Research Article Influence of Sleepers Shape and Configuration on Track-Train Dynamics

Similar documents
Effect of periodicity of railway track and wheel rail interaction on wheelset track dynamics

Dynamics of Railway Track

On some rotor-dynamical phenomena of high-speed trains

A STUDY ON THE WHEELSET/SLAB TRACK VERTICAL INTERACTION

Analysis of Local Vibration for High-Speed Railway Bridge Based on Finite Element Method

Non-hertzian contact model in wheel/rail or vehicle/track system

Vibration analysis of concrete bridges during a train pass-by using various models

Research Article Experimental Parametric Identification of a Flexible Beam Using Piezoelectric Sensors and Actuators

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Research Article Travel-Time Difference Extracting in Experimental Study of Rayleigh Wave Acoustoelastic Effect

Modelling vibration from surface and underground railways as an evolutionary random process

CASE STUDIES IN RAILWAY CONSTRUCTION

Effect of rail unevenness correlation on the prediction of ground-borne vibration from railways

Indian railway track analysis for displacement and vibration pattern estimation

Research Article Numerical Study of Flutter of a Two-Dimensional Aeroelastic System

Horizontal bulk material pressure in silo subjected to impulsive load

Investigation on dynamic behavior of railway track in transition zone

A Time-Domain Model for the Study of High-Frequency Wheelset Track Interaction

Rolf Diehl, Reinhard Gorlich and Georg Holzl 2 1 Introduction In the speed range from about 60 to about 250 km/h rolling noise is the dominant noise f

Research Article The Microphone Feedback Analogy for Chatter in Machining

Experimental validation of a numerical model for the ground vibration from trains in tunnels

NOISE & VIBRATION MITIGATION IN RAILWAY TRACK

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

interaction and ground borne vibration Excitation mechanisms of train/track Structural Mechanics, Department of Civil Engineering, KU Leuven

Research Article A New Type of Magnetic Actuator Capable of Wall-Climbing Movement Using Inertia Force

International Journal of Advance Engineering and Research Development

VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction

Final Exam Solution Dynamics :45 12:15. Problem 1 Bateau

Research Article Free Vibration Analysis of an Euler Beam of Variable Width on the Winkler Foundation Using Homotopy Perturbation Method

Effect of Rotatory Inertia and Load Natural. Frequency on the Response of Uniform Rayleigh. Beam Resting on Pasternak Foundation

DETERMINING THE STRESS PATTERN IN THE HH RAILROAD TIES DUE TO DYNAMIC LOADS 1

Generation and Propagation of vibrations induced by high-speed railways

STUDY OF EFFECTS OF VIBRATIONS CAUSED BY RAILWAY TRAFFIC TO BUILDINGS

EVALUATION OF THE EFFECTS OF TEMPERATURE ON RAILPAD PROPERTIES, RAIL DECAY RATES AND NOISE RADIATION

Clustered natural frequencies in multi-span beams with constrained characteristic functions

Research Article Two Mathematical Models for Generation of Crowned Tooth Surface

Vibration Characteristics of the Platform in highspeed Railway Elevated Station

1859. Forced transverse vibration analysis of a Rayleigh double-beam system with a Pasternak middle layer subjected to compressive axial load

Table of Contents. Preface... 13

COPYRIGHTED MATERIAL. Index

Fatigue Crack Analysis on the Bracket of Sanding Nozzle of CRH5 EMU Bogie

Introduction to structural dynamics

Research Article Simplified Robotics Joint-Space Trajectory Generation with a via Point Using a Single Polynomial

5.5 Exercises for This Chapter Two-Axle Vehicle on Cosine Track Two-Axle Vehicle on Generally Periodic Track...

The Running Behaviour of an Elastic Wheelset

Dynamic analysis of railway bridges by means of the spectral method

The present paper concentrates on the results of in situ vibration measurements performed within the

1 Introduction. Abstract

Research Article Influence of the Parameterization in the Interval Solution of Elastic Beams

International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: Issue 12, Volume 4 (December 2017)

Railway induced ground vibration

Research Article Electromagnetic and Mechanical Characteristics Analysis of a Flat-Type Vertical-Gap Passive Magnetic Levitation Vibration Isolator

Model tests and FE-modelling of dynamic soil-structure interaction

Research Article A Mathematical Images Group Model to Estimate the Sound Level in a Close-Fitting Enclosure

Nonlinear Rolling Element Bearings in MADYN 2000 Version 4.3

Computational Simulation of Dynamic Response of Vehicle Tatra T815 and the Ground

Research Article Nonlinear Equations with a Retarded Argument in Discrete-Continuous Systems

Dynamic behaviour of a steel plate girder railroad bridge with rail joints

University of Bristol - Explore Bristol Research. Publisher's PDF, also known as Version of record

Prediction of rail and bridge noise from concrete railway viaducts using a. multi-layer rail fastener model and a wavenumber domain method

Parametric Study of Thermal Stability on Continuous Welded Rail

Feasibility of dynamic test methods in classification of damaged bridges

Structural Dynamics A Graduate Course in Aerospace Engineering

Research Article Trapped-Mode Resonance Regime of Thin Microwave Electromagnetic Arrays with Two Concentric Rings in Unit Cell

DYNAMIC CHARACTERISTICS STUDY AND VIBRATION CONTROL OF MODERN TRAM TRACK SYSTEM

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Experimental validation of a numerical model for subway induced vibrations

CWR track vibration characteristics varying with the change of supporting condition

Magnetic damping for maglev 1,2

PLAT DAN CANGKANG (TKS 4219)

Research Article Forward and Reverse Movements of a Linear Positioning Stage Based on the Parasitic Motion Principle

Modelling of Train Induced Vibration

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Research Article Mitigation of Railway Traffic Induced Vibrations: The Influence of Barriers in Elastic Half-Space

Research Article An Analytical Model for Rotation Stiffness and Deformation of an Antiloosening Nut under Locking Force

Effect of Dynamic Interaction between Train Vehicle and Structure on Seismic Response of Structure

CRoNoS railway rolling noise prediction tool: wheelset model assessment

A numerical model for ground-borne vibrations from underground railway traffic based on a periodic FE-BE formulation

Experimental validation of numerical modelling of the bridge track moving train system

Finite Difference Dynamic Analysis of Railway Bridges Supported by Pasternak Foundation under Uniform Partially Distributed Moving Railway Vehicle

PLEASURE VESSEL VIBRATION AND NOISE FINITE ELEMENT ANALYSIS

Vibration Analysis of Railway Concrete Sleeper for Different Contact Condition using MATLAB

Research Article Dispersion of Love Waves in a Composite Layer Resting on Monoclinic Half-Space

Accuracy, and the prediction of ground vibration from underground railways Hugh Hunt 1 and Mohammed Hussein 2

The Effect of Distribution for a Moving Force

Damping from bearing hysteresis in railway bridges

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS

VIBRATION CONTROL OF RECTANGULAR CROSS-PLY FRP PLATES USING PZT MATERIALS

Methods for Running Stability Prediction and their Sensitivity to Wheel/Rail Contact Geometry

Dynamic Behaviour of a Cantilever Beam Subjected To Moving Mass and Elastic End Constraint

Modeling of Pantograph-Catenary dynamic stability

Journal of Sound and Vibration

Transient Vibration Prediction for Rotors on Ball Bearings Using Load-Dependent Nonlinear Bearing Stiffness

Research Article Soil Saturated Simulation in Embankment during Strong Earthquake by Effect of Elasticity Modulus

Lie Symmetry Analysis and Exact Solutions to the Quintic Nonlinear Beam Equation

Study of coupling between bending and torsional vibration of cracked rotor system supported by radial active magnetic bearings

Chapter 10: Vibration Isolation of the Source

Deflections and Strains in Cracked Shafts due to Rotating Loads: A Numerical and Experimental Analysis

A Boundary Integral Formulation for the Dynamic Behavior of a Timoshenko Beam

Research Article On the Security of a Novel Probabilistic Signature Based on Bilinear Square Diffie-Hellman Problem and Its Extension

Transcription:

Shock and Vibration, Article ID 393867, 7 pages http://dx.doi.org/10.1155/2014/393867 Research Article Influence of Sleepers Shape and Configuration on Track-Train Dynamics Roman Bogacz, 1,2 WBodzimierz CzyczuBa, 1 and Robert Konowrocki 3 1 Krakow University of Technology, Warszawska 24, 31-155 Kraków, Poland 2 WarsawUniversityofTechnology,SiMR,UlicaNarbutta84,Warsaw,Poland 3 Institute of Fundamental Technological Research, PAN, Pawińskiego 5B, Warsaw, Poland Correspondence should be addressed to Roman Bogacz; rbogacz@ippt.gov.pl Received 12 July 2013; Accepted 10 March 2014; Published 2 July 2014 Academic Editor: Miguel M. Neves Copyright 2014 Roman Bogacz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The paper is devoted to the study of dynamical behaviour of railway tracks as continuous systems (rails) supported by periodically spaced sleepers and subjected to moving concentrated loads. Several cases of dynamical problems, where elastically supported beams are excited by a moving concentrated force, are considered. In particular, the study is focused on interactions with structure periodic in the space. Results on one-dimensional structures are extended to the case of a two-dimensional system. The problems of stopping bands, passing bands, and mistuning are also mentioned. 1. Introduction Nowadays, the load carrying capacity of trains, high-speed, and environment protection against the noise force rapid development of railway transportation. The classic and reinforced railway track is composed of two rails separated from the sleepers by viscoelastic pads. There are numerous simplifications in railway track modelling. The sleeper spacing and ballast stiffness are usually treated as uniform and repre- sented by constant parameters in the analyses. The rails are modelled as the infinite Euler-Bernoulli or Timoshenko beam models, sleepers by lumped masses or elastic bodies (beams), and ballast as viscoelastic foundation. The basic qualitative feature of the classic railway track is the periodicity of sleeper spacing. The sleeper spacing influences the periodicity of viscoelastic supports coefficient and additional mass of sleepers with rotational inertia. In the case of classic periodically supporting sleepers, one can observe passing bands in the frequency of moving andoscillatingforces.thesolutionmethodwhichallows determining the stopping and passing bands in the case of tracks, proposed in [1], is based on direct application of Floquet s theorem. The motion of rails and sleepers in selected parts of excitation period T is shown in Figure 2. It is visible that, for the boundary value of frequency between passing and stopping bands, a qualitative change of solution describing rails and sleepers vibrations occurs. The wheel/rail response, due to the parametric excitation by the varying dynamicstiffnessofaperiodicallysupportedrail,hasbeen studied using a spatially quasistatic method, based on the fact that the speed of wave propagation in the rail is much greater than the train speed, but as we can see in [1] or [2] this assumption is not adequate. From the study of the influence of random sleeper spacing [3] follows the fact that the phenomenon of the pinned-pinned resonance may be suppressed by the random sleeper spacing. Unfortunately, the random ballast stiffness distribution has no influence on the vibration behaviour. It seems to be obvious that some randomness usually occurs, but the deterministic spacing of supporting points can be the aim of engineering design. The difference between the mutual kinetic excitation of two wheelsets of the bogie in the stopping and passing band is significant. The passing band in track with classic sleepers is related to the rotation of rails in the classic fastening system. Some changes are possible using mistuning or replacing the single fastening system on the sleeper into the double-point

2 Shock and Vibration V f V E 0 V f V 2 G = k G 2 A I c V 2 E >V2 G (V2 G +1) V f V E V 2 E <V2 G (V2 G +1) V G V G V f V 2 E = EA2 I c V n 0 k 0 k 0 k (a) (b) Figure 1: Phase waves velocities V f versus wave number dependent on the beam parameters (inequality (3)). System displacement for selected times A R =1 10 9 m V=0m/s, Ω = 260 Hz, F=1N t = 0/8 T t = 1/8 T A S =1 10 8 m t = 2/8 T t=3/8t Pure elastic case Passing band 0 1 2 3 4 5 6 7 8 9 10 A R =1 10 3 m t = 0/8 T A S =5 10 3 m t = 1/8 T t = 2/8 T t=3/8t Pure elastic case Sleeper number (a) V=0m/s, Ω = 270 Hz, F=1N Stopping band 0 1 2 3 4 5 6 7 8 9 10 Sleeper number (b) Figure 2: Waves in railway track as periodic structure-passing band and stopping band. one, which transforms the features of railway tracks. The theory used in the investigation of the track dynamics is limited to linear analysis despite nonlinear characteristics of the pad. It is known that the wheelset dynamics in front of the train is different from the wheelset dynamics in the middle of the train. One of the reasons is connected with the above mentioned nonlinearity of the fastening system characteristics, in particular, the nonlinearity of the pad which changes the reference point of oscillation. This change is connected with a quasistatic preload under the train, which can be substituted by a distributed load [4]. 2. Classic Design of Track: Response of Beam to Moving Load The problem of a flexibly supported beam vibration, when the beam is subjected to the moving distributed load, can be composed of solution for the limiting case of load described by the following Heaviside function F 0 H(x Vt) and moving concentrated oscillating force described by the function F 1 (cos ωt)δ(x Vt): EIw, xxxx + Tw, xx, +mw, tt +hw, t +cw =F 0 H (x Vt) +F 1 (cos ωt) δ (x Vt), where w is the beam displacement, EI is the beam stiffness, T is the longitudinal compressive force in the beam, m is the mass density, h is the damping coefficient, c is the elasticity coefficient of the foundation, ω is the frequency of the force oscillation and V is velocity of load motion. The first case and the case of the beam on a viscoelastic semispace were studied [4, 5]. The superposition of the obtained solution allows studying various kinds of moving loads distributed on a finite-length segment. The second term describing moving and oscillating load was discussed in [2]. The case of the Timoshenko beam on an elastic foundation subjectedtouniformlydistributedmovingloadshasbeen studied by several authors; see, for example, [4, 6] EIφ,xx +k AG (w,,x φ) miφ, tt =0, k AG (w, xx φ, x ) mw, tt hw, t cw = F 0 H (x Vt) +F 1 (cos ωt) δ (x Vt), (1) (2)

Shock and Vibration 3 where φ is the angle of rotation of beam due to pure shear, k is the shear coefficient, G is the modulus of elasticity in shear, A is the cross-sectional area, and h is the damping coefficient. The first stationary solution obtained for the case of the Timoshenko beam on an elastic foundation was obtained by Achenbach and Sun [6]. The solutionobtainedin [6]is valid in full range of velocity but only for the set of parameters fulfilling the following inequality: E>k G(1+k GA 2 (Ic) 1 ). (3) 2 2 1 1 The dependence of phase velocity versus wave number in this case is shown on left side of Figure 1, where wave velocities V E and V G are expressed as in Figure 1. The generalisation of the results obtained by Achenbach and Sun and the discussion of qualitatively different travelling wave solution depending on the beam parameters are presented in [4].The results of this study can be used for determination of quasistatic preload under the train. 2.1. Response of Periodic Beam Structure to Moving Concentrated Loads. The guideways for high-speed vehicles are composed of repetitive elements or cells which form a periodic structure. The steady-state system response is determined for a moving disturbances source in the form of constant and periodic force (1). The equation of motion is completed by interface conditions at the supports which depend on the model assumed, for example, for the railway track condition of continuity (4) and equilibrium of vertical forces (5), which are required: w (nl+, t) =w(nl, t) ; w, x (nl+, t) =w, x (nl, t) ; w, xx (nl+, t) =w, xx (nl, t) ; (4) w, xxx (nl, t) w, xxx (nl+, t) =R(nl, t), (5) whileforthesupportsofmaglevmodel,onerequirescontinuity of position, vanishing bending moment, and equilibrium of vertical forces. The solution method proposed in such a case is based on the direct application of Floquet s theorem to the differential equations of motion with periodic parameters [1, 7] describing periodicity in space. Another approach (by the use of perturbation method) for periodic mass and stiffness distribution along the beam was applied by Popp and Mueller [8] in order to approximate the sleepers in the track. In this case, for the realistic system of parameters, the differences were very small. With some extended study of railway track and maglev track, we can state that the application of Floquet s theorem allows solving the problem of free and forced vibration of periodic structures subjected to moving load [1]. The motion of harmonic travelling load generates the set of stopping or passing bands, but from engineering point of view it is sufficient to take into consideration waves corresponding to the first and second passing bands. As examples of qualitative difference of solution in the passing band and stopping band in Figure2 are shown, Figure 3: Two kinds of sleepers with different fastening systems. Figure 4: Railway track with stiff type of sleepers with double-point fastening systems. the shapes of rail for two frequencies and time are 0, T/8, T/4, and 3T/8. 2.2. Mistuning and Change of the Track Periodicity. The passing bands occurring in the track with classic sleepers in the ballast or in slab track are related to the rotation of rails in the classic fastening system. Some changes are possible using mistuning or change of single fastening system described by the conditions: (w, x (nl+, t) =w, x (nl, t) ; w, xx (nl+, t) =w, xx (nl, t)). This is possible by the change of sleepers with single support to the system of sleepers with double-point fastening. It seems to be successful in the change of railway track features. Such sleepers were shown in Figure 3. The sleeper with double-point fastening system is much stiffer and heavier compared to the classic concrete sleeper (Figure 4). The double-point fastening system influences the periodicity track which becomes also double-periodic. Additionally, the track with such sleepers is much more convenient for the ballast [9], due to lower pressure. The initial experimental investigation of such sleepers and fasteners confirms advantages in application for the high-speed trains lines. The results will be described in next papers. A very important problem in railway engineering is connected with the transition zones, when the foundation stiffness changes more rapidly, that is, before or behind of the bridge abutment, than the dynamical behaviour of sleepers and ballast during exploitation which lead to the plastic (6)

4 Shock and Vibration n=1 n=2 n=3 Figure 5: Scheme of track in transition zone with two types of sleepers and fastening systems. Rotation of sleeper (deg) 0.2 0.0 0.2 0.4 0.6 0.8 1.0 Vertical displacement of sleeper (mm) 0.0 0.4 0.8 1.2 1.6 2.0 0.7 0.8 0.9 1.0 1.1 1.2 1.3 Time (s) Sleeper n=1 Sleeper n=3 Sleeper n=2 Figure 7: Vertical displacement of the sleepers with double-point fastening during motion in the zone behind the rigid base. 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 Time (s) Sleeper n=1 Sleeper n=3 Sleeper n=2 Figure 6: Rotation of three sleepers with double-point fastening during motion in the zone behind the bridge abutment. Rotation of sleeper (deg) 0.2 0.0 0.2 0.4 0.6 0.8 1.0 deformations of the track. A simple model of such zones is shown in Figure 5. As an example, the results of numerical study of the sleepers motion in the transition zone behind the bridge and of the stiff sleepers with double-point fastening system are shown in Figures 6 and 7. Thespeedofthevehicleis assumed equal to 20 m/s. In Figure 6,areshownsomeresults of three successive sleepers rotation, which are located in the transition zone, just after the rigid foundation. We can see that the response of consecutive sleepers is dependent on the time and distance of the sleeper from the boundary of rigid foundation. The vertical displacement of sleepers is presented in Figure 7. The above shown results indicate that use of sleepers with double fastening system induces decreasing vertical displacements and rotation of sleepers in comparison with classic track (Figures 6 and 7). In Figure 8, a comparison of the sleeper rotation of two different sleepers with different types of fastening systems and different weights is presented. The differences of sleepers rotation (Figure 8) and differences of the rail rotation around the horizontal axis perpendicular to the direction of vehicle motion (Figure 9) for different fastening systems and different sleepers are essential. The research of railway track dynamics is carried out intensively in several railway centres. However, in engineering practice the attention and understanding of wave phenomena is very limited. There are also much simpler ways to change the features of the track. One of them is mistuning used by the change of geometry which can be supplemented by the change of stiffness parameters. An example of change of the spacing in order to obtain track with better dynamic behaviour is shown in Figure 10. Theoptimaldifferenceof 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 Time (s) Track with classic fastening system-sleeper n=2 Track with double fastening system-sleeper n=2 Figure 8: Comparison of rotation of two sleepers with different weight and fastening systems vehicle speed 20 m/s. Rotation of rail (deg) 4 3 2 1 0 1 2 3 4 0.8 0.9 1.0 1.1 1.2 1.3 1.4 Time (s) Track with classic fastening system Track with double fastening system Figure 9: Rail rotation in the tracks with different sleepers and fastening systems at the vehicle speed 20 m/s. distance between sleepers seems to be stochastic in definite range but in engineering practice the spacing can be taken as follows: d i =d 1 +Δ i ; Δ 1 =0, Δ 2 =25mm, and Δ 3 =50mm (Figure 10). The change of stiffness parameters without change of geometry can influence only the selected modes of travelling waves. For example, the pin-pin mode is not sensitive to

Shock and Vibration 5 1 2 3 1 2 3 (600 + 230) 1.5 = 1245 2300 1435 Figure 10: Scheme of rack with the change of sleeper spacing, distances d i =d 1 +Δ i. 230 600 Figure 12: Track Y-shaped sleepers spacing as visible above. 1 2 2 1 1 2 2 Figure 11: Track mistuning by the change of sleeper spacing (rotationofeverysecondsleeper). thestiffnessofsupports.thatiswhythechangeofspacing ought to be used. The next possibility of change of periodicity is loss of symmetry as the factor that eliminates the regularity and periodicity of the motion. The change of periodic property of the track due to change of geometry of sleeper spacing can be obtained by rotation of every second or third sleeper in the positive or negative direction; such an example is shown in Figure 11. It is also important that the length of the wheel circumferences is about 3 m (in classic track, it is equal to distance of five sleepers). Also the dynamic coupling between both axles of the bogie is important issue. It can be done by application of Y-shaped sleepers made of steel. This kind of sleepers is made of steel. Such spacing is, similarly to the case shown in Figure 11, asymmetrictothe leftandrightwheelsofthewheelset.thedynamicresponse in this case is strongly dependent on vehicle speed [10]. The main advantages of the track with Y-shaped sleepers are (i) increased resistance to horizontal forces; (ii) increased inertia by incorporation of the ballast into the vertical and horizontal vibrations; (iii) higher stiffness of the track becoming a plate-like structure; (iv) stabilization of the vehicle motion due to the alternate periodic vertical stiffness of both rails the vehicle geometrical centre exhibits considerably lower oscillations. The principal idea of using the Y-shaped sleepers is to increase the transversal stiffness and to enlarge the inertia of the track by incorporating the ballast into the C-shaped parts of sleepers. Experimental parts of the track exhibit lower 0.020 0.025 0.030 0.035 0.040 0.045 0 500 1000 1500 2000 Right Left Figure 13: Vertical displacements of the vehicle/track contact points at the speed 30 m/s [11, 12]. 0.034 0.036 0.038 0.040 0.042 0.044 0.046 0.048 0 500 1000 1500 2000 Right Left Figure 14: Vertical displacements of the vehicle/track contact points at the speed 50 m/s [11, 12]. noise level. Numerical simulations show reduced vertical amplitudes. The Y-type track is designed for moderate speed. Someresultsofsimulationsforselectedvaluesofspeed are shown in Figures 12, 13, and14. It is visible that, with increasing speed and time of motion, the effect of synchronization occurs. The next important dynamical feature is associated with decreasing of vibration with the distance between excitation points. Simulations show (Figures 15 and 16) that vertical displacements of rails in the front of the contact points of the buggy are much larger in classic track than in the case of track with Y shaped sleepers. The great advantage of the Y-shaped track is connected with application on curved track because of its higher resistance to horizontal forces.

6 Shock and Vibration Displacement (cm) 0.0050 0.0045 0.0040 0.0035 0.0030 0.0025 0.0020 0.0015 0.0010 0.0005 0.0000 0 200 400 600 800 1000 1200 1400 1600 1800 Wheelset position (cm) Classic Y-type Figure 15: Vertical displacements of rails registered 120 cm in front of the contact points of the buggy for classic and Y -type track at the speed 40 m/s [12]. Displacement (cm) 0.0030 0.0020 0.0010 0.0000 0.0010 0.0020 0.0030 0.0040 0.0050 0 200 400 600 800 1000 1200 1400 1600 1800 Wheelset position (cm) Classic Y-type Figure 16: Vertical displacements of rails registered 180 cm in front of the contact points of the buggy for classic and Y -type track at the speed 40 m/s [12]. 3. Conclusions The periodicity of sleeper spacing is the basic qualitative feature of the classic railway track [13, 14]. It influences the periodicity of viscoelastic supports, coefficients, and additional mass of sleepers with rotational inertia. In the case of classic periodically supporting sleepers, we can observe the passing bands in the frequency of moving and oscillating forces. The solution method which allows determining the stopping and passing bands in the case of track with periodically spaced sleepers and stationary motion is based on direct application of Floquet s theorem. The difference between the mutual kinetic excitation of two wheelsets of the bogie in the stopping and passing bands is significant. Loss of the periodicity of spacing is connected to a mistuning of wave propagation and irregular contact forces, which can be positive, from the dynamical point of view, process for vehicle-track interaction. In the case of transient motion, as in the case of a transition zone, an advantage of double fasteners is obtained and visibly different sleeper motion dependent on the distance is shown. The vertical displacements of railsregisteredinfrontandbehindofthecontactpointsof thebuggyforclassicand Y -typetrackshowoneofthe advantages of the track with Y -type sleepers. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. Acknowledgment The paper was supported by the Polish National Science Centre of Ministry of Science and Higher Education Research Project no. N 509 5376 40. References [1] R. Bogacz, T. Krzyżynski, and K. Popp, On vertical and lateral dynamics of periodic guideways for maglev vehicle, in Dynamical Problems in Mechanical Systems, R. Bogacz and K. Popp,Eds.,pp.219 233,PolishAcademyofSciences,Warszawa, Poland, 1993. [2] R. Bogacz and T. Krzyżyński, On the Bernoulli-Euler beam on a viscoelastic foundation under moving oscillating load, Inst. Fund.Technol.Res.Report38,1 40. [3] T. X. Wu and D. J. Thompson, The influence of random sleeper spacing and ballast stiffness on the vibration behaviour of railway track, Acustica,vol.86,no.2,pp.313 321,2000. [4] R. Bogacz, On dynamics and stability of continuous systems subjected to a distributed moving load, Ingenieur-Archiv, vol. 53,no.4,pp.243 255,1983. [5] P. Koziol and C. Mares, Wavelet approach for vibration analysis of fast moving load on a viscoelastic medium, Shock and Vibration,vol.17,no.4-5,pp.461 472,2010. [6] J. D. Achenbach and C. T. Sun, Moving load on a flexibly supported Timoshenko beam, Solids and Structures,vol.1,no.4,pp.353 370,1965. [7] R. Bogacz, T. Krzyzynski, and K. Popp, On the dynamics of linearly extended and cyclic periodic structures, in Dynamics of Continua, D. Besdo and R. Bogacz, Eds., pp. 55 64, Shaker, Bad Honnef, Germany, 1998. [8] K. Popp and P. C. Mueller, Ein Beitrag zur Gleisdynamik, Zeitschrift für Angewandte Mathematik und Mechanik, vol.62, pp.t65 T67,1982. [9] R. Bogacz and W. Czyczuła, Mechanical analysis of track loading for high speed operation track with PS-08 slipers and other track structures, in Modern Technologies and Systems Increasing the Efficiency of Managing Railway Transport,pp.39 55, Kraków, Poland, 2010. [10] R. Bogacz and C. Bajer, On modelling of contact problems in railway engineering, in Recent Advances in Applied Mechanics, J.T.Katsikadelis,D.E.Beskos,andE.E.Gdoutos,Eds.,pp.77 86, National Technical University of Athens, Athens, Greece, 2000. [11] R. Bogacz and C. Bajer, Vibration of the train/track system with two types of sleepers, in Proceedings of the 21th International Congress on Theoretical and Applied Mechanics (ICTAM 04), IUTAM, Warsaw, Poland, August 2004.

Shock and Vibration 7 [12] C. Bajer and R. Bogacz, Dynamics of Y-Type Track, in Proceedings of the 21st Symposium on Vibrations in Physical Systems,pp.3 7,Poznań-Kiekrz, Poland, 2004. [13] R. Bogacz, T. Krzyżyński, andp. Koziol, Ananalysisofthe dynamic effects of periodic structures subject to a moving load, in Proceedings of the 1st International Conference on Railway Technology: Research, Development and Maintenance,J.Pombo, Ed., Paper 116, Civil-Comp Press, Stirlingshire, UK, 2012. [14] K. L. Knothe and S. L. Grassie, Modelling of railway track and vehicle/track interaction at high frequencies, Vehicle System Dynamics,vol.22,no.3-4,pp.209 262,1993.

Rotating Machinery Engineering The Scientific World Journal Distributed Sensor Networks Sensors Control Science and Engineering Advances in Civil Engineering Submit your manuscripts at Electrical and Computer Engineering Robotics VLSI Design Advances in OptoElectronics Navigation and Observation Chemical Engineering Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Modelling & Simulation in Engineering Shock and Vibration Advances in Acoustics and Vibration