ON THE OSCILLATION OF THIRD ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS. Cairo University, Orman, Giza 12221, Egypt

Similar documents
Applied Mathematics Letters. Oscillation results for fourth-order nonlinear dynamic equations

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

ITERATIVE OSCILLATION RESULTS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS WITH ADVANCED ARGUMENT

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Existence of non-oscillatory solutions of a kind of first-order neutral differential equation

OSCILLATION OF THIRD-ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS

Existence of positive solutions of a third order nonlinear differential equation with positive and negative terms

On Oscillation of a Generalized Logistic Equation with Several Delays

OSCILLATION OF SECOND-ORDER DELAY AND NEUTRAL DELAY DYNAMIC EQUATIONS ON TIME SCALES

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term

TO our knowledge, most exciting results on the existence

A Necessary and Sufficient Condition for the Solutions of a Functional Differential Equation to Be Oscillatory or Tend to Zero

On the Oscillation of Nonlinear Fractional Differential Systems

Stability and Bifurcation in a Neural Network Model with Two Delays

Computers and Mathematics with Applications

DIFFERENTIAL EQUATIONS

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION

ON JENSEN S INEQUALITY FOR g-expectation

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

HILLE AND NEHARI TYPE CRITERIA FOR THIRD-ORDER DYNAMIC EQUATIONS

OSCILLATION BEHAVIOUR OF FIRST ORDER NEUTRAL DELAY DIFFERENTIAL EQUATIONS (Gelagat Ayunan bagi Persamaan Pembezaan Tunda Neutral Peringkat Pertama)

EXERCISES FOR SECTION 1.5

Oscillation Properties of a Logistic Equation with Several Delays

Oscillation of solutions to delay differential equations with positive and negative coefficients

Convergence of the Neumann series in higher norms

Existence of multiple positive periodic solutions for functional differential equations

STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

Positive continuous solution of a quadratic integral equation of fractional orders

On Two Integrability Methods of Improper Integrals

LIMIT AND INTEGRAL PROPERTIES OF PRINCIPAL SOLUTIONS FOR HALF-LINEAR DIFFERENTIAL EQUATIONS. 1. Introduction

Research Article Existence and Uniqueness of Periodic Solution for Nonlinear Second-Order Ordinary Differential Equations

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

MONOTONE SOLUTIONS OF TWO-DIMENSIONAL NONLINEAR FUNCTIONAL DIFFERENTIAL SYSTEMS

Predator - Prey Model Trajectories and the nonlinear conservation law

CONTRIBUTION TO IMPULSIVE EQUATIONS

EIGENVALUE PROBLEMS FOR SINGULAR MULTI-POINT DYNAMIC EQUATIONS ON TIME SCALES

A Mathematical model to Solve Reaction Diffusion Equation using Differential Transformation Method

Note on oscillation conditions for first-order delay differential equations

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

ASYMPTOTIC FORMS OF WEAKLY INCREASING POSITIVE SOLUTIONS FOR QUASILINEAR ORDINARY DIFFERENTIAL EQUATIONS

SOLUTIONS APPROACHING POLYNOMIALS AT INFINITY TO NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

11!Hí MATHEMATICS : ERDŐS AND ULAM PROC. N. A. S. of decomposiion, properly speaking) conradics he possibiliy of defining a counably addiive real-valu

Boundedness and Stability of Solutions of Some Nonlinear Differential Equations of the Third-Order.

Dynamic Systems and Applications 12 (2003) A SECOND-ORDER SELF-ADJOINT EQUATION ON A TIME SCALE

A Note on Superlinear Ambrosetti-Prodi Type Problem in a Ball

Existence of positive solutions for second order m-point boundary value problems

arxiv: v1 [math.ca] 15 Nov 2016

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

Essential Maps and Coincidence Principles for General Classes of Maps

SOME MORE APPLICATIONS OF THE HAHN-BANACH THEOREM

, u denotes uxt (,) and u. mean first partial derivatives of u with respect to x and t, respectively. Equation (1.1) can be simply written as

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

On the Positive Periodic Solutions of the Nonlinear Duffing Equations with Delay and Variable Coefficients

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

arxiv: v1 [math.fa] 9 Dec 2018

Math 334 Test 1 KEY Spring 2010 Section: 001. Instructor: Scott Glasgow Dates: May 10 and 11.

Exact solitary-wave Special Solutions for the Nonlinear Dispersive K(m,n) Equations by Means of the Homotopy Analysis Method

Huazhong Tang 1 and Gerald Warnecke Introduction ANOTEON(2K + 1)-POINT CONSERVATIVE MONOTONE SCHEMES

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type

Existence Theory of Second Order Random Differential Equations

The Bloch Space of Analytic functions

Optimality Conditions for Unconstrained Problems

A Direct Method for Solving Nonlinear PDEs and. New Exact Solutions for Some Examples

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

EXISTENCE AND UNIQUENESS THEOREMS ON CERTAIN DIFFERENCE-DIFFERENTIAL EQUATIONS

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

Srednicki Chapter 20

On a Fractional Stochastic Landau-Ginzburg Equation

Optimal Control. Lecture 5. Prof. Daniela Iacoviello

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Oscillation Criteria for Certain nth Order Differential Equations with Deviating Arguments

4.2 Continuous-Time Systems and Processes Problem Definition Let the state variable representation of a linear system be

Asymptotic instability of nonlinear differential equations

A Note on the Equivalence of Fractional Relaxation Equations to Differential Equations with Varying Coefficients

On the probabilistic stability of the monomial functional equation

A remark on the H -calculus

An impact of noise on invariant manifolds in nonlinear dynamical systems

k-remainder Cordial Graphs

Riemann Function and Methods of Group Analysis

A Comparison Among Homotopy Perturbation Method And The Decomposition Method With The Variational Iteration Method For Dispersive Equation

The Existence, Uniqueness and Stability of Almost Periodic Solutions for Riccati Differential Equation

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Chapter 2. First Order Scalar Equations

Expert Advice for Amateurs

On the numerical simulation of population dynamics with density-dependent migrations and the Allee effects

15. Vector Valued Functions

THE DARBOUX TRIHEDRONS OF REGULAR CURVES ON A REGULAR TIME-LIKE SURFACE. Emin Özyilmaz

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

LAPLACE TRANSFORM AND TRANSFER FUNCTION

POSITIVE PERIODIC SOLUTIONS OF NONAUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS DEPENDING ON A PARAMETER

8. Basic RL and RC Circuits

Representation of Stochastic Process by Means of Stochastic Integrals

Transcription:

a 1/α s)ds < Indian J. pre appl. Mah., 396): 491-507, December 2008 c Prined in India. ON THE OSCILLATION OF THIRD ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS SAID R. GRACE 1, RAVI P. AGARWAL 2 AND MUSTAFA F. AKTAS 3 1 Deparmen of Engineering Mahemaics, Facly of Engineering, Cairo Universiy, Orman, Giza 12221, Egyp e-mail: srgrace@eng.c.ed.eg 2 Deparmen of Mahemaical Sciences, Florida Insie of Technology, Melborne, FL 32901, U.S.A. e-mail: agarwal@fi.ed 3 Deparmen of Mahemaics, Gazi Universiy, Facly of Ars Sciences, Teknikokllar 06500 Ankara, Trkey e-mail: mfahri@gazi.ed.r Received 9 April 2008; afer final revision 29 Ocober 2008; acceped 21 November 2008) Some new crieria for he oscillaion of hird order fncional differenial eqaions of he form a) x ) ) α) + q)fx[g)]) = 0 a) x ) ) α) = q)fx[g)]) + p)hx[σ)]), where are esablished. Key words: Fncional differenial eqaion, oscillaion, nonoscillaion, comparison

492 SAID R. GRACE, RAVI P. AGARWAL AND MUSTAFA F. AKTAS 1. INTRODUCTION This paper deals wih he oscillaory behavior of solions of hird order nonlinear fncional differenial eqaions a) x )) α) + q)fx[g)]) = 0 1.1) a) x )) α) = q)fx[g)]) + p)hx[σ)]), 1.2) sbjec o he hypoheses: i) α is he raio of wo posiive odd inegers; ii) a, p, q : [ 0, ) 0, ) are coninos; iii) g, σ C 1 [ 0, ), IR), g) <, σ) >, g ) 0 σ ) 0 for 0 lim g) = ; iv) f, h C 1 IR, IR), xfx) > 0, xhx) > 0, f x) 0 h x) 0 for x 0 f xy) fxy) fx)fy) for xy > 0 1.3) h xy) hxy) hx)hy) for xy > 0. 1.4) By a solion of eqaion 1.1) respecively, eqaion 1.2)) is mean a fncion x : [T x, ) IR, T x 0 sch ha x), x ) a) x )) α ) are coninosly differeniable saisfy eqaion 1.1) respecively, eqaion 1.2)) on [T x, ). Or aenion will be resriced o solions x) of eqaions 1.1) 1.2) which saisfy sp{ x) : T } > 0 for any T T x. Sch a solion is said o be oscillaory if i has a seqence of zeros ending o infiniy, nonoscillaory oherwise. The oscillaory behavior of eqaions 1.1) 1.2) when α = 1, a) = 1 /or higher order fncional differenial eqaions has received a grea deal of aenion in he las hree decades. For recen conribions o his sdy we refer o reader [1-5, 8, 10] he references cied herein, however, he sdy of oscillaory behavior of eqaions 1.1) 1.2) when α 1 0 a 1/α s)ds = 1.5)

OSCILLATION OF THIRD ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS 493 has received considerably less aenion, see [4-6, 9]. Therefore, he main prpose of his paper is o esablish some crieria for he oscillaion of eqaions 1.1) 1.2) when 0 a 1/α s)ds < 1.6) holds. In Secion 2, we presen oscillaion crieria for eqaion 1.1) Secion 3 is devoed o he sdy of he oscillaion of eqaion 1.2). The resls of his paper are presened in a form which is essenially new of high degree of generaliy. Some special cases of he obained resls nify improve many exising oscillaion crieria appeared in he lierare. 2. OSCILLATION OF EQUATION 1.1) Here we are ineresed o discss he siaion in which all solions of eqaion 1.1) are oscillaory. In order o prove or main resl we will compare he following firs order delay differenial ineqaliies wih he corresponding differenial eqaions y ) + q)fy[g)]) 0, 2.1) y ) q)fy[g)]) 0, 2.2) y ) + q)fy[g)]) = 0, 2.3) y ) q)fy[g)]) = 0. 2.4) We have he following lemma, which is given in [3, 7]. Lemma 2.1 If he ineqaliy 2.1) he ineqaliy 2.2)) has evenally posiive solion, hen he eqaion 2.3) he eqaion 2.4)) also has evenally posiive solion. Theorem 2.1 Sppose ha condiions i) iv), 1.3), 1.4) 1.6) hold assme ha here exiss a nondecreasing fncion η : [ 0, ) IR sch ha g) < η) < for 0. If boh firs order delay eqaions g) ) 1/α s z ) + c q)f ds) f z 1/α [g)] ) = 0 2.5) as) T for any consan c, 0 < c < 1 for all T 0, ) w ) + q)f A[g)] f [η ) g )] 1/α) f w 1/α [η)] ) = 0 2.6)

494 SAID R. GRACE, RAVI P. AGARWAL AND MUSTAFA F. AKTAS are oscillaory, 0 1 as) for any T 0, where A) = s T T ) 1/α qv)f A[gv)] dv d) ds =, 2.7) a 1/α s)ds, hen eqaion 1.1) is oscillaory. PROOF : Le x) be a nonoscillaory solion of eqaion 1.1), say, x) > 0 x[g)] > 0 for 0 0. Now a) x )) α ) 0 for 0. There exiss a 1 0 sch ha x ) a) x )) α ) are of consan sign for 1. There are for possibiliies o consider: I) a) x )) α ) > 0 x ) > 0 for 1 ; II) a) x )) α ) > 0 x ) < 0 for 1 ; III) a) x )) α ) < 0 x ) < 0 for 1 ; IV) a) x )) α ) < 0 x ) > 0 for 1. The case IV) canno hold. In fac, if we le y) = a) x )) α for 1, hen we see ha y ) < 0 y ) < 0 for 1 hence lim y) =, which conradics he posiiviy of x ). Nex, we consider: Case I): Le y) = a) x )) α. Then, since y) > 0 y ) is decreasing on [ 1, ), we have Then, here exis a 2 1 y) y 1 ) = 1 y s) ds y ) 1 ). a consan b, 0 < b < 1 sch ha y) b y ) for 2. Now ) 1/α x ) b 1/α y )) 1/α for 2. a) Inegraing boh sides of he above ineqaliy from 2 x) b 1/α 2 o, we ge ) 1/α s ds) y )) 1/α for 2. as)

OSCILLATION OF THIRD ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS 495 There exiss a 3 2 sch ha g) ) 1/α s x[g)] b ds) y [g )]) 1/α for 3, 2.8) as) where b = b 1/α. Using 2.8) 1.3) in eqaion 1.1), we have 2 y ) = q)fx[g)]) fb)q)f f y [g )]) 1/α) for 3. g) 2 ) 1/α s ds) as) Se z) = y ) > 0 for 3 in he above ineqaliy, o obain g) ) 1/α s z ) + fb)q)f ds) f z 1/α [g)] ) 0 for 3. as) 2 By Lemma 2.1, we see ha he eqaion 2.5) has an evenally posiive solion, which conradics he hypohesis. Case II): Since a) x )) α is increasing, for s 1, we obain a) x )) α as) x s)) α or as) x s)) α a) x )) α, which by inegraion from o implies x ) [ a ) x )) α] 1/α a 1/α s)ds. Ping ha z) = a) x )) α replacing by g), we find x[g)] [ a g )) x g ))) α] 1/α A g )) for 2 1 = z 1/α [g )] A g )) for 2. 2.9) Using 2.9) 1.3) in eqaion 1.1), we have ) z ) q)f Ag)) f z 1/α [g )] ) for 2. 2.10) Clearly, z) > 0, z ) < 0, z ) > 0 for 2. Then, for s 2, we ge zs) z) zs) = s z ) d z ) s),

496 SAID R. GRACE, RAVI P. AGARWAL AND MUSTAFA F. AKTAS or zs) s) z )). Replacing s by g) η) respecively, we find z[g)] η) g)) z [η)]) for 3 2. 2.11) Using 2.11) 1.3) in 2.10), seing w) = z ), 3, we ge ) w ) q)f Ag)) f [η ) g )] 1/α) f w 1/α [η)] ) or ) w ) + q)f Ag)) f [η ) g )] 1/α) f w 1/α [η)] ) 0 for 3. By applying Lemma 2.1, we see ha he eqaion 2.6) has an evenally posiive solion, which is conradicion. Case III): For s 1, one can easily find as) x s)) α a) x )) α, or x s) a 1/α )x ) ) a 1/α s) ). Inegraing he above ineqaliy from o leing, we ge x) a 1/α ) x ) a 1/α s)ds = a 1/α ) x ) A) for 1 2.12) x) a 1/α 1 ) x 1 ) A) for 1. Now, here exis a 2 1 a consan c > 0 sch ha x[g)] c A[g)] for 2. 2.13) Using 2.13) 1.3) in eqaion 1.1), we ge a) x )) α) = q)fx[g)]) c q)f ) A[g)] for 2, 2.14) where c = fc). Inegraing 2.14) from 2 a) x )) α) + a2 )x 2 )) α ) o, we have ) c qs)f A[gs)] ds, 2

OSCILLATION OF THIRD ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS 497 or a) x )) α) Inegraing 2.15) from 2 ) c qs)f A[gs)] ds for 2. 2.15) 2 o, we have a) x )) α c s 2 2 ) q)f A[g)] d ds, or 1 x ) c a) s 2 2 ) 1/α q)f A[g)] d ds), 2.16) where c = c) 1/α. Inegraing 2.16) from 2 o, sing he assmpion 2.7) we have > x 2 ) x 2 ) x) c dv as 2 1 v av) 2 s 2 ) ) 1/α q)f A[g)] d ds which is a conradicion. This complees he proof. We sae some known resls for he firs order fncional differenial eqaions y ) + Q)y[g)] = 0, 2.17) y ) Q)y[g)] = 0, 2.18) y ) + Q)F y[g)]) = 0, 2.19) y ) Q)F y[g)]) = 0. 2.20) Theorem A Le he fncions g, Q C[ 0, ), IR), Q) 0 evenally, g), g ) 0 for 0 lim g) =. i) If lim inf g) Qs) ds > 1, hen he eqaion 2.17) is oscillaory. e ii) If lim inf g) Qs) ds > 1, hen he eqaion 2.18) is oscillaory. e iii) If lim sp Qs) ds > 1, hen he eqaion 2.17) is oscillaory. g)

498 SAID R. GRACE, RAVI P. AGARWAL AND MUSTAFA F. AKTAS iv) If lim sp g) Qs) ds > 1, hen he eqaion 2.18) is oscillaory. Theorem B Le he fncions g, Q C[ 0, ), IR), Q) 0 evenally, g), g ) 0 for 0 lim g) =, F C 1 IR, IR), x F x) > 0, F x) 0. i) If F ) oscillaory. 0 as 0, lim sp Qs) ds > 0, hen he eqaion 2.19) is g) ii) If F ) oscillaory. iii) If ±0 0 as 0, lim inf g) Qs) ds > 0, hen he eqaion 2.20) is d F ) < Qs) ds =, hen he eqaion 2.19) is oscillaory. iv) If ± d F ) < Qs) ds =, hen he eqaion 2.20) is oscillaory. By combining Theorem A., Theorem B. Theorem 2.1. we have he following resl: Theorem 2.2 Le condiions i) iv), 1.6) 2.7) hold sppose ha here exiss a nondecreasing fncion η : [ 0, ) IR sch ha g) < η) < for 0. Eqaion 1.1) is oscillaory if one of he following condiions holds: I 1 ) f1/α ) k for 0 some k > 0 gs) lim sp qs) g) T ) 1/α d a) for any consan c, 0 < c < 1 every T 0, ) αds 1 lim sp qs) ηs) gs)) A[gs)] > k. 3 η) ) α ds > 1 c k 2 2.21) I 2 ) f1/α ) k for 0 some k > 0 gs) lim inf qs) g) T ) 1/α d a) ) α ds > 1 c e k 2 2.22)

OSCILLATION OF THIRD ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS 499 for any consan c, 0 < c < 1 any T 0, lim inf η) ) αds 1 qs)ηs) gs)) A[gs)] > e k. 3 I 3 ) f 1/α ) 0 as 0, lim sp g) qs)f gs) T ) 1/α d) ds > 0 for T 0, a) ) lim sp qs)f A[gs)] f [ηs) gs)] 1/α) ds > 0. η) I 4 ) ±0 d f 1/α ) <, qs)f gs) T ) 1/α d) ds =, for T 0, a) ) qs)f A[gs)] f [ηs) gs)] 1/α) ds =. When he condiion 1.5) holds, we can also eliminae he case III). Indeed, from 2.12) we have x) x 1 ) K 1 a 1/α s) ds,, where K = a 1/α 1 ) x 1 ) > 0, which conradics he posiiviy of x). Therefore, we have he following resl: Theorem 2.3 Sppose ha condiions i) iv), 1.3), 1.4) 1.5) hold assme ha here exiss a nondecreasing fncion η : [ 0, ) IR sch ha g) < η) < for 0. If boh firs order delay eqaions 2.5) 2.6) are oscillaory, hen eqaion 1.1) is oscillaory. The following example is illsraive. Example 2.1 Consider he hird order eqaion 4 x )) 3) + 1 ln xβ [ ] = 0, > 5, 2.23)

500 SAID R. GRACE, RAVI P. AGARWAL AND MUSTAFA F. AKTAS where β is he raio of wo posiive odd inegers, 0 < β 3. Here a) = 4 α = 3 so 0 a 1/α s)ds = 5 s 4/3 ds <. Also, g) = so, we le η) = 2 for all > 5. I is easy o check ha all condiions of Theorem 2.2 are saisfied hence eqaion 2.23) is oscillaory. Similarly, we see ha he eqaion is oscillaory by Theorem 2.2 wih α = 1. 4/3 x ) ) + 1 ln xβ [ ] = 0 3. OSCILLATION OF EQUATION 1.2) The main objecive of his secion is o esablish some crieria for he oscillaion of all solions of eqaion 1.2) of mixed nonlineariies argmens. Now, we we will compare he following ineqaliy wih he corresponding second order differenial eqaions y ) + q)fy[g)]) 0, 3.1) y ) + q)fy[g)]) = 0, 3.2) We have he following lemma, which is given in [3, 7]. Lemma 3.1 If he ineqaliy 3.1) has evenally posiive solion, hen he eqaion 3.2) also has evenally posiive solion. Theorem 3.1 Sppose ha condiions i) iv), 1.3), 1.4) 1.6) hold assme ha here exis nondecreasing fncions η, ρ, θ : [ 0, ) IR sch ha g) < η) < σ) > ρ) > θ) > for 0. If he firs order advanced eqaion ) σ) y ) p)h a 1/α s)ds h [ρ) θ)] 1/α) h y 1/α [θ)] ) = 0, 3.3) ρ) he firs order delay eqaion ) g) z ) + q)f a 1/α s)ds f [η) g)] 1/α) f z 1/α [η)] ) = 0, 3.4) he second order eqaion 0 w ) + q)f ) A[g)] fw 1/α [g)]) = 0, 3.5)

OSCILLATION OF THIRD ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS 501 where A) = a 1/α s)ds, are oscillaory, hen eqaion 1.2) is oscillaory. PROOF : Le x) be a nonoscillaory solion of eqaion 1.2), say, x) > 0, x[g)] > 0 x[σ)] > 0 for 0 0. Clearly, a) x )) α ) 0 for 0. There exiss a 1 0 sch ha a) x )) α ) x ) are of fixed sign for 1. Then as earlier here are for possibiliies o consider: I) a) x )) α ) > 0 x ) > 0 for 1 ; II) a) x )) α ) > 0 x ) < 0 for 1 ; III) a) x )) α ) < 0 x ) < 0 for 1 ; IV) a) x )) α ) < 0 x ) > 0 for 1. Now, he case II) canno hold. In fac, if we le y) = a) x )) α for 1, hen we see ha y ) > 0 y ) > 0 for 1 hence lim y) = which conradics he negaiviy of x ). Nex, we shall consider: Case I): For s 1, we have a ) x )) α a s) x s)) α hence x ) [ a s) x s)) α] 1/α s a 1/α )d. Replacing s by σ) ρ) respecively, we find x[σ)] [a ρ )) x ρ ))) α] 1/α σ) a 1/α s)ds = y 1/α [ρ )] σ) ρ) ρ) a 1/α s)ds for 2 1, 3.6) where y) = a) x )) α. Using 3.6) 1.4) in eqaion 1.2), we obain ) σ) y ) p)hx[σ)]) p)h a 1/α s)ds h y 1/α [ρ)] ) for 2. 3.7) ρ) For s 2, we have y ) y s) = s y ) d

502 SAID R. GRACE, RAVI P. AGARWAL AND MUSTAFA F. AKTAS since y ) is increasing or y) s)y s) y) 1/α s) 1/α y s)) 1/α. Replacing s in he above ineqaliy by ρ) θ) respecively, we ge y 1/α [ρ)] ρ) θ)) 1/α y [θ)]) 1/α for 3 2. 3.8) Using 3.8) 1.4) in 3.7) leing z) = y ) for 3, we have ) σ) z ) p)h a 1/α s)ds h [ρ) θ)] 1/α) h z 1/α [θ)] ) for 3. ρ) By Lemma 2.1, we arrive a he desired conradicion. Case III): As in he proof of Theorem 2.1 Case III), we obain 2.12). There exiss a 2 1 sch ha x[g)] A[g)]w 1/α [g)] for 2, 3.9) where w) = a) x )) α > 0. Using 3.9) 1.3) in eqaion 1.2), we have w ) + q)fa[g)])f w 1/α [g)] ) 0 for 2. Using Lemma 3.1, we see ha he eqaion 3.5) has an evenally posiive solion, which conradics he hypohesis. Case IV) : For 1, we have ) a) x) = x 1 ) + x s)ds a 1/α s)ds x )) α) 1/α. 1 1 There exiss a 2 1 sch ha ) g) x[g)] a 1/α s)ds y 1/α [g)] for 2, 3.10) 1 where y) = a) x )) α for 2. Using 3.10) 1.3) in eqaion 1.2), we ge ) g) y ) q)f a 1/α s)ds f y 1/α [g)] ) for 2. 3.11) 1

OSCILLATION OF THIRD ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS 503 have or Clearly, y ) is negaive increasing for 2. Therefore, for s 2, we y) ys) = s y )d y ) s), ys) s) y )). Replacing s in he above ineqaliy by g) η) respecively, we ge y[g)] η) g)) y [η)]) for 3 2. 3.12) Using 3.12) 1.3) in 3.11), leing z) = y ) > 0 for 3, we have ) g) z ) + q)f a 1/α s)ds f [η) g)] 1/α) f z 1/α [η)] ) 0 for 3. 1 By Lemma 2.1, we arrive a he desired conradicion. This complees he proof. From Theorems A., B. Theorem 3.1., he following resl is immediae. Theorem 3.2 Le condiions i) iv), 1.3), 1.4) 1.6) hold sppose ha here exis nondecreasing fncions η, ρ, θ : [ 0, ) IR sch ha g) < η) < σ) > ρ) > θ) > for 0. Eqaion 1.2) is oscillaory if ) qs)f A[gs)] ds =, 3.13) one of he following condiions holds: II 1 ) f1/α ) k h1/α ) h for 0 some k, h > 0 lim sp θ) α σs) h 3 ps) ρs) θs)) a τ)dτ) 1/α ds > 1 ρs) ) α gs) lim sp k 3 qs) ηs) gs)) a 1/α τ)dτ ds > 1 for 0 0. η) 0 II 2 ) f1/α ) k h1/α ) h for 0 some k, h > 0 lim inf h3 θ) σs) ps) ρs) θs)) a 1/α τ) dτ ρs) ) α ds > 1 e

504 SAID R. GRACE, RAVI P. AGARWAL AND MUSTAFA F. AKTAS II 3 ) II 4 ) f 1/α ) ±0 lim inf lim sp k3 η) ) α gs) qs) ηs) gs)) a 1/α τ)dτ ds > 1 e. 0 as 0 0 as, h 1/α ) θ) ) σs) ps)h a 1/α τ) dτ h [ρs) θs)] 1/α) ds > 0 ρs) ) gs) lim sp qs)f a 1/α τ)dτ f [ηs) gs)] 1/α) ds > 0. η) 0 d f 1/α ) < ± 0 d h 1/α ) <, ) σs) ps)h a 1/α τ) dτ h [ρs) θs)] 1/α) ds = ρs) ) gs) qs)f a 1/α τ)dτ f [ηs) gs)] 1/α) ds =. 0 When he condiion 1.5) holds, we eliminae he case III) from Theorem 3.1, we obain Theorem 3.3 Sppose ha condiions i) iv), 1.3), 1.4) 1.5) hold assme ha here exis nondecreasing fncions η, ρ, θ : [ 0, ) IR sch ha g) < η) < σ) > ρ) > θ) > for 0. If he firs order advanced eqaion 3.3) he firs order delay eqaion 3.4) are oscillaory, hen eqaion 1.2) is oscillaory. The following example is illsraive. Example 3.1 Consider he hird order mixed eqaion 6 x )) 3) = 1 ) 2 β x β [ ] + 2γ/3 x γ [2], 5. 3.14) Here, a) = 6, α = 3, q) = 1/ ) 2 β p) = 2γ/3, β γ are he raios of posiive odd inegers wih 0 < β 3 γ. Also g) = σ) = 2. For 5, we le η) = 2, ρ) = 5/3 θ) = 4/3.

OSCILLATION OF THIRD ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS 505 I is easy o check ha all condiions of Theorem 3.2 for differen vales of β γ are saisfied hence eqaion 3.14) is oscillaory. We noe ha here are many sfficien condiions for he oscillaion of eqaion 3.5) raher han 3.13), see [1 3]. Nex, from he proof of Theorem 3.1 Case III), we obain he second order ineqaliy w ) + q)fa[g)])f w 1/α [g)] ) 0 for 2 3.15) for w) = a) x )) α. Since w ) > 0 w) > 0 for 2, here exis a 3 2 a consan k, 0 < k < 1 sch ha w[g)] kg)w [g)] for 3. 3.16) Using 3.16) 1.3) in 3.15), we obain ) v ) + c q) f A[g)] f g 1/α ) ) f v 1/α [g)] ) 0 for 3, 3.17) where c = fk 1/α ) v) = w ) for 3. Nex, we can combine eqaions 3.4) 3.17) in one, say, 0 y ) + Q)f y 1/α [η)] ) = 0, 3.18) where { ) g) Q) = min q)f a 1/α s)ds f [η) g)] 1/α) ), c q)f A[g)] f g 1/α ) )} for any consan c, 0 < c < 1 all 0. Ths, from Theorem 3.1 we ge he following corollary: Corollary 3.1 Le he hypoheses of Theorem 3.1 hold le eqaions 3.4) 3.5) be replaced by eqaion 3.18). Then eqaion 1.2) is oscillaory. In a similar way, we can combine eqaions 2.5) 2.6) in one resae Theorem 2.1. The deails are lef o he reader. 4. REMARKS 1. Condiions 1.3) 1.4) may be discarded if we le fx) = x β hx) = x γ, where β γ are he raios of posiive odd inegers.

506 SAID R. GRACE, RAVI P. AGARWAL AND MUSTAFA F. AKTAS 2. We noe ha condiions 2.21) 2.22) respecively can be replaced by lim sp k 2 qs) g) gs) T T a) ) 1/α d ) α ds > 1 lim inf k2 g) qs) gs) T T a) ) 1/α d ) α ds > 1 e. 3. The resls of Secion 3 can be obained for eqaions of he form a) x )) α) = q)fx[g)]), where he argmen g) is of mixed ype, say, g) = sin. The deails are lef o he reader. 4. The resls of his paper are exendable o neral eqaions of he form ) d 2 α ) d a) [x) + c)x[α)]] + q)fx[g)]) = 0 d 2 d ) d 2 α ) d a) [x) + c)x[α)]] d 2 d = q)fx[g)]) + p)hx[σ)]), where c), α) C[ 0, ), IR) reader. lim α) =. The deails are lef o he I will be ineresing o derive differen oscillaion crieria for he oscillaion of eqaions 1.1) 1.2) via oher echniqes raer han hose presened here. REFERENCES 1. R. P. Agarwal, S. R. Grace D. O Regan, Oscillaion Theory for Difference Fncional Differenial Eqaions, Klwer, Dordrech, 2000. 2. R. P. Agarwal, S. R. Grace D. O Regan, Oscillaion Theory for Second Order Linear, Half linear, Sperlinear Sblinear Dynamic Eqaions, Klwer, Dordrech, 2002. 3. R. P. Agarwal, S. R. Grace D. O Regan, Oscillaion Theory for Second Order Dynamic Eqaions, Taylor & Francis, London, 2003.

OSCILLATION OF THIRD ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS 507 4. R. P. Agarwal, S. R. Grace D. O Regan, On he oscillaion of cerain fncional differenial eqaions via comparison mehods, J. Mah. Anal. Appl., 286 2003), 577-600. 5. R. P. Agarwal, S. R. Grace D. O Regan, The oscillaion of cerain higher order fncional differenial eqaions, Mah. Comp. Modelling, 37 2003), 705-728. 6. R. P. Agarwal, S. R. Grace T. Smih, Oscillaion of cerain hird order fncional differenial eqaions, Adv. Mah. Sci. Appl., 16 2006), 69-94. 7. I. Gyori G. Ladas, Oscillaion Theory of Delay Differenial Eqaions wih Applicaions, Clarendon Press, Oxford, 1991. 8. Y. Kiamra, Oscillaion of fncional differenial eqaions wih general deviaing argmens, Hiroshima Mah. J., 15 1985), 445-491. 9. T. Ksano B. S. Lalli, On oscillaion of half linear fncional differenial eqaions wih deviaing argmens, Hiroshima Mah. J., 24 1994), 549-563. 10. Ch.G. Philos, On he exisence of nonoscillaory solions ending o zero a for differenial eqaions wih posiive delays, Arch. Mah., 36 1981), 168-178.