Lecture 23. Multilayer Structures

Similar documents
Lecture 20. Transmission Lines: The Basics

Carrier Density Dependent Index, Frequency Chirp and FM Modulation, and Frequency Linewidth in Semiconductor Lasers

ECE 107: Electromagnetism

Chapter 14: Optical Parametric Oscillators

English Made Easy: Foundation Book 1 Notes for parents

Lecture 14. Time Harmonic Fields

Frequency Response. Lecture #12 Chapter 10. BME 310 Biomedical Computing - J.Schesser

Integrated Optical Waveguides

k of the incident wave) will be greater t is too small to satisfy the required kinematics boundary condition, (19)

The Variance-Covariance Matrix

Phys Nov. 3, 2017 Today s Topics. Continue Chapter 2: Electromagnetic Theory, Photons, and Light Reading for Next Time

Books. to Collect! Go to and continue the story.

( r) E (r) Phasor. Function of space only. Fourier series Synthesis equations. Sinusoidal EM Waves. For complex periodic signals

Unit 3: Transistor at Low Frequencies

Frequency Response. Response of an LTI System to Eigenfunction

Chapter 9: Loss in Quantum Optics

LECTURE 5 Guassian Wave Packet

What is an Antenna? Not an antenna + - Now this is an antenna. Time varying charges cause radiation but NOT everything that radiates is an antenna!

Lecture Y4: Computational Optics I

w m -,. t o o p f 0. p 0 we , 44-4 c , 0 0 k 1 0 P ) TIC 0 0 PAM Sc.._ a4C44 IsaA.r a.% Oc Or

9.4 Absorption and Dispersion

Assessing Student Work MATH RUBRIC. Understanding Reasoning Accuracy Communication

Bethe-Salpeter Equation Green s Function and the Bethe-Salpeter Equation for Effective Interaction in the Ladder Approximation

UNIFORM PLANE WAVES (PROPAGATION IN FREE SPACE)

Chapter 3: Optical Linear Response

1 Lecture: pp

Advanced Queueing Theory. M/G/1 Queueing Systems

Retail for Lease 1322 Third St. Promenade, Santa Monica

NAME: ANSWER KEY DATE: PERIOD. DIRECTIONS: MULTIPLE CHOICE. Choose the letter of the correct answer.

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Chap 2: Reliability and Availability Models

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

, University. 1and. y T. since. g g

Physics 160 Lecture 3. R. Johnson April 6, 2015

Propagation of Light About Rapidly Rotating Neutron Stars. Sheldon Campbell University of Alberta

Note: Please use the actual date you accessed this material in your citation.

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy.

Transfer function and the Laplace transformation

Chapter 7 Stead St y- ate Errors

LVM10/100 LVM15/150 LVM20/200

H is equal to the surface current J S

Chapter 12 Introduction To The Laplace Transform

Luiz Leal Oak Ridge National Laboratory. of Massachusetts Institute. of Technology (MIT)

5 H o w t o u s e t h e h o b 1 8

Jones vector & matrices

Notes on Inductance and Circuit Transients Joe Wolfe, Physics UNSW. Circuits with R and C. τ = RC = time constant

Numerical Method: Finite difference scheme

ELECTROMAGNETIC FIELDS

COMMERCIAL INSURANCE APPLICATION

Learning All About. Mary. Creative. Communications. Sample

Chapter 8. Diffraction

The far field calculation: Approximate and exact solutions. Persa Kyritsi November 10th, 2005 B2-109

Microscopic Flow Characteristics Time Headway - Distribution

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent

2/3 Port Solenoid Valve for Chemicals

Fourier transforms (Chapter 15) Fourier integrals are generalizations of Fourier series. The series representation

n gativ b ias to phap s 5 Q mou ntd ac oss a 50 Q co-a xial l, i t whn bias no t back-bia s d, so t hat p ow fl ow wi ll not b p ositiv. Th u s, if si

Chapter 5: Quantization of Radiation in Cavities and Free Space

Supplementary Figure 1. Experiment and simulation with finite qudit. anharmonicity. (a), Experimental data taken after a 60 ns three-tone pulse.

Why CEHCH? Completion of this program provides participants direct access to sit for the NAB HCBS exam.

Effect of sampling on frequency domain analysis

ERAOAL COERECE UCOE CURRE RED ECHOLOGY O 0 l n ll n l Gnlly g l lw hv g l % % xly n g v n n hv g v l h l Bg: R Dg Hgh h x g l lly l lly h ly n HDR n h

DSP-First, 2/e. This Lecture: LECTURE #3 Complex Exponentials & Complex Numbers. Introduce more tools for manipulating complex numbers

Part I- Wave Reflection and Transmission at Normal Incident. Part II- Wave Reflection and Transmission at Oblique Incident

Chapter 8: Propagating Quantum States of Radiation

Quasi-Classical States of the Simple Harmonic Oscillator

10.5 Linear Viscoelasticity and the Laplace Transform

Final Exam : Solutions

Let s celebrate! UNIT. 1 Write the town places. 3 Read and match. school. c 1 When s your birthday? Listen, check and practise the dialogues.

ME 343 Control Systems

CSE 245: Computer Aided Circuit Simulation and Verification

Homework: Introduction to Motion

TABLES AND INFORMATION RETRIEVAL

OPTICAL DESIGN. FIES fibre assemblies B and C. of the. LENS-TECH AB Bo Lindberg Document name: Optical_documentation_FIES_fiber_BC_2

IMU Theory: Earth and Body Frames

User s Guide. Electronic Crossover Network. XM66 Variable Frequency. XM9 24 db/octave. XM16 48 db/octave. XM44 24/48 db/octave. XM26 24 db/octave Tube

GUIDE FOR SUPERVISORS 1. This event runs most efficiently with two to four extra volunteers to help proctor students and grade the student

XV Exponential and Logarithmic Functions

Consider a system of 2 simultaneous first order linear equations

Basic Interconnects at High Frequencies (Part 1)

Fourier Series: main points

The angle between L and the z-axis is found from

Report Card. America's Watershed. Moving the report card forward. Information for multiple uses. A vision for. High. Low. High.

Analysis and Design of Basic Interconnects (Part 1)

4/12/2018. PHY 712 Electrodynamics 9-9:50 AM MWF Olin 105. Plan for Lecture 34: Review radiating systems

Phys 331: Ch 5. Damped & Driven Harmonic Oscillator 1

Lectur 22. RF and Microwave Circuit Design Γ-Plane and Smith Chart Analysis. ECE 303 Fall 2005 Farhan Rana Cornell University

CHAPTER 9. Compressible Flow. Btu ft-lb lbm ft-lb c p = = ft-lb slug- R. slug- R. 1 k. p p. p v p v. = ρ ρ

Modern Physics. Unit 5: Schrödinger s Equation and the Hydrogen Atom Lecture 5.6: Energy Eigenvalues of Schrödinger s Equation for the Hydrogen Atom

Wave Superposition Principle

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

ECE 2210 / 00 Phasor Examples

Point-to-Point Links. Problem: Consecutive 1s or 0s. Alternative Encodings. Encoding. Signals propagate over a physical medium

Searching for pairing interactions with coherent charge fluctuations spectroscopy

If we integrate the given modulating signal, m(t), we arrive at the following FM signal:

ECE 344 Microwave Fundamentals

No-Bend Orthogonal Drawings of Subdivisions of Planar Triconnected Cubic Graphs

Coulomb s Law Worksheet Solutions

- Double consonant - Wordsearch 3

MECE 3320 Measurements & Instrumentation. Static and Dynamic Characteristics of Signals

Transcription:

Lcu Mullay Sucus In hs lcu yu wll lan: Mullay sucus Dlcc an-flcn (AR) cangs Dlcc hgh-flcn (HR) cangs Phnc Band-Gap Sucus C Fall 5 Fahan Rana Cnll Unvsy Tansmssn Ln Juncns and Dscnnus - I Tansmssn ln dscnnus gna flcns ( ) ( ) < Bunday cndns: > ) Cnnuy f vlag a : ) Cnnuy f cun a : Γ T C Fall 5 Fahan Rana Cnll Unvsy

Tansmssn Ln Juncns and Dscnnus - II ( ) < ( ) > Can als plac h nfn ansmssn ln n h gh by a lumpd mpdanc Whch gvs: - Γ ( ) ( Γ) Γ T C Fall 5 Fahan Rana Cnll Unvsy Unmachd Tansmssn Lns - I Qusn: Hw ds n slv a pblm l hs? l ( ) ( l) ( l ) < l ( ) l< < ( ) > In ach sgmn (xcp h gh ms n), h wav s wn such ha h phas s a h gh nd f h sgmn In ach sgmn, h phas has h wavvc cspndng ha sgmn C Fall 5 Fahan Rana Cnll Unvsy

Unmachd Tansmssn Lns - II Qusn: Hw ds n slv a pblm l hs? l STP : Rplac h las ln wh a lumpd quvaln mpdanc (cspndng an nfn ln) l Γ Nw calcula h mpdanc (-l ): Γ STP : Rplac h mddl ln wh h mpdanc (-l ) ( l) l Γ l ( l) Γ ( l) ( l) C Fall 5 Fahan Rana Cnll Unvsy Machng Tansmssn Lns - I Qusn: Is pssbl us a ansmssn ln pfcly mach w dssmla ansmssn lns s ha h s n flcn? l Wha s h apppa mpdanc? Wha s h apppa lngh l? Us a Qua-Wav Tansfm: Supps h lngh l f h nmda ansmssn ln s qua-wavlngh l λ π l ( ) n( ) n( ) λ A qua-wavlngh lng ansmssn n n( ) ln nvs h nmald mpdanc C Fall 5 Fahan Rana Cnll Unvsy

C Fall 5 Fahan Rana Cnll Unvsy ( ) ( ) n n n λ Th acual mpdanc a -λ / s hn: n λ λ T hav n flcn w nd: λ Th mpdanc f h qua-wavlngh lng ansmssn ln mus b h gmc man f h mpdancs f h w ansmssn lns Machng Tansmssn Lns - II λ C Fall 5 Fahan Rana Cnll Unvsy ( ) < ( ) > Γ Wavs a Infacs and Tansmssn Lns ˆ H ˆ H ˆ H µ ε µ ε ( ) x x < ˆ ˆ Bunday cndns: () ( ) ( ) x > ˆ Bunday cndns: () ( ) Γ

T-lay Sucu - I - - l Qusn: Hw d w calcula h flcn cffcn f h abv sucu? Γ? Answ: Us h mhd mplyd al n h quvaln ansmssn ln pblm l C Fall 5 Fahan Rana Cnll Unvsy T-lay Sucu - II - - l ( ) ( l) ( l ) x <l ( ) x l< < ( ) x > In ach sgmn (xcp h gh ms n), h wav s wn such ha h phas s a h gh nd f h sgmn In ach sgmn, h phas has h wavvc cspndng ha sgmn C Fall 5 Fahan Rana Cnll Unvsy 5

T-lay Sucu - III - - l STP : Calcula h flcn a : Γ l Γ Γ And calcula h ffcv mpdanc a -l : ( l) l STP : Nw h pblm bcms: ( l) - l Calcula h flcn cffcn as: Γ ( l) ( h) C Fall 5 Fahan Rana Cnll Unvsy Dlcc An-Rflcn (AR) Cangs - I - Qusn: Is pssbl smhw ma h flcn cffcn? Answ: Us h qua-wav ansfm cncp: - l λ C Fall 5 Fahan Rana Cnll Unvsy 6

Dlcc An-Rflcn (AR) Cangs - II - l λ STP : Calcula h nmald mpdanc a and a -λ / ( ) n( ) n( ) λ n n( ) STP : Nw h pblm bcms: A qua-wavlngh lng sgmn nvs h nmald mpdanc ( l ) l T hav flcn Γ λ λ ( l) n C Fall 5 Fahan Rana Cnll Unvsy Dlcc An-Rflcn (AR) Cangs - III Qusn: Hw d qua-wavlngh lng machng lays w? Wav flcd a h nd nfac Wav flcd a h s nfac Wavs flcd a h w nfacs cancl ach h u n h bacwad dcn λ C Fall 5 Fahan Rana Cnll Unvsy 7

Fquncy Dpndnc f Dlcc AR Cangs: xampl - A.5 Slcn l Cnsd h AR cang n a Slcn phdc ha s dsgnd f dcng gn lgh whch has a fquncy ω f.65x 5 ad/sc and a wavlngh f.5 mc-m n f-spac λ 6 g.5.5 l m Qusn: Hw gd wll h AR cang w f fquncs dffn fm ha f gn lgh (.g. f blu lgh, vl lgh, ang lgh, c) Γ U vl blu gn yllw ang d.5 IR λ n f-spac (mc-ms) C Fall 5 Fahan Rana Cnll Unvsy Dlcc Hgh-Rflcn (HR) Cangs - I Qusn: Wha f w wan ncas h flcvy? Answ: A pdc sac f hgh ndx-lw ndx lays can b usd as an HR cang - N pas f (hgh ndx lw ndx) lays Tal N lays ach lay s qua-wavlngh hc On pd has hcnss ( λ / λ / ) Thcnss: λ Thcnss: λ C Fall 5 Fahan Rana Cnll Unvsy 8

Dlcc Hgh-Rflcn (HR) Cangs - II - Sa a h gh nd: Impdanc lng h gh: Nmald mpdanc: Nmald mpdanc: Acual mpdanc lng h gh: Nmald mpdanc: Nmald mpdanc: Acual mpdanc lng h gh: C Fall 5 Fahan Rana Cnll Unvsy Dlcc Hgh-Rflcn (HR) Cangs - III - Acual mpdanc lng h gh: Cnnung l hs: Acual mpdanc lng h gh: 6 Acual mpdanc lng h gh: N Acual mpdanc lng h gh: C Fall 5 Fahan Rana Cnll Unvsy 9

Dlcc Hgh-Rflcn (HR) Cangs - III - Acual mpdanc N lng h gh: N Rflcn Cffcn: Γ N f > Γ f < Γ Magnud f Γ can b mad abaly cls uny by: ) Chsng a lag numb N f pas f hgh ndx-lw ndx lays ) Chsng h dffnc bwn and b lag C Fall 5 Fahan Rana Cnll Unvsy Fquncy Dpndnc f HR Cangs: xampl A - Slcn Cnsd HR cang n Slcn ha s dsgnd f png gn lgh u f Slcn N.5.5.5 On dsgns a HR cang f maxmum flcvy f gn lgh a a fquncy ω f.65x 5 ad/sc and a wavlngh f.5 mc-m n f-spac Γ U vl blu gn yllw ang d IR Qusn: Hw wll h HR cang w f fquncs dffn fm ha f gn lgh (.g. f blu lgh, vl lgh, ang lgh, c) λ n f-spac (mc-ms) C Fall 5 Fahan Rana Cnll Unvsy

Phnc Band Gap (PBG) Sucus A - Slcn A -dmnsnal phnc band gap (PBG) sucu Phnc band gap (PBG) sucus a sucus n whch h pmvy s pdc n spac Th sp-band In PBG sucus phns whn can bands f fquncs (calld sp-bands) cann ppaga bu a flcd ff a h sufac f h PBG sucu Γ U vl blu gn yllw ang d IR Th HR cang cnsdd n h pvus sld s an xampl f a - dmnsnal PBG sucu C Fall 5 Fahan Rana Cnll Unvsy λ n f-spac (mc-ms) C Fall 5 Fahan Rana Cnll Unvsy