A Chromium BEC in strong RF fields

Similar documents
Condensation du chrome et collisions assistées par champs radio-fréquence

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Dipolar chromium BECs, and magnetism

Confining ultracold atoms on a ring in reduced dimensions

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

A study of the BEC-BCS crossover region with Lithium 6

Large Spin (quantum) Magnetism

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Fluids with dipolar coupling

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

COPYRIGHTED MATERIAL. Index

Ultracold atoms and molecules

From laser cooling to BEC First experiments of superfluid hydrodynamics

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Lecture 3. Bose-Einstein condensation Ultracold molecules

A Mixture of Bose and Fermi Superfluids. C. Salomon

Low-dimensional Bose gases Part 1: BEC and interactions

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

The amazing story of Laser Cooling and Trapping

Ultracold Fermi Gases with unbalanced spin populations

arxiv: v1 [physics.atom-ph] 10 Jun 2015

Superfluidity in interacting Fermi gases

Introduction to cold atoms and Bose-Einstein condensation (II)

NanoKelvin Quantum Engineering

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

Ultracold chromium atoms: From Feshbach resonances to a dipolar Bose-Einstein condensate

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline

Lecture 4. Feshbach resonances Ultracold molecules

arxiv:quant-ph/ v2 5 Feb 2001

Quantum Computing with neutral atoms and artificial ions

arxiv: v1 [cond-mat.quant-gas] 29 May 2012

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Cold fermions, Feshbach resonance, and molecular condensates (II)

A Mixture of Bose and Fermi Superfluids. C. Salomon

Laser cooling and trapping

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Experiments with an Ultracold Three-Component Fermi Gas

Cooperative Phenomena

Contents Ultracold Fermi Gases: Properties and Techniques Index

Ytterbium quantum gases in Florence

LASER COOLING AND TRAPPING OF ATOMIC STRONTIUM FOR ULTRACOLD ATOMS PHYSICS, HIGH-PRECISION SPECTROSCOPY AND QUANTUM SENSORS

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?"

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

Forca-G: A trapped atom interferometer for the measurement of short range forces

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

An optical dipole trap for Erbium with tunable geometry

BEC meets Cavity QED

Bose-Einstein condensates & tests of quantum mechanics

Many-Body Physics with Quantum Gases

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Ultracold molecules - a new frontier for quantum & chemical physics

Spontaneous Symmetry Breaking in Bose-Einstein Condensates

Atomic Physics (Phys 551) Final Exam Solutions

Laser Cooling and Trapping of Atoms

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Vortices and other topological defects in ultracold atomic gases

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

In Situ Imaging of Cold Atomic Gases

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998

Observation of Feshbach resonances in ultracold

Emergence of chaotic scattering in ultracold lanthanides.

(Noise) correlations in optical lattices

Standing Sound Waves in a Bose-Einstein Condensate

Hong-Ou-Mandel effect with matter waves

Laser Cooling of Thulium Atoms

All-optical formation of a Bose-Einstein condensate for applications in scanning electron microscopy

Magnetic resonance in Dense Atomic Hydrogen Gas

Quantum dynamics in ultracold atoms

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

YbRb A Candidate for an Ultracold Paramagnetic Molecule

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

Les Houches 2009: Metastable Helium Atom Laser

FIELD-INSENSITIVE BOSE-EINSTEIN CONDENSATES AND AN ALL-OPTICAL ATOM LASER. Dissertation

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions

Théorie de la Matière Condensée Cours & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique "

ULTRACOLD METASTABLE HELIUM-4 AND HELIUM-3 GASES

arxiv:cond-mat/ v2 5 Apr 1999

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

Atomic magnetometers: new twists to the old story. Michael Romalis Princeton University

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Bose-Einstein condensates in optical lattices

Reference for most of this talk:

1. Cold Collision Basics

A.4 - Elements of collision theory 181

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

arxiv: v2 [cond-mat.quant-gas] 18 Aug 2017

Transcription:

Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France A Chromium BEC in strong RF fields Benjamin Pasquiou, Gabriel Bismut, Paolo Pedri, Bruno Laburthe- Tolra, Etienne Maréchal, Laurent Vernac, Olivier Gorceix Quentin Beaufils

Chromium : S= in the ground state µ = 6µ B Large magnetic dipole-dipole interactions Long range (/r ) Anisotropic Pfau, PRL, 84 (8) d Vdd r r S S S r S r r ( ) = ( )( ). 5.. d-wave collapse in Stuttgart Rich spinor structure Large inelastic collision rate Dipolar relaxation : collisions with change of total magnetization (Einstein-de-Haas effect) m =± m = but E = gµ B S l B

Outline All optical condensation of 5 Cr. A Chromium BEC in a strong off-resonant Radio- Frequency (RF) magnetic field.

Cr Magneto-optical optical traps 5 Cr 5 Cr N = only 4. 6 bosons! N = 5. 5 fermions Very short loading times ( à ms) and small number of atoms : decay towards metastable states Inelastic light assisted collisions (dominant process) to orders of magnitude larger than in alkalis R. Chicireanu et al. Phys. Rev. A 7, 546 (6)

Our approach: accumulation of metastable atoms in an Optical Dipole Trap (ODT) 58 56 54 5 45nm 5 48 46 5 6 7 8 - ODT - - Metastable atoms shielded from light assisted collisions 4 6 8 Plus a few tricks: Dark spot repumpers RF sweeps Q.beaufils et al., Phys.Rev A. 77, 54 (8) 5 million atoms in the single beam OTD (75nm, 5W): More than in the MOT! Loading time : ms Temperature µk.

Evaporation cooling Suppress two-body inelastic losses : spin polarize into the lowest energy Zeeman state (use the 7 S 7 P transition at 47 nm) Loading a crossed optical dipole trap transfert IR power from the horizontal trapping beam to the vertical one (with a motorized λ/ waveplate) MOT Horizontal trap Repump and polarize 5 mw 5 W Vertical Trap ms 6 s Loading Evaporation Crossing ODT arms 6s

A chromium BEC Phase Sapce Density - - - -4 4 6 8 Time (ms) Evaporation ramp x atoms Pure BEC In situ TF radii 4 and 5 microns Density : 6. at/cm. 4 at/cm Condensates lifetime: a few seconds. Q.beaufils et al., Phys.Rev. A 77, 66(R) (8)

Outline All optical condensation of 5 Cr. A Chromium BEC in a strong off-resonant Radio- Frequency (RF) oscillating magnetic field

RF modifies the Landé factor We modify the Landé factor of the atoms g J with very strong off resonant rf fields. For a static field perpendicular to the RF, If the RF frequency ω is larger than the Larmor frequency ω, then: g J Ω ω (, Ω) = g J ω J Serge Haroche thesis S.Haroche, et al., PRL 4 6 (97) True in D Generalization in D? Ω E = mg J µ B ω m J B static Eigenenergies -..4.6.8..4 - - Ω ω Degeneracy in a non zero magnetic field!

We apply a rf such that : ω gµ BB Control magnetism We apply a small gradient. RF modifies the effect of such a gradient: ω J Ω ω = ms g J ( ω, Ω) µ B m B' t Q.beaufils et al., Phys.Rev. A 78, 56 (8)

8 7 6 5 4 8 7 6 5 4 8 7 6 5 4 7 6 5 4 7 6 5 4 8 7 6 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 Adiabaticity issues Diabatic - - Adiabatic Probability to come back to m=-..8.6.4.. Ω/ω=.8 τ Ω/ω=.6 4 5 6 7 8 4 5 6 7 8 Sweep time ( µ s) - m=- τ =5 µ s τ =8 µ s τ =5 µ s τ = µ s τ =5 µ s τ = µ s..5. -.5 -. B RF Ω ω 5 5 4 τ 5 t

Adiabaticity issues Adiabaticity depends on B// : d dt Ω <<ω //. Probability to stay in m=-.8.6.4.. - B // (mg) 4

Inelastic collision properties of off-resonantly rf dressed states : N+ Beware of the lowest energy state - argument!! - - 4 5 ω N - - - - 4 5 - - 4 5 N- - - - 4 5 Without RF, the lifetime is s

Interpretation: a rf-assisted dipolar relaxation Interatomic potentials Gap ~ Ω J V dd ω in = S = 6, m = 6, l =, m =, N S out = S = 6, m = 6, l =, m =±, N S ω l l Similar mechanism than dipolar relaxation in = S = 6, m =+ 6, l = out = S = 6, m =+ 5, l = S S Interparticle distance Within first order Born approximation: σ rf Ω dipolarrelaxation N N', m m ' = JN N' ( ms ms ') σm m ' ω S S S S Theory : Anne Crubellier (LAC IFRAF) and Paolo Pedri (IFRAF postdoc in our group)

σ Ω = J ( m m ') ω rf dipolarrelaxation N N', m m' N N' S S m m' σ A dipolar relaxation process between dressed states : Control of dipolar relaxation Amplitude: Ω JN N' ( ms ms') ω Outcoming energy: ( ) E = ( m m ') g µ B N N' ω s s J B Proposal with B RF // to B static : E = g µ B ω and j B = Einstein-de Haas m l effect

Summary All optical production of a chromium BEC. Modification of the Landé factor: close to spin degeneracy in a non zero magnetic field. RF-assisted dipolar relaxation.

Future Optical lattices dipolar gases in reduced dimensions. Feshbach resonances pure dipolar gases. Fermions degenerate Fermi sea of polarized atoms with dipole-dipole interactions.

O. Gorceix Q. Beaufils B. Laburthe G. Bismut E. Maréchal L. Vernac P. Pedri B. Pasquiou J. C. Keller Have left: T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaboration: Anne Crubellier (Laboratoire Aimé Cotton)

B rf (t) Classical interpretation µ (t) dµ = gj µ B dt rf (t) B static φ(t) dφ dt = Ω rf cos( ω rf t) T µ x dt cos( Φ( t)) = J T Ω ωrf rf Phase modulation -> Bessel functions e.g. light or matter diffraction; side-bands in frequency modulation; tunneling in modulated lattice (Arimondo 8)

H = H + + + ωs z + ωa a + λsz ( a a) mol + Analytical expression for dressed state (from C. Cohen-Tannoudji) First order perturbation theory: mλ + M, N = exp ( a a ) M, N ω K Ω, J ω ( ω Ω) = K ( ) + H dd Une autre démonstraction (Floquet analysis) Soit un état propre modulé en temps: i dψ dt m = ( H + m H cos( ω ) rf t Ψm e.g. different Zeeman states J N Ω ωrf Resonant coupling between m= and m= with echange of N photons