongly depends on T Width of resonant losses strongly depends on T 0 0.5 3.0 3.5 4.0 4.5 Magnetic field (MHz) 5.0 5.5 Q. Beaufils et al., arxiv:08.48

Rf in the vicinity of the Feshbach resonance 0.4 0.3 0. 0. gμ B B 0.0-0. Rf photon -0. 3 4 We modulate the magnetic field close to the Feshbach resonance. The colliding pair of atoms emits a photon while it is colliding, and the pair of atoms is transfered into a bound molecule Resonant losses when ω=e b -E i

Loss analysis in the dressed molecule approach: K Ω, J ω ( ω Ω) = K ( ) 0 0.4 Analogy with dipolar collisions of Rydberg atoms in a micro-wave field Pillet Phys. Rev. A, 36, 3 (987) Gallagher Phys. Rev. A, 45, 358 (99) K /K (0) 0.3 0. 0. 050 khz khz 700 900 khz 500 700 khz 400 500 khz 400 khz 300 400 khz 300 0.0 0 3 Ω /ω 4 5 Q. Beaufils et al., arxiv:08.4355 Association rf of molecules = a Feshbach resonance between dressed states

I Condensation tout-optique du chrome II Contrôle de collisions inélastiques par champs radio-fréquence -Relaxation dipolaire -Association de molécules III Contrôle du facteur de Landé par champs radiofréquence

Another use of rf for spinor physics: rf control of the Landé factor A spinor is a multicomponent BEC (with degenerate components): the magnetic fields needs to be small (interaction energy > Zeeman energy) < mg!!... Modify the Landé factor of the atoms g J with very strong off resonant rf fields. If the RF frequency ω is larger than the Larmor frequency ω 0, then: g J Ω ω (, Ω) = g J ω J 0 Serge Haroche thesis S.Haroche, et al., PRL 4 6 (970) True in D Generalization in 3D? 3 0 - - -3 Eigenenergies 3 - - -3 0. 0.4 0.6 0.8..4 Rf power Can we use this degeneracy for spinor physics?

r B rf (t) φ(t) μ r (t) r dμ r r = gjμ B dt dφ dt Classical interpretation rf (t) = Ω rf cos( ω rf t) T dt cos( Φ( t)) = μx 0 T 0 J Ωrf ωrf Phase modulation -> Bessel functions e.g. side-bands in frequency modulation; tunneling in modulated lattice (Arimondo PRL 99 0403 (007)) light or matter diffraction

We apply blue detuned rf fields to a Cr BEC in a one beam optical trap, plus a magnetic field gradient. B = 0 at the center of the trap. The atoms, high field seekers, leave the center of the trap. RF modifies the effect of such a gradient: Control magnetism B (t) rf 4 0 0 V(r) Δ = m S g J ( ω, Ω) μbb' m t Rf dressing is reversible (adiabatic) Q. Beaufils et al., Phys. Rev. A 78, 05603 (008)

Adiabaticity issues Adiabaticity depends on B par : dω <<ω dt par

8 0 7 0 6 0 5 0 4 0 8 0 7 0 6 0 5 0 4 0 8 0 7 0 6 0 5 0 4 0 7 0 6 0 5 0 4 0 7 0 6 0 5 0 4 0 8 0 7 0 6 0 5 0 4 0 5 0 5 0 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 5 0 5 0 5 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 5 0 A reversible dressing.0 0.5.0 0.0 Probability to come back to m=-3 0.8 0.6 0.4 0. Ω/ω=.8 Ω/ω=3.6 τ=500 μs τ=80 μs τ=50 μs τ=3 μs τ=5 μs τ=0 μs -0.5 -.0 0 500 000 500 000 0.0 3 4 5 6 7 8 3 4 5 6 7 8 00 000 Sweep time ( μs) m=-3 0 3 If rf is applied and removed sufficiently slowly, the atoms come back to the initial Zeeman substate state. Q. Beaufils et al., Phys. Rev. A 78, 05603 (008) NB see also Phys. Rev. Lett. 4, 974 (970) : Control Rb-Cs spin exchange Perspectives for spinor physics: Be B-independent 3D control inelastic collisions

Conclusion On sait produire des condensats de chrome On a analysé la relaxation dipolaire (contrôle par champ magnétique et par confinement) On sait contrôler par champs rf la relaxation dipolaire Les champs rf peuvent aussi modifier le facteur de Landé des atomes On a analysé l association rf de molécules Perspectives Vers l observation de l effet Einstein-de-Haas Expériences dans les réseaux optiques Produire des champs magnétiques élevés pour contrôler la longueur de diffusion Annulation du facteur de Landé à trois dimensions, et physique des spinors Fermions

Have left: T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaboration: Anne Crubellier (Laboratoire Aimé Cotton)