Gravitational Waves from Neutron Stars

Similar documents
What can X-ray observations tell us about: The role of Gravitational Waves in Low Mass X-ray Binaries

Gravitational Wave emission mechanisms in accreting systems. Brynmor Haskell INAF-Milano 26/11/2009

Gravitational waves from neutron stars and the nuclear equation of state

Missing pieces in the r-mode puzzle

Tests of nuclear properties with astronomical observations of neutron stars

Spin and Orbital Evolution of the Accreting Millisecond Pulsar SAX J :

Instabilities in neutron stars and gravitational waves

Searching for gravitational waves from neutron stars

EXTREME NEUTRON STARS

Gravitational waves from neutron stars: theoretical challenges. Ian Jones University of Southampton IGWM, 17 th May 2017

Accretion in Binaries

Probing the High-Density Behavior of Symmetry Energy with Gravitational Waves

The population of Galactic X-ray bursters as seen by JEMX onboard INTEGRAL

SUPERFLUID MAGNETARS AND QPO SPECTRUM

Pulsar Glitches: Gravitational waves at r-modes frequencies

NEUTRON STAR DYNAMICS

Burst Oscillations, Nonradial Modes, and Neutron Star Crusts

文德华 Department of Physics, South China Univ. of Tech. ( 华南理工大学物理系 )

Interactions between gravitational waves and photon astronomy (periodic signals)

14/11/2018. L Aquila - Multi-messenger studies of NS mergers, GRBs and magnetars. Simone Dall Osso

Gravitational Waves from Low-Mass X-ray Binaries: a Status Report 1

The Secret Life of Neutron Stars. Jeremy Heyl Harvard-Smithsonian CfA

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04

Neutron Stars: Observations

Phase Oscillation between Superfluid and Normal State of Neutrons in Neutron Stars The Origin of Glitches of Pulsars 1

arxiv: v1 [astro-ph.he] 21 Sep 2017

Realistic nucleon force and X-ray observations of neutron stars

GRAVITATIONAL WAVE ASTRONOMY

Neutron Star Seismology with Accreting Millisecond Pulsars

Continuous-wave gravitational radiation from pulsar glitch recovery

Superfluid instability in precessing neutron stars

X-ray observations of X-ray binaries and AGN

GRAVITATIONAL WAVES. Eanna E. Flanagan Cornell University. Presentation to CAA, 30 April 2003 [Some slides provided by Kip Thorne]

Measuring MNS, RNS, MNS/RNS or R

Gravitational Waves. Masaru Shibata U. Tokyo

Study of superfluidity in magnetars by van Hoven and Levin

A Comparative Study of Quark-Gluon Plasma at the Core of a Neutron Star and in the Very Early Universe. Frikkie de Bruyn

Gravitational Wave Burst Searches

Ref. PRL 107, (2011)

Searching for gravitational waves. with LIGO detectors

Millisecond X-ray pulsars: 10 years of progress. Maurizio Falanga

Nuclear burning on! accreting neutron stars. Andrew Cumming! McGill University

Gravitational Waves from Supernova Core Collapse: What could the Signal tell us?

MILLISECOND PULSARS. Merve Çolak

NewCompStar - working group 1 Observations and modelling of compact stars. Pablo Cerdá-Durán (U. Valencia) Trento 13 Oct. 2017

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes

Object Index. Einstein, 118, 177, 347 EXO , 312, 318 EXO , 264, 268, 273 EXOSAT, 118, 299

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

Astrophysical Stochastic Gravitational Waves. Jonah Kanner PHYS 798G March 27, 2007

Cooling Neutron Stars. What we actually see.

Probing Neutron Star Physics using Thermonuclear X-ray Bursts

LIGO Observational Results

General Relativistic MHD Simulations of Neutron Star Mergers

Thermal States of Transiently Accreting Neutron Stars in Quiescence

The fundamental INTEGRAL contributions to advance the millisecond X-ray pulsars research field

Relativistic Astrophysics Neutron Stars, Black Holes & Grav. W. ... A brief description of the course

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

HPC in Physics. (particularly astrophysics) Reuben D. Budiardja Scientific Computing National Institute for Computational Sciences

arxiv: v2 [astro-ph.sr] 1 Jan 2012

arxiv:astro-ph/ v2 8 Nov 2002

Multimessenger Probes of Neutron Star Physics. David Tsang (U. Southampton)

Two types of glitches in a solid quark star model

Fundamental Physics, Astrophysics and Cosmology with ET

Gravitational. Radiation

Gravitational Wave Astronomy the sound of spacetime. Marc Favata Kavli Institute for Theoretical Physics

Dense matter equation of state and rotating neutron stars

Not-Quite-Continuous Gravitational Waves

From space-time to gravitation waves. Bubu 2008 Oct. 24

VISCOUS BOUNDARY LAYER DAMPING OF R-MODES IN NEUTRON STARS. and

Applications of Neutron-Star Universal Relations to Gravitational Wave Observations

THE EVOLUTION OF THE F-MODE INSTABILITY

arxiv:astro-ph/ v1 31 Dec 1997

Eric Howell University of Western Australia

EINSTEIN TELESCOPE rd. 3 generation GW detector

Sources of Gravitational Waves

Gravitational waves (...and GRB central engines...) from neutron star mergers

PoS(Confinement X)260

Pulsar glitch dynamics in general relativity

Neutron Stars. Properties of Neutron Stars. Formation of Neutron Stars. Chapter 14. Neutron Stars and Black Holes. Topics for Today s Class

Neutron Stars. J.M. Lattimer. Department of Physics & Astronomy Stony Brook University. 25 July 2011

Searches for con,nuous gravita,onal waves in LIGO/Virgo data and the post-merger remnant following the binary neutron star merger GW170817

Probing Extreme Physics with Compact Objects

Implications of GW observations for short GRBs

Neutron Stars. We now know that SN 1054 was a Type II supernova that ended the life of a massive star and left behind a neutron star.

10 Years of Accreting Pulsars with Fermi GBM

Compact stars as laboratories to test matter at extreme conditions. Alessandro Drago Otranto, June 2009

LIGO Results/Surprises? Dong Lai

James Clark For The LSC

Modelling pulsar glitches with realistic pinning forces: a hydrodynamical approach

Astronomy 421. Lecture 23: End states of stars - Neutron stars

Neutron Star Observations and Their Implications for the Nuclear Equation of State

Gravitational wave emission from oscillating millisecond pulsars

Neutron Star Science with ASTROSAT/LAXPC: Periodic X-Ray Timing and Spectroscopy

Crustal cooling in accretion heated neutron stars

Evolution of High Mass stars

DYNAMICS OF MIXED BINARIES

, G RAVITATIONAL-WAVE. Kent Yagi. with N. Yunes. Montana State University. YKIS2013, Kyoto

Gravitational Waves from Supernova Core Collapse: Current state and future prospects

Rotating RAdio Transients (RRATs) ApJ, 2006, 646, L139 Nature, 2006, 439, 817 Astro-ph/

Transcription:

Gravitational Waves from Neutron Stars Astronomical Institute Anton Pannekoek

Elastic outer crust Neutron star modelling Elastic inner curst with superfluid neutrons Superfluid neutrons and superconducting protons in the outer core Exotic particles in the inner core Large magnetic fields, possibly arranged in flux tubes in (Type II) superconducting regions Rapid rotation

Theoretical relevance Probe the low temperature high density region of the QCD phase diagram! Uncertainties still large... Must model multi fluid superfluid and superconducting system (possibly in GR) Several inputs required besides EOS: shear modulus, vortex/flux tube interactions, dissipation, etc..

Astrophysical relevance X-ray (Magnetars, LMXBs...) Radio (Pulsar glitches...) Gravitational waves γ -ray, optical.. (Pulsars, bursts..)

GW emission mechanisms: Compact binary inspirals: NS/NS or NS/BH inspirals tidal signatures of EOS (Gold et al. 2011, Pannarale et al. 2011) chirps Supernovae / GRBs: bursts Simulations suggest unstable modes could be excited in the proto-ns after the collapse (Ferrari et al. 2003, Ott et al. 2006) Pulsars: periodic Deformations of isolated stars (Abbot et al. 2009) Modes of Oscillation (Gaertig & Kokkotas 2010) Pulsar glitches (Sidery et al. 2010, Bennett et al. 2010) Accreting systems (Watts et al. 2008) Cosmological signals: stochastic background Prime target for Pulsar Timing Arrays NS physics needed for detection! (Shannon & Cordes 2010)

GW emission mechanisms: Compact binary inspirals: chirps NS/NS or NS/BH inspirals tidal signatures of EOS (Gold et al. 2011, Pannarale et al. 2011) High frequency signals (khz) 3G(ET?) needed Supernovae / GRBs: bursts Simulations suggest unstable modes could be excited in the proto-ns after the collapse (Ferrari et al. 2003, Ott et al. 2006) Pulsars: periodic Deformations of isolated stars (Abbot et al. 2009) Modes of Oscillation (Gaertig & Kokkotas 2010) Pulsar glitches (Sidery et al. 2010, Bennett et al. 2010) Accreting systems (Watts et al. 2008) Cosmological signals: stochastic background Prime target for Pulsar Timing Arrays NS physics needed for detection! (Shannon & Cordes 2010)

GW emission mechanisms: Compact binary inspirals: chirps NS/NS or NS/BH inspirals tidal signatures of EOS (Gold et al. 2011, Pannarale et al. 2011) High frequency signals (khz) 3G(ET?) needed Supernovae / GRBs: bursts Simulations suggest unstable modes could be excited in the proto-ns after the collapse (Ferrari et al. 2003, Ott et al. 2006) Pulsars: periodic Deformations of isolated stars (Abbot et al. 2009) Modes of Oscillation (Gaertig & Kokkotas 2010) Pulsar glitches (Sidery et al. 2010, Bennett et al. 2010) Accreting systems (Watts et al. 2008) Cosmological signals: stochastic background Prime target for Pulsar Timing Arrays NS physics needed for detection! (Shannon (courtesy of & L. Cordes Samuelsson) 2010)

GW emission mechanisms: Compact binary inspirals: chirps NS/NS or NS/BH inspirals tidal signatures of EOS (Gold et al. 2011, Pannarale et al. 2011) High frequency signals (khz) 3G(ET?) needed Supernovae / GRBs: bursts Simulations suggest unstable modes could be excited in the proto-ns after the collapse (Ferrari et al. 2003, Ott et al. 2006) Pulsars: periodic Deformations of isolated stars (Abbot et al. 2009) Modes of Oscillation (Gaertig & Kokkotas 2010) Pulsar glitches (Sidery et al. 2010, Bennett et al. 2010) Accreting systems (Watts et al. 2008) Cosmological signals: stochastic background Prime target for Pulsar Timing Arrays NS physics needed for detection! (Shannon & Cordes 2010)

GW emission mechanisms: Compact binary inspirals: chirps NS/NS or NS/BH inspirals tidal signatures of EOS (Gold et al. 2011, Pannarale et al. 2011) High frequency signals (khz) 3G(ET?) needed Supernovae / GRBs: bursts Simulations suggest unstable modes could be excited in the proto-ns after the collapse (Ferrari et al. 2003, Ott et al. 2006) Pulsars: periodic Deformations of isolated stars (Abbot et al. 2009) Modes of Oscillation (Gaertig & Kokkotas Low amplitude ET needed to constrain models 2010) Pulsar glitches (Sidery et al. 2010, Bennett et al. 2010) Accreting systems (Watts et al. 2008) Cosmological signals: stochastic background Prime target for Pulsar Timing Arrays NS physics needed for detection! (Shannon & Cordes 2010)

Low Mass X-ray Binaries Mass is stripped from the donor Forms a disc and spirals in Interacts with the magnetic field Transfers angular momentum to the central NS, spinning it up

GWs from LMXBs Cutoff of distribution at ~730 Hz Keplerian breakup at ~2000 Hz (Chakrabarty et al 2003, Patruno 2010) LMXB spin distribution points to a mechanism that halts the spin-up before the break up limit. GWs!: mountains, unstable modes, magnetic deformations.. (Papaloizou & Pringle 1978, Wagoner 1984, Bildsten 1998)

GWs from LMXBs Cutoff of distribution at ~730 Hz Keplerian breakup at ~2000 Hz (Chakrabarty et al 2003, Patruno 2010) LMXB spin distribution points to a mechanism that halts the spin-up before the break up limit. GWs!: mountains, unstable modes, magnetic deformations.. (Papaloizou & Pringle 1978, Wagoner 1984, Bildsten 1998)

Spin equilibrium? Interaction at magnetospheric radius can lead to spin equilibrium Originally discarded (White & Zhang 1997) while recent results show it could be consistent with observations (Patruno, Haskell & D Angelo 2011)

Neutron star mountains ɛ = I xx I yy I zz Emission at ω =2Ω de dt ɛ2 Ω 6 Theoretical upper limit ɛ 10 6 (Haskell, Jones, Andersson 2006)

Neutron star mountains-ii Mountains from wavy capture layers in crust (Ushomirsky, Cutler, Bildsten 2000) Deep crustal heating consistent with cooling observations from X-ray transients. Small temperature deviations could be detected by ET

Magnetic mountains Magnetic field distorted by the accretion flow Possibility of confining a mountain (Haskell et al 2008, Payne & Melatos 2005, Priymak et al. 2011, Lander et al. 2012)

r-mode instability (Animation by Ben Owen) r-mode generically unstable to GW emission Rotating observer Emission at ω 4 3 Ω Viscosity damps the mode except in a window of temperatures and frequencies Inertial observer

r-mode instability window

r-mode instability window 0.8 0.7 0.6 1/2! c / ( G " # ) 0.5 0.4 0.3 0.2 0.1 0 1e+05 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 Temperature (K) α s 10 5 [ Bondarescu, Teukolsky, Wasserman 2007]

r-mode instability window Duty cycle short (10% or less) for large saturation amplitudes 0.8 0.7 0.6 For small saturation amplitudes the system does not move far from the instability curve 1/2! c / ( G " # ) 0.5 0.4 0.3 0.2 For tiny saturation amplitudes the system can live IN the window 0.1 0 1e+05 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 Temperature (K) α s 10 5 [ Bondarescu, Teukolsky, Wasserman 2007]

r-mode instability window - II 700 4U 1608 600 IGR J00291 SAX J1750.8 MXB 1659 Aql X-1 EXO 0748 Spin frequency (Hz) 500 400 300 SAX J1808 KS 1731 SWIFT J1749 SAX J1748.9 XTE J1751 HETE J1900.1 XTE J1814 IGR J1791 200 NGC 6440 PSR J2124 XTE J1807 IGR J17511 PSR J0030 PSR J0437 XTE J0929 SWIFT J1756 100 1e+06 1e+07 1e+08 1e+09 Temperature (K) [ Haskell, Degenaar & Ho, 2011]

r-mode instability window - II 700 Spin up 4U 1608 600 IGR J00291 SAX J1750.8 MXB 1659 Aql X-1 EXO 0748 Spin frequency (Hz) 500 400 300 Spin down KS 1731 SWIFT J1749 SAX J1748.9 XTE J1751 SAX J1808 HETE J1900.1 XTE J1814 IGR J1791 200 NGC 6440 PSR J2124 XTE J1807 IGR J17511 PSR J0030 PSR J0437 XTE J0929 SWIFT J1756 100 1e+06 1e+07 1e+08 1e+09 Temperature (K) [ Haskell, Degenaar & Ho, 2011]

Multifluid hydrodynamics t ρ x + i (ρ x v i x)=0 ( t + vx j j )(vi x + ε x w yx i )+ i ( µ x + Φ)+ε x wyx j i vj x = fi x /ρ x + j D j i D j i Dissipative terms (bulk viscosity, shear viscosity, etc..) f x i =2ρ n B ɛ ijk Ω j w k xy +2ρ n Bɛ ijk ˆΩj ɛ klm Ω l w xy m Mutual Friction

Mutual friction Superfluids rotate by forming quantised vortices Vortex density determines spin : vortices must move out to spin down the fluid! Balance of forces determines the dynamics v i n t +... = ɛijkˆkj (v v k v n k) v i c t +... = R(vi c v i v) Magnus Force FREE : ɛ ijkˆkj (v v k v n k)+r(v i c v i v) = 0

Strong Mutual Friction - vortex/flux tube cutting? 800 700 UNSTABLE R=0.02 800 700 R=0.02 UNSTABLE 600 IGR J00291 600 IGR J00291 Spin frequency (Hz) 500 400 300 200 R=0.01 Spin frequency (Hz) 500 400 300 200 R=0.01 100 STABLE 100 STABLE 0 1e+05 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 Temperature (K) 0 1e+05 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 Temperature (K) [ Haskell, Degenaar & Ho (2011) - Ho, Andersson & Haskell (2011)]

Hyperon/quark bulk viscosity? 800 700 UNSTABLE!=1 R=10 Km 700 600! s= 0.05 m = 100 MeV s IGR J00291 4U 1608 SAX J1750.8 600 IGR J00291 MXB 1659 Aql X-1 EXO 0748 Spin frequency (Hz) 500 400 300 200 100 STABLE!=0.01 R=10 Km!=0.01 R=12.5 Km Spin frequency (Hz) 500 400 300 200! s= 0.1 m = 200 MeV s KS 1731 SWIFT J1749 SAX J1748.9 XTE J1751 SAX J1808 HETE J1900.1 XTE J1814 IGR J1791 NGC 6440 PSR J2124 IGR J17511 XTE J1807 PSR J0030 PSR J0437 XTE J0929 SWIFT J1756 0 1e+05 1e+06 1e+07 1e+08 1e+09 1e+10 1e+11 Temperature (K) 100 1e+06 1e+07 1e+08 1e+09 Temperature (K) [ Haskell & Andersson 2010, Haskell, Degenaar & Ho 2011]

Hyperon/quark bulk viscosity? 700 600! s= 0.05 m = 100 MeV s IGR J00291 4U 1608 SAX J1750.8 MXB 1659 Aql X-1 EXO 0748 Spin frequency (Hz) 500 400 300! s= 0.1 m = 200 MeV s SAX J1808 KS 1731 SWIFT J1749 SAX J1748.9 XTE J1751 HETE J1900.1 XTE J1814 IGR J1791 200 NGC 6440 PSR J2124 XTE J1807 IGR J17511 PSR J0030 PSR J0437 XTE J0929 SWIFT J1756 100 1e+06 1e+07 1e+08 1e+09 Temperature (K) [ Haskell & Andersson 2010, Haskell, Degenaar & Ho 2011]

Spin equilibrium Spin frequency (Hz) 700 600 500 400 300 200 4U 1608 IGR J00291 SAX J1750.8 MXB 1659 Aql X-1 EXO 0748 KS 1731 SWIFT J1749 SAX J1748.9 XTE J1751 SAX J1808 HETE J1900.1 XTE J1814 IGR J1791 NGC 6440 PSR J2124 XTE J1807 IGR J17511 PSR J0030 Is GW emission from an r-mode dictating spin equilibrium? Possible for hotter faster systems? GW emission excluded in 2 slower systems: SAX J1808, XTE J1814 [ Haskell & Patruno 2011] PSR J0437 XTE J0929 SWIFT J1756 100 1e+06 1e+07 1e+08 1e+09 Temperature (K) [ Haskell, Degenaar & Ho 2011]

Conclusions GW observations can constrain the physics of dense matter in NS Signals likely to be weak and (possibly) at high frequencies. Third generation detectors (ET) are needed to place real constraints of physical models Electromagnetic observations (X-ray, radio, gamma-ray) can provide important constraints NS modelling could impact on (and benefit from) GW searches with PTAs.