M5 Simple Beam Theory (continued)

Similar documents
Lecture M1 Slender (one dimensional) Structures Reading: Crandall, Dahl and Lardner 3.1, 7.2

Unit 13 Review of Simple Beam Theory

[8] Bending and Shear Loading of Beams

BEAM DEFLECTION THE ELASTIC CURVE

Mechanics in Energy Resources Engineering - Chapter 5 Stresses in Beams (Basic topics)

Unit 15 Shearing and Torsion (and Bending) of Shell Beams

CHAPTER OBJECTIVES Use various methods to determine the deflection and slope at specific pts on beams and shafts: 2. Discontinuity functions

Chapter 12 Plate Bending Elements. Chapter 12 Plate Bending Elements

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3

Symmetric Bending of Beams


Lecture 15 Strain and stress in beams

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

7.4 The Elementary Beam Theory

Bending Stress. Sign convention. Centroid of an area

CHAPTER -6- BENDING Part -1-

CHAPTER 5. Beam Theory

Chapter 5 Structural Elements: The truss & beam elements

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

1 Static Plastic Behaviour of Beams

Mechanics of Solids I. Transverse Loading

Review Lecture. AE1108-II: Aerospace Mechanics of Materials. Dr. Calvin Rans Dr. Sofia Teixeira De Freitas

ENG2000 Chapter 7 Beams. ENG2000: R.I. Hornsey Beam: 1

BEAM A horizontal or inclined structural member that is designed to resist forces acting to its axis is called a beam

Chapter 8 Supplement: Deflection in Beams Double Integration Method

6. Bending CHAPTER OBJECTIVES

Slender Structures Load carrying principles

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly

Chapter 7: Internal Forces

7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 6 Shearing Stress in Beams & Thin-Walled Members

FINAL EXAMINATION. (CE130-2 Mechanics of Materials)

FIXED BEAMS IN BENDING

bending moment in the beam can be obtained by integration

Example 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60.

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 2 SECTION PROPERTIES

Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. Fall 2004

Chapter 6: Cross-Sectional Properties of Structural Members

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Mechanics of Structure

Name (Print) ME Mechanics of Materials Exam # 2 Date: March 29, 2017 Time: 8:00 10:00 PM - Location: WTHR 200

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Lecture 8. Stress Strain in Multi-dimension

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

General elastic beam with an elastic foundation

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method

Mechanics of Solids notes

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

UNIT- I Thin plate theory, Structural Instability:

Strength of Materials Prof. Dr. Suraj Prakash Harsha Mechanical and Industrial Engineering Department Indian Institute of Technology, Roorkee

This procedure covers the determination of the moment of inertia about the neutral axis.

3.4 Analysis for lateral loads

Lecture Slides. Chapter 4. Deflection and Stiffness. The McGraw-Hill Companies 2012

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering

Deflection of Flexural Members - Macaulay s Method 3rd Year Structural Engineering

CH. 4 BEAMS & COLUMNS

MECHANICS OF MATERIALS

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13

Beams. Beams are structural members that offer resistance to bending due to applied load

Quintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation

Deflection of Beams. Equation of the Elastic Curve. Boundary Conditions

Mechanics of Materials Primer

MECHANICS OF MATERIALS

Mechanics PhD Preliminary Spring 2017

Chapter 4 Deflection and Stiffness

2 marks Questions and Answers

MECE 3321: Mechanics of Solids Chapter 6

Comb resonator design (2)

Lecture Pure Twist

Name (Print) ME Mechanics of Materials Exam # 1 Date: October 5, 2016 Time: 8:00 10:00 PM

7. Hierarchical modeling examples

Two Posts to Fill On School Board

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Lecture 3: The Concept of Stress, Generalized Stresses and Equilibrium

Advanced Structural Analysis EGF Section Properties and Bending

Using the finite element method of structural analysis, determine displacements at nodes 1 and 2.

Assumptions: beam is initially straight, is elastically deformed by the loads, such that the slope and deflection of the elastic curve are

Discontinuous Distributions in Mechanics of Materials

Supplement: Statically Indeterminate Frames

Strength of Materials Prof. S.K.Bhattacharya Dept. of Civil Engineering, I.I.T., Kharagpur Lecture No.26 Stresses in Beams-I

(Refer Slide Time: 01:00 01:01)

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11

7.3 Design of members subjected to combined forces

Properties of Sections

Structures. Shainal Sutaria

Lecture 7: The Beam Element Equations.

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

4. BEAMS: CURVED, COMPOSITE, UNSYMMETRICAL

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323

MECH 401 Mechanical Design Applications

CHAPTER 4: BENDING OF BEAMS

Chapter 3. Load and Stress Analysis

LECTURE 14 Strength of a Bar in Transverse Bending. 1 Introduction. As we have seen, only normal stresses occur at cross sections of a rod in pure

Name (Print) ME Mechanics of Materials Exam # 2 Date: March 29, 2016 Time: 8:00 10:00 PM - Location: PHYS 114

December 10, PROBLEM NO points max.

MECHANICS OF MATERIALS

Lecture-04 Design of RC Members for Shear and Torsion

Transcription:

M5 Simple Beam Theory (continued) Reading: Crandall, Dahl and Lardner 7.-7.6 In the previous lecture we had reached the point of obtaining 5 equations, 5 unknowns by application of equations of elasticity and modeling assumptions for beams (plane sections remain plane and perpendicular to the mid plane): u( x,y,z) = -z dw dx (1) w( x,y,z) = w( x) () e xx = -z d w dx (3) e xx = s xx E x (4) s xx x + s zx z = 0 (5) 5 eqns, 5 unknowns : w,u,e xx,s xx,s xz Solutions: Stresses & deflections First consider relationship between stresses and internal force and moment resultants for beams (axial force, F, shear force, S, and bending moment M). Consider rectangular cross section (will generalize for arbitrary cross-section shortly)

Resultant forces and moments are related to the stresses via considerations of equipollence: F = h Ú s xx bdz (6) -h h S = - Ú bdz (7) -h s xz h M = - Ú s xx bzdz -h (8) Now we combine and substitute between the equations derived above. combine (3) and (4) to obtain: s xx = E x e xx = -E x z d w dx Now substitute this in (7) F = -E x d w dx h h È d w z Ú zbdz = Í -E x dx b -h Î Í -h = 0 Which is correct, since there is no axial force in pure beam case. Similarly in (8) M = E x d w dx +h Ú. -h z bdz We can write this more succinctly as: M = E x I d w dx curvature this is the moment curvature relation - positive moment results in positive curvature (upward). The quantity EI defines the stiffness of beam sometimes called flexural rigidity note that it depends on both the shape and the material property, E.

h Where I = Ú z bdz is the second moment of area (similar to moment of inertia for -h dynamics see 8.01) Recall that s xx = -E x z d w dx = -E x z M E x I I yy = z h +y(z) Ú da = Ú Ú z dydz I yy is second moment of area about y axis. A -h -y(z) Note that there is also a moment of inertia about the z axis I zz. In general we will be concerned about the possibility of bending about multiple axes, and the bending of nons xx = - Mz I This is the moment - stress relationship Implies a linear variation of stress, Maximum stress at edges (top and bottom) of beam More general definition of I : See Crandall, Dahl and Lardner 7.5 For general, symmetric, cross-section

symmetric cross-section. However, we will not consider these cases in Unified (see 16.0) Note, for particular case of a rectangular section I = 1 1 bh3 [L 4 ] We need to define centroid: center of area (analogous to center of mass). Position calculated by taking moments of area about arbitrary axis. Hence z position given by: z Centroid = Ú A zda Ú da A No net moment about centroid In bending centroid is unstrained also known as the neutral axis or neutral plane Can also use parallel axis theorem to calculate second moments of area I total = Â I i + ÂA i d i Second moment of area about centroid of area area Distance of centroid from total section centroid Useful to simplify problems, e.g. for I beam cross-section (structurally efficient form, effectively used as spars in many aircraft). is equivalent to:

1 1 bh3 I total = I y1 y 1 + A 1 d 1 + Iy y + I y3 y 3 + A 3 d 3 Changing area distribution by moving material from the web to the flanges increases section efficiency measured as I A - resistance to bending for a given amount of material used.

M6 Shear Stresses in Simple Beam Theory Reading: Crandall, Dahl and Lardner 7.6 Returning to the derivations of simple beam theory, the one issue remaining is to calculate the shear stresses in the beam. We would like to obtain an expression for s zx ( z). Recall: Shear stresses linked to axial (bending) stresses via: s xx x and + s zx z = 0 fi s zx z = - s xx x Shear force (for case of rectangular cross-section, width b) linked to shear stress via: (5) S = - h s xz -h Ú bdz (7) Multiply both sides of (5) by b and integrate from z to h/ (we want to know s zx ( z) Ê and we know that s zx ± h ˆ Á = 0 ) Ë

h b s zx s Ú dz = - Ú xx bdz z z z x h [ bs xz (z)] z h h Ê -dm ˆ zb = - Ú Á z Ë dx I dz s xx = -Mz I yy recall b s xz h dm dx = S h Ê ˆ Ë I dz yy ( ( ) - s xz ( z) ) = SÁ zb Ú Note that at z = h (top surface) s zx = 0 Also define z Q = h Ú zbdz z Hence: s xz (z) = - SQ I yy b first moment of area above the center shear stress -force relation For a rectangular section: Q = h Ú z È zbdz = z Í b Î Í h z = b È h Í 4 - z Î Í

Parabolic, maximum at z = 0. The centerline. Minimum = 0 at top and bottom "ligaments" For non-rectangular sections this can be extended further if b is allowed to vary as a function of z. I.e. can write: s xz (z) = - SQ I yy b z ( ) But need to beware cases in which we have thin walled open or closed sections where shear is not confined to s xz. Will also have s xy (on flanges). E.g.

or We will defer discussion of these cases until 16.0. So this is the model for a simple beam. What can we do with it?

M7 Examples of Application of Beam Theory Reading: Crandall, Dahl and Lardner 8.1.-8.3 Example: Calculate deflected shape and distribution of stresses in beam. Refer back to example problem in lecture M3. Example: Uniform distributed load, q (per unit length, applied to simply supported beam. Free Body diagram: Apply method of sections to obtain bending moments and shear forces: S(x) = ql - qx:

M (x) = qlx - qx : Let beam have rectangular cross-section, h thick, b wide. Material, Young s modulus E: Deflected shape of the beam: obtain via moment curvature relationship: w EI d w dx = M fi d dx = M (x) EI Integrate to obtain deflected shape w(x) w( x) = M (x) Ú Ú dx dx EI and for EI constant over length of the beam: fi w( x) = 1 EI For our case: Ú Ú M (x)

M (x) = -qx (x - L) dw dx = - 1 qx Ú (x - L)dx EI = -q Ê È x 3 EI 6 - Lx ˆ Í Á Ë Î Í 4 + C 1 So w(x) = 1 EI ( q È Ú Í Î Í x 3 6 - Lx 4 + C 1 )dx w(x) = -q È x 4 EI 4 - Lx3 Í 1 + C 1 x + C Î Í C 1 and C are calculated from values of w(x) and w (x) at boundary conditions. Two constants of integration, need two boundary conditions to solve. x = 0, w = 0 fi C = 0 x = L, w = 0 Hence: 0 = -L4 4 + L4 1 + C 1L = 0 fi C 1 = -L3 4 w(x) = - q [ 48EI x4 - Lx 3 + L 3 x] Maximum deflection occurs where: dw(x) dx = 0 dw dx fi 4x3 - blx + L 3 = 0 at x = L w = - 5 384 ql 4 EI yy

Find Stresses: s xx = - Mz I yy substitute for M(x) Max tensile (bending) stress at x = L, s xxmax = 3qL 4bh M max = ql 8, z = ± h Shear stresses: s xz = -SQ Ib for rectangular cross-section occurs where max shear force S = ql @ x=0, x=l h Q(z) = Ú z bd z z = b z h È Í = b È h Í Î Í z 4 - z z Î Í s xzmax = bh 8 ql 1 1 bh 3 b = 3 ql 4 bh Note that this is much smaller than s xxmax if L/h is large (i.e slender beam).

M8 Application of Simple Beam Theory: Discontinuous Loading and Statically Indeterminate Structures See Crandall, Dahl and Lardner 8.3, 3.6, 8.4 Example Free body diagram Shear forces:

Bending moments: Note in passing M(x) and hence s xx = -Mz = constant I for L x L - useful for mechanical testing of materials four point bending Could solve for deflections by writing separate equations for: M(x) for 0 < x < L, L < x < L, L < x < 3L and integrating each equation separately and matching slope and displacements at interfaces between sections. This is a tedious process. Or we can use:.

Macaulay s Method Relies on the knowledge that the integral of the moment (i.e. the slope, and deflection) are continuous, smooth functions. Beams do not develop kinks. This is a particular example of a class of mathematical functions known as singularity functions which are discontinuous functions, defined by their integrals being continuously defined. Apply method of sections to the right of all the applied loads Write down equilibrium equation for section, leaving quantities such as {x-l} grouped within curly brackets { } M x=x = 0 M + P{x - L} + P{x - L} - Px = 0 {x-a} is treated as a single variable, only takes a value for x > a otherwise { } = 0 Proceed as before - integrate moment-curvature relationship twice, applying boundary conditions M = Px - P(x - L) - P(x - L) = EI d w dx EI dw dx = Px - P { x - L} - P { x - L} + A EIw = Px3 6 - P 6 x - L { }3 - p 6 x - L { }3 + Ax + B apply boundary conditions: w = 0 @ x = 0 for x = 0 only P(x)3 6 w = 0 @ x = 3L is evaluated = 0, therefore B = 0

for x = 3L fi PL3 6 - PL3 6 - P 6 ( 8L3 ) + A ( 3L ) = 0 fi A = 4 9 PL w(x) = 1 È Px 3 EI 6 - P 6 { x - L}3 - P 6 { x - L}3 + 4 Í 9 PL x Î Í Provides complete description of deflected shape of beam in one equation. Can also use for distributed loads. (Several ways to approach.) Statically Indeterminate Beams Reading: Crandall, Dahl and Lardner, 8.4 1.) By simultaneous application of three great principles i.e., Set up: equilibrium Moment - curvature Geometric Constraints Solve simultaneously (reactions remain as unknowns in momentcurvature equations).) Superposition Decompose problem into several statically determinate structures. Replace constraints by applied loads Solve for loads required to achieve geometric constraints. Example: cantilever beam under uniform distributed load, with pin at right hand end.

R B =? Equivalent to: (1) + () From standard solutions or calculation obtain expressions for deflections in case (1) and case ():

d 1 = - ql4 8EI, d = + R B L3 3EI fi d 1 + d = 0 ql4 8EI = R B L3 3EI fi R B = 3qL 8 This is a powerful technique for solving beam problems statically indeterminate, or otherwise complex loading. Note. For superposition to work we must be superimposing the loads and boundary conditions on the same beam. Only change one variable in each loading case.