Status of the Search for an EDM of 225 Ra

Similar documents
Search for a Permanent Electric Dipole Moment in Ra EDM Spin EDM Spin EDM. Spin. Pseudo-scalar. s d

EDM. Spin. ν e. β - Li + Supported by DOE, Office of Nuclear Physics

Radium Atom. Electron and Nuclear EDM s. Trapped Radioactive Isotopes: µ icro laboratories for Fundamental Physics

Radon-EDM Experiment

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

The hunt for permanent electric dipole moments

Nuclear electric dipole moment in the Gaussian expansion method

Klaus Jungmann 2006 EDM Experiments

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU

Collaborator ==============================

Xe nuclear spin maser and search for atomic EDM

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago

Search for a Permanent Electric Dipole Moment of 199 Hg

Opportunities with collinear laser spectroscopy at DESIR:

Electric dipole moments of light nuclei

EDM Measurements using Polar Molecules

Laser Spectroscopy on Bunched Radioactive Ion Beams

Parity and Time Reversal Violations in Atoms: Present Status and Future Prospects. Bhanu Pratap Das

Time Reversal and the electron electric dipole moment. Ben Sauer

Electric dipole moment experiments

Experimental Atomic Physics Research in the Budker Group

Schiff Moments. J. Engel. May 9, 2017

It may be that the next exciting thing to come along will be the discovery of a neutron or atomic or electron electric dipole moment.

Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced. by the nuclear Schiff moment and limits on time-reversal. violating interactions

Electric dipole moments: theory and experiment

Measurement of the electron EDM using Cold YbF Molecules:

The Search for the Electron Electric Dipole Moment at JILA

EDMs of stable atoms and molecules

Schiff Moments. J. Engel. November 4, 2016

University of Groningen. Laser cooling and trapping of barium De, Subhadeep

Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs

Towards a Precise Measurement of Atomic Parity Violation in a Single Ra + Ion

Electric Dipole Moments I. M.J. Ramsey-Musolf

Results from the collinear laser spectroscopy collaboration at ISOLDE-CERN

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy.

Schiff Moments. J. Engel. October 23, 2014

Nuclear spin maser for 129 Xe atomic EDM measurement - present status -

Nuclear and Atomic Electric Dipole Moments

Electron EDM Searches

TOWARDS AN OPTICAL NUCLEAR CLOCK WITH THORIUM-229

Tests of Lorentz Invariance with alkalimetal noble-gas co-magnetometer. (+ other application) Michael Romalis Princeton University

Development of a detector setup to determine the 2s hyperfine transition of 209 Bi 80+ at the Experimental Storage Ring at GSI

Gamma-ray decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 March 7, 2011

arxiv: v1 [physics.atom-ph] 10 Aug 2018

Atomic magnetometers: new twists to the old story. Michael Romalis Princeton University

Closed-shell Atomic Electric Dipole Moments. K. V. P. Latha Angom Dilip Kumar Singh B. P. Das Rajat Chaudhuri

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum

Theory of Electric Dipole Moments of Atoms and Molecules Bhanu Pratap Das

INTERACTION PLUS ALL-ORDER METHOD FOR ATOMIC CALCULATIONS

EDM measurements with storage rings

Nuclear science prospects with FRIB. Alexandra Gade Michigan State University

Proposed experiment for the anapole measurement in francium. Luis A. Orozco Joint Quantum Institute University of Maryland

A new measurement of the electron edm. E.A. Hinds. Centre for Cold Matter Imperial College London

arxiv: v1 [physics.atom-ph] 1 Apr 2015

Measurement of Electric Dipole Moments of Charged Particles in Storage Rings

EDMs at Dimension Six

University of Groningen

Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes

Neutron and electron electric dipole moments (EDMs)

LASER SPECTROSCOPIC STUDIES OF NEUTRON-DEFICIENT EUROPIUM AND GADOLINIUM ISOTOPES

YbRb A Candidate for an Ultracold Paramagnetic Molecule

Charge Radii of Light Isotopes from Helium to Boron

University of Groningen. Laser Spectroscopy of Trapped Ra+ Ion Versolato, Oscar Oreste

Atomic Physics (Phys 551) Final Exam Solutions

Radioactivity at the limits of nuclear existence

The Gamma Factory proposal for CERN

The search for permanent electric dipole moments Klaus Kirch Paul Scherrer Institut and ETH Zürich

CP-violating magnetic moments of atoms and molecules. $$$ National Science Foundation $$$ NIST Precision Measurement Grant

The Nuclear Many-Body Problem

Parity Violation in Diatomic Molecules

Laser Trapping and Probing of Exotic Helium Isotopes. Peter Müller

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Highenergy Nuclear Optics of Polarized Particles

What we know about Francium. University of Science and Technology of China Hefei, China July 2018 Luis A. Orozco

Measurements of liquid xenon s response to low-energy particle interactions

Improvements to the Mercury Electric Dipole Moment Experiment

Beyond mean-field study on collective vibrations and beta-decay

Nuclear spin maser and experimental search for 129 Xe atomic EDM

I.B. Khriplovich Budker Institute of Nuclear Physics, Novosibirsk, Russia

Electric Dipole Moments of Charged Particles

Searches for Permanent Electric Dipole Moments (EDM) of Atoms, Molecules, and the Neutron. Dmitry Budker

Nuclear Schiff moment

Nuclear structure and the anapole moment in francium; experiments and proposals. Luis A. Orozco UMD

Progress Towards Measurement of the Electron s s Electric Dipole Moment using the PbF Molecule ucn 2007

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

Intense Slow Muon Physics

(Lifetime and) Dipole Moments

Electric Dipole Moments: Phenomenology & Implications

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab)

Muon g 2. Physics 403 Advanced Modern Physics Laboratory Matthias Grosse Perdekamp. Slides adapted from Jörg Pretz RWTH Aachen/ FZ Jülich

Ultracold atoms and molecules

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University

Beyond Schiff: Atomic EDMs from two-photon exchange Satoru Inoue (work with Wick Haxton & Michael Ramsey-Musolf) ACFI-FRIB Workshop, October 23, 2014

Spin-tracking studies for EDM search in storage rings

EDM measurement in 129 Xe atom using dual active feedback nuclear spin maser

Mossbauer Effect and Spectroscopy. Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Manifestations of Low-Mass Dark Bosons

Transcription:

Status of the Search for an EDM of 225 Ra I. Ahmad, K. Bailey, J. Guest, R. J. Holt, Z.-T. Lu, T. O Connor, D. H. Potterveld, N. D. Scielzo Roy Holt Lepton Moments 2006 Cape Cod

Outline Why is an EDM interesting? Why use radium? How to detect an EDM Our plan: Source, MOT, FORT, EDM Status and Schedule 2

EDM Violates Both P and T A permanent EDM violates both time-reversal symmetry and parity + T + P - - - + EDM Spin EDM Spin EDM Spin Neutron, Deuteron Diamagnetic Atoms ( 199 Hg, 225 Ra, 223 Rn) Paramagnetic Atoms (Tl) Molecules (PbO) Quark EDM Quark Chromo-EDM Electron EDM Physics beyond the Standard Model: SUSY 3

Origin of EDM s Standard Model EDM s are due to CP violation in CKM matrix (K 0 -system) but e - and quark EDM s are zero at Tree Level. Need at least third order to get EDM s. Thus EDM s are VERY small in the Standard Model. 4

The LHC is on the way. Two Possibilities: The LHC doesn t see evidence for new physics. Window of opportunity for low energy tests to make discovery before ILC. The LHC observes new physics, say, SUSY. SM has many new parameters. Low energy experiments will be necessary to pin down new parameters. 5

Current Experiments in Nuclei Isotope Current Limit (e cm) Institution Nuclear Spin Factor of Improvement T-odd Sensitivity Technique 199Hg -(1.1 ± 0.6)E-28 Washington Washington 1/2 2-4 5.6 4 cells 129Xe (0.7 ± 3.3)E-27 Princeton 1/2 Michigan 10 2 10 5 0.47 Liquid cell 225Ra N/A Argonne KVI 1/2 ~ Hg 2100 Trap 223Rn N/A Michigan& TRIUMF 7/2 ~ Hg 2000 Cell D N/A BNL, IUCF, KVI 1 ~Hg 10-10 3 Storage ring 6

EDM of 225 Ra enhanced EDM of 225 Ra enhanced: Large intrinsic Schiff moment due to octupole deformation; Closely spaced parity doublet; Relativistic atomic structure. + - Haxton & Henley (1983) Auerbach, Flambaum & Spevak (1996) Engel, Friar & Hayes (2000) Enhancement Factor: EDM ( 225 Ra) / EDM ( 199 Hg) 55 kev Ψ = ( + )/ 2 Ψ + = ( + + )/ 2 Skyrme Model Isoscalar Isovector Isotensor SkM* 1500 900 1500 SkO 450 240 600 Schiff moment of 199 Hg, de Jesus & Engel, PRC72 (2005) Schiff moment of 225 Ra, Dobaczewski & Engel, PRL94 (2005) NB: Must include quadrupole term in Schiff operator: See C.-P. Liu et al, nucl-th/0601025 7

EDM Measurement B E B μ, s E s B E d, s hf = 2μB + + 2dE hf = 2μ B 2 de s Parameters -------------------- B = 10 mgauss f = 11 Hz E = 100 kv/cm f + -f - = 10 nhz d = 1 x 10-28 e cm 8

Expected Statistical Accuracy No. of Ra atoms: 10 mci source = 3.6 x 10 8 Ra/s N = 1 x 10 7 atoms Trap storage time = 300 s E = 100 kv/cm T = 100 days Detection efficiency = 0.05 Best experimental limit: M. C. Romalis et al, PRL 86 (2001) 2505 Enhancement factor: Ra/Hg = 375 9

Search for EDM of 225 Ra Advantages of an EDM measurement on 225 Ra atoms in a trap: Trap allows a long coherence time (~ 300 s). Cold atoms result in a negligible v x E systematic effect. Trap allows the efficient use of the rare and radioactive 225 Ra atoms. Small sample in an XHV allows a high electric field (> 100 kv/cm). 10 mci 225 Ra sample Magneto-Optical Trap Atomic Beam Proposed setup Oven 225 Ra Nuclear Spin = ½ Electronic Spin = 0 t 1/2 = 15 days Transverse Cooling EDM-probing region Fiber-Laser Optical Dipole Trap 10

5.5 ns 7p 1 P 1 38 ms 6d 1 D 2 100 9e- 2 2e-5 5e-7 1 Laser-cooling: 714 nm Radium Atom Energy Level Diagram 7p 3 P 2 422 ns* 7p 3 P 1 7p 3 P 0 Repump: 1428 nm 1e-1 1e-9 6e-5 9e-4 6d 5e-2 3 D 3 Dzuba et al., PRA 61, 062509 (2000) 2e-2 6d 3 D 2 4e-3 600 μs? 6d 3 D 1 1e-1 Laser-cooling on 1 S 0-3 P 1 : ~2x10 4 cycling transitions 422 ns lifetime* Accel ~ 3000 m/s 2 1 G/cm MOT gradient k B T= h/(2τ) ~ 10 μk 7 ms cooling w/o repump Repump on 3 D 1-1 P 1 : 8 s cooling w/ repump Transition frequency? Isotope shift? Hyperfine splitting? 7s 2 1 S 0 *N. D. Scielzo et al., PRA 73, 010501 (2006) 11

Argonne National Laboratory Radium EDM Experiment 12

225 Ra Source 229 Th 7300 yr α 225 Ra 15 days β 225 Ac 10 days α Fr, At, Rn ~ 4 hours α,β 209 Bi stable 10 mci 229 Th source produces 4 x 10 8 s -1 225 Ra Test source: 0.5 mci 229 Th Chemical extraction of Ra from Th Reduction of Ra(NO 3 ) 2 with Ba, Al, Ti Exotic Beam Facility ~ 1 Ci 229 Th Expected yield for 225 Ra: 3 x 10 10 s -1 13

Counts 225 Ra from the Oven 1000 3 2 7 6 5 4 13 October 03 experiment Window Facing Oven Aperture Unused Window 137 Cs 225 Ra 30% 70% γ 225 Ac β t 1/2 =14.9 d 225 Ra 40 kev γ-ray α 3 2 α 221 Fr 20 30 40 Energy (kev) 50 12% γ 218 kev γ-ray Counts 1000 6 4 100 6 4 10 2 2 2 200 221 Fr 213 Bi 137 Cs 300 400 500 Energy (kev) 600 700 26% 217 At γ 213 Po α α 213 Bi 441 kev γ-ray α 14

Spectroscopy and lifetime measurement ~250-500 ns ~1200+-100 ns * 714.3 nm 1 7p 3 P 1 6e-5 PMT 791.1 nm 6p 3 P 1 1 1 0.3 5d 3 D 2 7s 21 S 0 Radium 6d 3 D 1 6s 21 S 0 Barium 5d 3 D 1 250 μci ~ 5 nano-g 225 Ra + 100 mg Ba Notch filter *H. Bucka et al., Ann. Physik 8, 329 (1961) Transverse laser beam Ba and Ra atomic beam Oven @ 700 C 15

225 Ra Spectroscopy Fluorescence 1 S 0 F=1/2> -> 3 P 1 F=3/2> 13999.267(1) cm -1 Iodine signal Laser locking transition 13999.23 13999.25 13999.27 Wavenumber (cm -1 ) 16

Ra 7s7p 3 P 1 lifetime measurement Lifetime measurement cycle: Fluorescence Excitation laser Fluorescence τ = 422 ns +- 20 ns N. D. Scielzo et al., PRA (2006) 0 0 500 1000 1500 2000 Time (ns) 17

2500 Repump transition in 226 Ra beam 1 P1-1 S 0 photon counts 2000 1500 1000 3 D 1 -> 1 P 1 6999.83(1) cm -1 (1428.606 nm) 1 P 1 1 S 0 3 P 1 3 D 1 500 0 6999.83 6999.84 6999.85 Wavenumber (cm -1 ) 18

Radium slower and trap 750 nci 226 Ra (600 nano-g) 1 mci 225 Ra (20 nano-g) Transverse cooling 1 μs Zeeman slower MOT Repump Probe phase ~50 ms Slower, Trans cooling, MOT phase ~400 ms PMT Slower 19

Laser-Trapping of Radium Atoms World s first laser trap of radium atoms: both 225 Ra and 226 Ra atoms are cooled and trapped! Key 225 Ra frequencies, lifetimes measured. 20

Laser-Trapping of Radium Atoms World s first laser trap of radium atoms: both 225 Ra and 226 Ra atoms are cooled and trapped! Key 225 Ra frequencies, lifetimes measured. 21

Overall Trap Efficiency 225 Ra sample Magneto-Optical Trap Atomic Beam Oven Transverse Cooling Monte Carlo estimate: 3 x 10-6 Observation: 7 x 10-7 Original proposal: 1 x 10-4 Future Improvements: Improved transverse cooling: x 2-10 Longer slower: x 2 Re-pump along slower: x 3 23

Optical Dipole Trap Intensity 1 H = de % = αe 4 Excitation rate ~ Trap potential ~ ( f f ) 2 ( f f ) laser atom 2 0 Intensity laser atom Erbium Fiber laser: λ = 1.5 μm, Power = 5 Watts Focused to 50 μm diameter trap depth 100 μk Excitation rate ~ 10-5 s -1 Spin relaxation rate ~ 10-20 s -1 negligible M. V. Romalis and E. N. Fortson, PRA 59 (1999) 4547 24

EDM Measurement 7p 3 P 1 F = 1/2 Fluorescence 7s 21 S 0 F = 1/2 m F = -1/2 σ - m F = -1/2 m F = +1/2 σ + Excitation m F = +1/2 1. Polarize 2. π / 2 pulse 3. Free precess 4. π / 2 pulse 5. Measure population Polarizing and probing laser beam Dipole trap beam Pol. P P P + P + + E down E up B E E field plates f drive -f atom 25

26

2003 Establish Ra lab, prepare Ra oven and beam 2004 Stabilize laser and perform laser spectroscopy of 225 Ra, improve oven 2005 Establish MOT of Ra atoms 2006 Establish optical dipole trap 2007 Begin EDM experiment 2008 - Improve statistics and systematics 2009 - Milestones 27

Summary New initiative at Argonne to search for the EDM of 225 Ra Combined advantages of optical trapping and the use of an octupole deformed nucleus Ultimate goal of at least x 100 improvement in sensitivity over previous experiments Radium-225 atoms have been optically trapped. 28

Desperate Trappers 29

Argonne http://www-mep.phy.anl.gov 30

The End 31