Spectral analysis of the 511 kev Line

Similar documents
arxiv:astro-ph/ v1 12 Sep 2005

Positron Annihilation in the Milky Way

Positron Annihilation throughout the Galaxy

INTEGRAL Observations of the Galactic 511 kev Emission and MeV Gamma-ray Astrophysics K. Watanabe, NASA/Goddard Space Flight Center

Positron Annihilation in the Milky Way and beyond

INTEGRAL Observations of the Galactic 511 kev Emission and MeV Gamma-ray Astrophysics

stringent constraint on galactic positron production

The Origin of the 511 kev Positron Annihilation Emission Morphology

II. Observations. PoS(NIC-IX)257. Observatoire de Genève INTEGRAL Science Data Center

Prospects in space-based Gamma-Ray Astronomy

The INTEGRAL view of 511 kev annihilation line in our Galaxy

arxiv: v1 [astro-ph.he] 21 Oct 2009

Astrophysical Quantities

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission

GALACTIC Al 1.8 MeV GAMMA-RAY SURVEYS WITH INTEGRAL

PoS(Extremesky 2011)064

Laura Barragán. Universidad Complutense de Madrid

Gamma-Ray Astronomy. Astro 129: Chapter 1a

arxiv: v1 [astro-ph.he] 25 Jan 2010

A. Takada (Kyoto Univ.)

Satellite Experiments for Gamma-Ray Astrophysics

Energy Sources of the Far IR Emission of M33

Early works. Dynamics of accretion, the role of turbulence, the role of magnetic fields in the ISM, spectrum. Victorij Shvartsman

Possible high energy phenomena related to the stellar capture by the galactic supermassive black holes. K S Cheng University of Hong Kong China

Radio Observations of TeV and GeV emitting Supernova Remnants

Nucleosynthesis in classical novae

The High-Energy Interstellar Medium

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

arxiv: v1 [astro-ph.he] 23 Sep 2010

The sky distribution of positronium annihilation continuum emission measured with SPI/INTEGRAL ABSTRACT

Gas 1: Molecular clouds

A focusing telescope for gamma-ray astronomy

arxiv: v1 [astro-ph.he] 1 Dec 2015

Cosmic rays in the local interstellar medium

Stars, Galaxies & the Universe Lecture Outline

Explosive Events in the Universe and H-Burning

Roland Diehl. MPE Garching

A NEW GENERATION OF GAMMA-RAY TELESCOPE

An Introduction to Radio Astronomy

The Physics of the Interstellar Medium

arxiv: v1 [astro-ph] 17 Nov 2008

Reminders! Observing Projects: Both due Monday. They will NOT be accepted late!!!

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei

Gamma-ray Astrophysics

Gamma-ray emission from nova outbursts

Astrophysics of Gaseous Nebulae

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

Study of Long-lived Radioactive Sources in the Galaxy with INTEGRAL/SPI

Thermal and Non-Thermal X-Rays from the Galactic Center

The population of Galactic X-ray bursters as seen by JEMX onboard INTEGRAL

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

Gamma- Rays from SN2014J

Physics and Chemistry of the Interstellar Medium

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

arxiv:astro-ph/ v1 19 Feb 1999

Diffuse Interstellar Medium

HUNTING DOWN THE SOURCE OF GALACTIC ANTIMATTER

Focussing on X-ray binaries and microquasars

1. Motivation & Detector concept 2. Performance 3. Confirmation experiments 4. Summary

Internal conversion electrons and SN light curves

Components of Galaxies Gas The Importance of Gas

X-ray Radiation, Absorption, and Scattering

1. Motivation & Detector concept 2. Performance 3. Confirmation experiments 4. Summary

A New Look at the Galactic Diffuse GeV Excess

observation of Galactic sources

What do we know after 6 years of Integral?

arxiv:astro-ph/ v1 12 Mar 2001

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

Fossil Records of Star Formation: John Beacom, The Ohio State University

High Energy Astrophysics

AG Draconis. A high density plasma laboratory. Dr Peter Young Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B.

The Universe o. Galaxies. The Universe of. Galaxies. Ajit Kembhavi IUCAA

Interstellar gamma rays. New insights from Fermi. Andy Strong. on behalf of Fermi-LAT collaboration. COSPAR Scientific Assembly, Bremen, July 2010

Supernova Remnants and GLAST

Gamma-Ray Astrophysics

How Nature makes gold

Special Relativity. Principles of Special Relativity: 1. The laws of physics are the same for all inertial observers.

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

HEAO 3 Observations of the Galactic Center 511 kev Line

INTRODUCTION TO SPACE

Search for exotic process with space experiments

Nuclear Astrophysics

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar.

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Basics, types Evolution. Novae. Spectra (days after eruption) Nova shells (months to years after eruption) Abundances

Lecture 14 Cosmic Rays

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

Indirect dark matter detection and the Galactic Center GeV Excess

What Can GLAST Say About the Origin of Cosmic Rays in Other Galaxies

Interstellar Medium by Eye

Special Topics in Nuclear and Particle Physics

3/1/18 LETTER. Instructors: Jim Cordes & Shami Chatterjee. Reading: as indicated in Syllabus on web

The Compton Spectrometer and Imager A balloon- borne gamma- ray spectrometer, polarimeter, and imager

Chapter 15 2/19/2014. Lecture Outline Hubble s Galaxy Classification. Normal and Active Galaxies Hubble s Galaxy Classification

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio.

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

MAX, a Laue Diffraction Lens for nuclear astrophysics

Sep. 13, JPS meeting

Thermonuclear shell flashes II: on WDs (or: classical novae)

Transcription:

Spectral analysis of the 511 kev Line Gillard William (C.E.S.R) From P. Jean et al. A&A, in press ( astro-ph/0509298 ) I. Introduction II. Annihilation spectrum 1. Independent model 2. Astrophysical model III. Positrons in the Galactic bulge IV. Conclusion

Introduction: The view of INTEGRAL-SPI All sky view of 511 kev emission Morphological analysis by model fitting : Knödlseder et al, A&A 2005 - Bulge : 2D Gaussian shaped emission : ~8 o x7 o FWHM Flux = (1.09 ± 0.04) 10-3 γ/s/cm -2 Positron production rate: 1.5x10 43 e + /s - Galactic disk : emission detected (~3-4σ) Flux ~ 4-6 10-4 γ/s/cm -2 Positron production rate: 0.3x10 43 e + /s can be attributed to e + produced by 26 Al & 44 Ti

Annihilation spectra: Independent model Param. Measured values I 2γ (1.01 ± 0.02) x 10-3 s -1 cm -2 Γ 2γ 2.2 ± 0.1 kev I 3γ (4.3 ± 0.3) x 10-3 s -1 cm -2 A c (7.5 ± 0.8) x 10-6 s -1 cm -2 kev -1 Ps fraction : 98.4±2.0 % One Gaussian model fitting Jean et al. A&A in press

Positronium Unstable bounded state between a positron and an electron Positronium 1/4 3/4 e - e + e- e + Parapositronium 2 γ de ~511 kev Orthopositronium 3 γ < 511 kev Orthopositronium: τ = 1,4.10-7 s Spectrum : Continuum Parapositronium: τ = 1,25.10-7 s Spectrum : 511 kev Line

Annihilation spectra: Independent model Param. Measured values I 2γ (1.01 ± 0.02) x 10-3 s -1 cm -2 Γ 2γ 2.2 ± 0.1 kev I 3γ (4.3 ± 0.3) x 10-3 s -1 cm -2 A c (7.5 ± 0.8) x 10-6 s -1 cm -2 kev -1 Ps fraction : 98.4±2.0 % One Gaussian model fitting Jean et al. A&A in press

Annihilation spectra: Independent model Param. Measured values I n (0.72 ± 0.12 ± 0.02) 10-3 s -1 cm -2 Γ n 1.32 ± 0.35 ± 0.02 kev I b (0.35 ± 0.11 ± 0.02) 10-3 s -1 cm -2 Γ b 5.36 ± 1.22 ± 0.06 kev I 3γ (4.23 ± 0.32 ± 0.03) 10-3 s -1 cm -2 A c (7.17 ± 0.80 ± 0.06) 10-6 s -1 cm -2 kev -1 Total 511 kev flux : (1.07±0.03) 10-3 γ/s/cm -2 Ps fraction : 96.7±2.2 % Two Gaussians model fitting Jean et al. A&A in press

Annihilation spectra: 1: 2: 4: e + e + X e - e + + γ X + 3: Life and death of the positron γ Energy loss γ Ps γ Ps γ e + γ γ γ γ e - γ e + loss this energy by Columbian interaction: Ionization, excitation of atoms & molecules Interaction with free electrons IC, Bremss, Sync, Scattering on P-Waves Positronium in flight by charge exchange with H, H 2 or He Thermalized positron 1: Charge exchange: e + + H Ps + H + e + + H2 Ps + H 2 + e + + He Ps + He + 2: Radiative combination: e + + e - Ps 3: Direct annihilation with free electrons: e + + e - 2γ 4: Direct annihilation with bounded electrons: e + + H 2γ + H + e + + H 2 2γ + H + 2 e + + He 2γ + He + 5: Annihilation on dust grains

Annihilation spectra: Life and death of the positron MM CM WNM WIM HM T (K) 80 100 8000 8000 10 6 elements H 2, He HI, He HI, He HII, e -, He HII, e -, He ++ Annihilation cross section Guessoum, Jean & Gillard, A&A 2005

Annihilation spectra: Astrophysical model with grains without grains Theoretical annihilation spectra in each phase of the ISM (Guessoum, Jean & Gillard, A&A 2005)

f i : contribution of phase i S i : Spectrum of phase i, convolved with response of SPI Ps fraction : 93.5 ±0.3% In agreement with : 93±4% Kinzer et al. 2001 94±4% Harris et al. 1998 94±6% Churazov et al. 2005 Positrons annihilate in warm phases of the ISM Astrophysical model fitting Jean et al. A&A in press

Positron in the Galactic Bulge n [cm -3 ] φ v [%] f i [%] 10 3 10 7 < 1 ~ 49 ~ 51 < 0.5 Diffusion of positron? < 8 Molecular medium ~ 10 2 < 1 < 23 Cold neutral medium ~ 6.5 ~ 20 ~ 6.5 ~ 10 ~ 0.01 > 70 half-size [pc] 3-30 ~ 5 E R < 600 pc ql [kev] d max [pc] 10-3 0.03 1. 4.8 0.1-50 2.9 47.9 10-100 5.5 44.0 50-100 270 5600 Warm neutral medium Warm ionized medium Hot medium -> If e + are uniformly distributed and annihilate without propagating then the phase fractions = filling factors => f hot ~ 70% but observations yield f hot < 0.5% => no sources in hot phase? => e + escape the hot phase?

Positron in the Galactic Bulge n [cm -3 ] φ v [%] f i [%] 10 3 10 7 < 1 ~ 49 ~ 51 < 0.5 Diffusion of positron? < 8 Molecular medium ~ 10 2 < 1 < 23 Cold neutral medium ~ 6.5 ~ 20 ~ 6.5 ~ 10 ~ 0.01 > 70 half-size [pc] 3-30 ~ 5 E R < 600 pc ql [kev] d max [pc] Warm neutral medium Warm ionized medium Hot medium -> if E > E ql (n,b) => e + in resonance with Alfvén waves => quasi-linear diffusion (D ql ) 10-3 0.03 1. 4.8 0.1-50 2.9 47.9 10-100 5.5 44.0 50-100 270 5600 -> if E < E ql (n,b) => diffusion regime unknow!!! collisional regime provides an upper-limit -> d i ~ (6D i τ) -> d max = d ql + d coll => D coll For 1 MeV positrons & B bulge ~ 10 µg (Sofue et al. 1987, LaRosa et al. 2005) => 1 MeV positrons escape the hot phase

Conclusion -Results of the spectral analysis : -> annihilation emission seems to come mostly from warm media => we cannot exclude a fraction (<23%) coming from cold phase => we can exclude an hot phase component (<0.5%). => we do not need interstellar grains to explain the line shape. - Comparison with gas content and with our knowledge about propagation of e + : -> positron escape the hot phase -> low energy positrons E ~MeV -Future work : > Spectral analysis of the 511 kev emitted by two bulge regions. > Spectral analysis of the galactic plane e+e- annihilation emission. > Gas content in the galactic bulge (Gillard et al. in prep.) -> What is the diffusion regime of low energy positrons

Observation with SPI/INTEGRAL INTEGRAL ESA s INTErnational Gamma-Ray Astrophysics Laboratory Launch : 17 october 2002 Mission duration : 2008 (+?) Orbit : 72 h, excentric IBIS : Imager on Board the Integral Satellite 15-10000 kev, 12, R 12 SPI : SPectrometer onboard Integral 20-8000 kev, 2.5, R 500 JEM-X : Joint European Monitor for X-rays 3-35 kev, 3, R 10 OMC : Optical Monitoring Camera 550 nm (V band), 6"

Origin of positrons Observationnal facts - Annihilation rates: (1.5±0.1) x 10 43 s -1 in the bulge (0.3±0.2) x 10 43 s -1 in the disk - Bulge to disk luminosity ratio: B/D ~ 3-9 - Energy of e + in the bulge: E < 10 MeV How to produce ~ 2 x 10 43 e + /s? -β + isotopes produced in stars (Colgate, 1970; Clayton, 1973) -> 56 Co : SNe -> 26 Al : SNII, WR -> 44 Ti : SNII -> 22 Na : O-Ne Novae - Cosmic-ray -> p + p -> p + n + π + and π + -> µ + -> e + - Compact sources -> Pulsars (Sturrock, 1971; Ramaty, 1978) - Dark matter -> Black-holes (Lingenfelter & Ramaty, 1982; Rees, 1982)

Origin of positrons Decay of 26 Al 26 Al produced in SNII/Ib & WR 26 Al -> 26 Mg + β + + γ 1.8MeV T 1/2 ~ 0.7 Myr -> Contribution of 26 Al : Sky-map of the 1.8 MeV lin (COMPTEL) F 1.8MeV => M 26 ~ 2-3 M * => R e+ ~ 3 x 10 42 s -1 Decay of 44 Ti 44 Ti produced in SNs 44 Ti -> -> 44 Sc -> 44 Ca + β + (T 1/2 ~ 60 yr) Knödlseder et al., 1999 26 Al & 44 Ti can explain the disk emission -> Contribution of 44 Ti (Milne et al., 2002) Solar abundance of 44 Ca => M 44 ~ (3±1) 10-6 M * (Timmes et al., 1996) => R e+ ~ 2 x 10 42 s -1

Origin of positrons Supernovae - SNII -> e + from 56 Co do not escape the ejecta (Chan & Lingenfelter, 1993) - SNIa -> a fraction f of e + from 56 Co escape the ejecta Galactic Rate : R e+ f x ν SNIa x M 56 M 56 ~ 0.6 M * & ν SNIa ~ 0.003 yr -1 -> f is uncertain (< 5%, Milne, The & Leising, 2001) Although SNeIa belong to the old population their distribution seems to give (B/D) SNeIa < 1

Origin of positrons SNIc/GRB/Hypernovae asymetric explosion of a WR star -> e + from 56 Co released in the ISM : => N e+ ~ 2 x 10 54 (Cassé et al., 2003 ) => Need 0.2 event per millenium in the bulge -> e + produced in the jet : => N e+ ~ 10 56 (Parizot et al., 2004) However massive stars are located mostly in the disk & a single hypernova cannot fill the bulge Classical novae Thermonuclear runaway in the enveloppe of an accreting WD in a binary system. 22 Na -> 22 Ne + β + - in ONe novae only -> José, Coc & Hernanz, 2003 : M 22 ~ 6 x 10-9 M * & ν ONe ~ 10 yr -1. => R e+ ~ 10 41 s -1

Origin of positrons Cosmic-ray p + p -> p +n + π + π + -> µ + -> e + E > 10 MeV Contribution of π + in the central region assuming R e+ ~ R π+ ~ R π0 ~ R γ>100mev EGRET F 511keV,π+ ~ (2-1.5f Ps ) x F >100MeV ~ 6 x 10-5 γ s -1 cm -2 Pulsars - Harding & Ramaty, 1987 R e+ B x P -1.7 s -1 pulsar -1. e.g. R e+ ~ 10 36 s -1 for the Crab E > 10 MeV Total galactic pulsars => R e+ ~ 10 40 s -1 Cheng, Ho & Ruderman, 1986

Origin of positrons LMXB e + e - in jets through γ + γ -> e + + e - - Positron yield from a jet not clearly known : -> R + ~10 41 s -1 with a large uncertainty -> E 1 MeV - (B/D) LMXB ~ 0.9 (Grimm et al. 2002) - R bulge = N µq (Bulge) x R + => R bulge ~ 5 x 10 42 e + /s - R disk = N µq (Disk) x R + => R disk ~ 6 x 10 42 e + /s Guessoum, Jean & Prantzos, in prep.

Dark matter - neutralinos : χ + χ -> e + + e - m χ ~ 0.1-1 TeV - light dark matter (Boehm et al., 2003) Fayet particle : f + f -> e + + e - m f ~ 10-100 MeV => low energy e + & no HE γ. distribution in the bulge only => χ + χ would produce not only e + but also other particles emitting HE γ => not observed with EGRET