NMDA receptor dependent functions of hippocampal networks in spatial navigation and memory formation de Oliveira Cabral, H.

Similar documents
NMDA receptor dependent functions of hippocampal networks in spatial navigation and memory formation

NMDA receptor dependent functions of hippocampal networks in spatial navigation and memory formation de Oliveira Cabral, H.

Citation for published version (APA): Harinck, S. (2001). Conflict issues matter : how conflict issues influence negotiation

Recent revisions of phosphate rock reserves and resources: a critique Edixhoven, J.D.; Gupta, J.; Savenije, H.H.G.

Mass loss and evolution of asymptotic giant branch stars in the Magellanic Clouds van Loon, J.T.

UvA-DARE (Digital Academic Repository)

UvA-DARE (Digital Academic Repository) Converting lignin to aromatics: step by step Strassberger, Z.I. Link to publication

Rotational symmetry breaking in the topological superconductor SrxBi2Se3 probed by uppercritical

Published in: Tenth Tbilisi Symposium on Language, Logic and Computation: Gudauri, Georgia, September 2013

Citation for published version (APA): Weber, B. A. (2017). Sliding friction: From microscopic contacts to Amontons law

On a unified description of non-abelian charges, monopoles and dyons Kampmeijer, L.

Data-driven methods in application to flood defence systems monitoring and analysis Pyayt, A.

UvA-DARE (Digital Academic Repository) Phenotypic variation in plants Lauss, K. Link to publication

Physiological and genetic studies towards biofuel production in cyanobacteria Schuurmans, R.M.

Coherent X-ray scattering of charge order dynamics and phase separation in titanates Shi, B.

Citation for published version (APA): Hin, V. (2017). Ontogenesis: Eco-evolutionary perspective on life history complexity.

UvA-DARE (Digital Academic Repository)

UvA-DARE (Digital Academic Repository) The syntax of relativization de Vries, M. Link to publication

UvA-DARE (Digital Academic Repository) Electrokinetics in porous media Luong, D.T. Link to publication

Combining radar systems to get a 3D - picture of the bird migration Liechti, F.; Dokter, A.; Shamoun-Baranes, J.Z.; van Gasteren, J.R.; Holleman, I.

Monitoring and modelling hydrological fluxes in support of nutrient cycling studies in Amazonian rain forest ecosystems Tobon-Marin, C.

Citation for published version (APA): Ochea, M. I. (2010). Essays on nonlinear evolutionary game dynamics Amsterdam: Thela Thesis

Citation for published version (APA): Jak, S. (2013). Cluster bias: Testing measurement invariance in multilevel data

Climate change and topography as drivers of Latin American biome dynamics Flantua, S.G.A.

Citation for published version (APA): Adhyaksa, G. W. P. (2018). Understanding losses in halide perovskite thin films

Citation for published version (APA): Nguyen, X. C. (2017). Different nanocrystal systems for carrier multiplication

UvA-DARE (Digital Academic Repository) Charge carrier dynamics in photovoltaic materials Jensen, S.A. Link to publication

Published in: ICCSA 2014: Fourth International Conference on Complex Systems and Applications: June 23-26, 2014, Le Havre, Normandie, France

Measuring more or less: Estimating product period penetrations from incomplete panel data Hoogendoorn, A.W.

UvA-DARE (Digital Academic Repository) Matrix perturbations: bounding and computing eigenvalues Reis da Silva, R.J. Link to publication

Citation for published version (APA): Bremmer, R. H. (2011). Non-contact spectroscopic age determination of bloodstains

Measurement of the charged particle density with the ATLAS detector: First data at vs = 0.9, 2.36 and 7 TeV Kayl, M.S.

Citation for published version (APA): Susyanto, N. (2016). Semiparametric copula models for biometric score level fusion

An impossibility theorem concerning multilateral international comparison of volumes van Veelen, C.M.

A polarized view on DNA under tension van Mameren, Joost; Vermeulen, K.; Wuite, G.J.L.; Peterman, E.J.G.

Love and fear of water: Water dynamics around charged and apolar solutes van der Post, S.T.

Citation for published version (APA): Weber, B. A. (2017). Sliding friction: From microscopic contacts to Amontons law

Water in confinement : ultrafast dynamics of water in reverse micelles Dokter, A.M.

2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

Young intermediate-mass stars: from a HIFI spectral survey to the physics of the disk inner rim Kama, M.

Optical spectroscopy of carrier dynamics in semiconductor nanostructures de Jong, E.M.L.D.

Love and fear of water: Water dynamics around charged and apolar solutes van der Post, S.T.

Quantitative Prediction of Crystal Nucleation Rates for Spherical Colloids: A Computational Study Auer, S.

UvA-DARE (Digital Academic Repository)

Citation for published version (APA): Petrov, D. S. (2003). Bose-Einstein condensation in low-dimensional trapped gases

UvA-DARE (Digital Academic Repository)

UvA-DARE (Digital Academic Repository)

UvA-DARE (Digital Academic Repository)

University of Groningen. Statistical inference via fiducial methods Salomé, Diemer

Optimization and approximation on systems of geometric objects van Leeuwen, E.J.

Contributions to latent variable modeling in educational measurement Zwitser, R.J.

System-theoretic properties of port-controlled Hamiltonian systems Maschke, B.M.; van der Schaft, Arjan

Citation for published version (APA): Ruíz Duarte, E. An invitation to algebraic number theory and class field theory

UvA-DARE (Digital Academic Repository) Fluorogenic organocatalytic reactions Raeisolsadati Oskouei, M. Link to publication

University of Groningen. Event-based simulation of quantum phenomena Zhao, Shuang

University of Groningen. Laser Spectroscopy of Trapped Ra+ Ion Versolato, Oscar Oreste

UvA-DARE (Digital Academic Repository)

Bose-Einstein condensation of a finite number of particles trapped in one or three dimensions Ketterle, W.; van Druten, N.J.

Mark Scheme Summer 2009

UvA-DARE (Digital Academic Repository) When X-rays and oxide heterointerfaces collide Slooten, E. Link to publication

Spin echo at the Rabi frequency in solids Holmstrom, S.A.; Wei, C.; Manson, N.B.; Martin, J.P.D.; Windsor, A.S.M.; Glasbeek, M.

Loco-regional hyperthermia treatment planning: optimisation under uncertainty de Greef, M.

(b) M1 for a line of best fit drawn between (9,130) and (9, 140) and between (13,100) and (13,110) inclusive

Citation for published version (APA): Paredes Rojas, J. F. (2013). Understanding the rheology of yield stress materials

Comparison of policy functions from optimal learning and adaptive control frameworks Amman, H.M.; Kendrick, D.A.

Mark Scheme (Results) January International GCSE Mathematics A 4MA0/4HR

UvA-DARE (Digital Academic Repository) Delayed fracture in poreus media Shahidzadeh, N.F.; Vie, P.; Chateau, X.; Roux, J.N.; Bonn, D.

UvA-DARE (Digital Academic Repository) Lattices, codes and Radon transforms Boguslavsky, M. Link to publication

Citation for published version (APA): Kopányi, D. (2015). Bounded rationality and learning in market competition Amsterdam: Tinbergen Institute

Mark Scheme (Results) June GCSE Mathematics (1380) Paper 4H

Citation for published version (APA): Altamirano, D. (2008). Different manifestations of accretion onto compact objects

Mark Scheme (Results) June GCE Core Mathematics C2 (6664) Paper 1

University of Groningen

Mark Scheme (Results) March GCSE Mathematics (1380) Higher Paper 4H (Calculator)

Citation for published version (APA): Hin, V. (2017). Ontogenesis: Eco-evolutionary perspective on life history complexity.

Citation for published version (APA): Fathi, K. (2004). Dynamics and morphology in the inner regions of spiral galaxies Groningen: s.n.

Testing distributional assumptions in psychometric measurement models with substantive applications in psychology Molenaar, D.

UvA-DARE (Digital Academic Repository)

University of Groningen. Extraction and transport of ion beams from an ECR ion source Saminathan, Suresh

UvA-DARE (Digital Academic Repository)

Citation for published version (APA): Weber, B. A. (2017). Sliding friction: From microscopic contacts to Amontons law

Citation for published version (APA): Andogah, G. (2010). Geographically constrained information retrieval Groningen: s.n.

Citation for published version (APA): Sok, R. M. (1994). Permeation of small molecules across a polymer membrane: a computer simulation study s.n.

Can a Hexapole magnet of an ECR Ion Source be too strong? Drentje, A. G.; Barzangy, F.; Kremers, Herman; Meyer, D.; Mulder, J.; Sijbring, J.

New Computational Techniques to Simulate Light Scattering from Arbitrary Particles Hoekstra, A.G.; Sloot, P.M.A.

Enhancement of proximity effects due to random roughness at a superconductor/metal interface Palasantzas, Georgios

UvA-DARE (Digital Academic Repository)

UvA-DARE (Digital Academic Repository)

GCE Core Mathematics C1 (6663) Paper 1

The role of camp-dependent protein kinase A in bile canalicular plasma membrane biogenesis in hepatocytes Wojtal, Kacper Andrze

Emergent electronic matter : Fermi surfaces, quasiparticles and magnetism in manganites and pnictides de Jong, S.

Mark Scheme (Results) January Pearson Edexcel International GCSE Mathematics B (4MB0/02) Paper 2

Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots Lai, Lai-Hung; Protesescu, Loredana; Kovalenko, Maksym V.

Mark Scheme (Results) June Applications of Mathematics (GCSE) Unit 2: Applications 5AM2H_01

UvA-DARE (Digital Academic Repository)

Substrate and Cation Binding Mechanism of Glutamate Transporter Homologs Jensen, Sonja

UvA-DARE (Digital Academic Repository) Detection of extracellular vesicles: size does matter van der Pol, E. Link to publication

SUPPLEMENTARY INFORMATION

University of Groningen. Morphological design of Discrete-Time Cellular Neural Networks Brugge, Mark Harm ter

Citation for published version (APA): Borensztajn, K. S. (2009). Action and Function of coagulation FXa on cellular signaling. s.n.

Transcription:

UvA-DARE (Digital Academic Repository) NMDA receptor dependent functions of hippocampal networks in spatial navigation and memory formation de Oliveira Cabral, H. Link to publication Citation for published version (APA): de Oliveira Cabral, H. (2014). NMDA receptor dependent functions of hippocampal networks in spatial navigation and memory formation General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl) Download date: 25 Dec 2018

NMDA receptor dependent functions of hippocampal networks in spatial navigation and memory formation HENRIQUE DE OLIVEIRA CABRAL HENRIQUE DE OLIVEIRA CABRAL NMDA receptor dependent functions of hippocampal networks in spatial navigation and memory formation

2+ 2+

S T

<

CA3 CA1 DG mec III II

1 3 1 3 1,2 1 2 3

±

session # trial # surgery pre-training recording 1 2 3 4 5 10 1 2 3 4 15 1 8 15 18 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T P P P T T T T T T T T T T T T T T T T T T T T T T training trial P T T T T T T T T T P T T T T T T T T T T T T T T T T T T P P P T T T T T T T T T T T T P P P T T T T T T T T T T T T P P P T T T T T T T T T probe trial firing rate (Hz) 41.4 31.1 20. 10.5 interneuron pyramidal 16.65 2.05-30 0 30 time (ms) 0.25 9.63 15.15 20.6 mean AC (msec) -30 0 30 time (ms) 26.21 31.74 2.55 prob < 70% prob > 70% prob > 80% prob > 90% 71.04 53.92 36.79 19.67 ISVD (%) > ± th

µ µ

a TRAINING PLACE SEQUENCE b speed (cm/sec) 40 20 0 0 40 20 0 0 0.5 1 0.5 1 40 20 0 0 0.5 1 40 20 0 0 0.5 1 normalized trial length 40 20 0 0 40 20 0 0 0.5 1 0.5 1 CTR KO average velocity (cm/sec) 20 16 12 8 4 0 CTR TRAINING PLACE SEQUENCE KO

ISV D = 100 V v V 0.26 A PV, v 0.26 v PV %

x P f(x) p(x)f(x)log2 F SpatialInf ormation =, F x x x x Sparsity = (P p(x)f(x)) 2 P (p(x)f(x) 2 ) idx idx idx o o

<

a long short b PLACE SEQUENCE reward localization score c 95 85 75 65 55 CTR KO 1 3 5 7 9 pre-training session surgery 1 3 5 7 9 11 13 15 recording session d trials fraction trials fraction CTR 1 0 KO 1 0 1 2 3 4 5 experiment block PLACE SEQUENCE serial random < x

trials fraction ratio correct choices a b 1 0.8 0.6 0.4 0.2 1 0.8 0.6 0.4 0.2 0 ** ** short long 0 CTR KO CTR KO CTR KO Training PLACE SEQUENCE short 1 0.8 0.6 0.4 0.2 0 Training long 1 0.8 0.6 0.4 0.2 0 * CTR KO ratio correct choices ratio correct choices c 1 0.8 0.6 0.4 0.2 0 d 1 0.8 0.6 0.4 0.2 0 short short SEQUENCE long 1 0.8 0.6 0.4 0.2 0 1 0.8 0.6 0.4 0.2 0 PLACE 1 0.8 0.6 0.4 0.2 0 long 1 0.8 0.6 0.4 0.2 0 *** % e 60 40 20 probability correct outcome f 60 40 % 20 % choice LONG # * % 85 75 65 g * localization score long short * 0 short long 0 pretraining recording 55 pretraining recording 2 < 2 <

2 < 2 < < 2 2 < 2 < < 2 < 2 < < < 2 < 2 <

2 < 2 < < 2 2 < < < <

fraction CTR KO area PF 0.16 0.08 0 *** ratio in-field FR increase 12 8 4 0 *** Hz 6 4 2 0 max FR # 1.6 0.8 0 # of PFs *** bits/spike Spatial Information 0.8 0.4 0 *** 0.04 0.02 0 sparsity *** < < <

9y a CTR Tr PLACE 13.2 8.7 b KO SEQ 7.6 PLACE Tr 5.5 c SEQ 4.2 72 3.3 2.9 11.1 11.3 3.2 3.8 * ** 6 6 4 4 2 1.8 7.2 0 d 3.0 2.0 2.9 1.5 0 C 2.4 5.1 3.4 TR KO 4.2 2 C 2.5 firing rate (Hz) 2.3 TR KO 2.3 Sidx 2.5 Pidx 1.4 3 * TRAINING PLACE SEQUENCE 2 1 0 CTR 1.9 12.3 2.3 11.3 13.1 e KO 20 CTR KO 3.4 21.2 11.1 15.8 Pidx 10 4.8 0-10 -5 5 15 Sidx 6B;m`2 kxe hq [m MiB7v i?2b2 2z2+ib- r2 + H+mH i2/ irq bbkbh `Biv BM/B+2b, TH +2 USidx V M/ b2[m2m+2 BM/2t Uaidx VX h?2 }`bi r b + H+mH i2/ b i?2 S2 `@ bqmƕb +Q``2H ibqm #2ir22M }`BM; ` i2 K Tb BM i` BMBM; i`b Hb M/ T`Q#2 i`b Hb- mbbm; i?2 Qp2`H TTBM; TQ`iBQM Q7 i?2 `Qmi2bX aidx Bb i?2 S2 `bqmƕb +Q``2H ibqm #2ir22M i?2 }`BM; ` i2 K Tb BM i` BMBM; i`b Hb M/ i?2 }`BM; ` i2 K T BM b2[m2m+2@bi` i2;v i`b Hb- `Qi i2/ #v dko iq K F2 i` BMBM; M/ T`Q#2 /2T `im`2 `Kb +QBM+B/2X "Qi? +Q``2H ibqmb r2`2 MQ`K HBx2/ #v K2 Mb Q7 b?m 2/ +QM/BiBQM Ub22 J2i?Q/bVX "Qi? *h_ M/ L_R@EP KB+2 b?qr2/ 2H2p i2/ Sidx p Hm2b- b2p2` H@7QH/?B;?2` i? M b?m 2/ +QM@

idx idx < idx idx o idx < < < idx idx < < idx idx < < <

< idx idx < idx idx < idx 8 * SEQ. short SEQ. long idx < S Idx 6 4 2 0 CTR

P idx 10 8 6 4 2 0 3-5 6-8 9-11 12-15 S idx 6 4 2 0 3-5 6-8 9-11 session block 12-15 CTR KO idx idx idx < < idx < < < idx <

fraction of place cells 0.08 0.04 0 CTR 1 2 3 4 5 6 7 0.08 0.04 KO Spatial Information (spikes/bin) 0 sessions 1-7 sessions 8-15 1 2 3 4 5 6 7 < < < < < 1 idx < fraction 0.8 0.6 0.4 0.2 0 CTR KO

Tr Distribution of P idx in SEQ trials SEQ CTR 8.7 5.6 PC fraction 0.2 0.15 0.1 0.05 0-10 0 10 0.25 0.2 0.15 0.1 0.05 KO 0-10 0 10 n.sig sig Tr P idx Distribution of S idx in PLACE trials PLACE 0.2 CTR 0.2 P idx KO 16.8 4.1 PC fraction 0.15 0.1 0.05 0.15 0.1 0.05 0-10 0 10 S idx 0-10 0 10 S idx th < < idx

idx idx idx

idx idx idx <

1 1 3 1 3 1,2 1 2 3

nd rd

th th o

long short a b reward PLACE SEQUENCE

a frequency (Hz) 90 70 50 30 CTR normalized power in a short Tr trial 14 10 6 2 log power 90 KO 70 50 30 14 10 6 2 log power 10 10 departure normalized distance goal departure normalized distance goal b log normalized power 10 3 10 1 10-1 7 CTR KO 28 4560 90 120 frequency (Hz) log normalized power c 40 6-12 Hz 23-40 Hz 55-95 Hz 5 1.2 30 4 3 0.8 20 2 0.4 10 1 0 0 0 CTR KO CTR KO CTR KO th th

< a Pearson s R(speed x power) 0.8 0.6 0.4 0.2 0 CTR KO 7 28 45 60 90 120 frequency (Hz) b normalized powerspeed modulation 0.6 0.5 0.4 0.3 0.2 0.1 0 Dep arm Middle arms Goal arm CTR 0.6 0.5 0.4 0.3 0.2 6-12 Hz 23-40 Hz 0.1 55-95 Hz 0 KO c speed (cm/s) 22 18 14 10 8 CTR KO < < <

< <

log power ratio a 1.04 1.02 1 CTR PLACE SEQ 95% c.i. (shuffling) b log power ratio 1.04 1.02 1 KO c ratio LG/HG * 5 * 4 3 2 1 TR PLACE SEQ 0.98 0 20 40 60 80 100 120 0.98 0 20 40 60 80 100 120 frequency (Hz) frequency (Hz) d TRAINING PLACE SEQUENCE e ratio LG/HG 7 5 3 1-3 4-6 7-9 10-12 13-15 1 CTR KO 7 5 3 1-3 4-6 7-9 10-12 13-15 1 5 3 1-3 4-6 7-9 1 10-12 13-15 session block session block session block 7 ratio LG/HG 7 6 5 4 3 S L 7 6 5 4 3 0 L CTR 2 2 2 1 1 1 0 CTR KO 0 CTR KO 0 CTR KO TRAINING PLACE SEQUENCE S 7 6 5 4 3 S KO L < < <

< < < < < < <

freq (Hz) a b 2 mv 100 ms 140 120 100 80 60 40 20 0 1 2 3 4 5 6 (rad) 60 50 40 30 20 10 power (normalized) c CTR 150 210 d KO 120 gamma 240 90 270 60 300 30 180 0 150 210 120 240 90 270 60 300 330 30 180 0 LG HG 330 e coherence f coherence 0.6 0.5 0.4 0.6 * * 0.4 0.3 0.2 0 0 50 100 150 freq (Hz) TrT PLACE 0.6 SEQ. 0.5 0.4 0.6 0.4 0.3 0.2 0 0 50 100 150 freq (Hz) < > < <

< < < <

Kappa 1.6 1.2 0.8 concentration of preferred theta phases 2 ** CTR ** 2 1.6 1.2 0.8 KO ** * LG HG 0.4 0.4 0 TrT PLACESEQ 0 TrT PLACESEQ < < < <

A theta LG HG fraction 60 40 20 HG LG 0-2 0 2 4 6 8 log ratio B TRAINING, all periods SEQUENCE, LG SEQUENCE, HG departure 16.3 departure 12.9 departure 8.6 goal goal goal C overlap index CTR 6 **** *** *** 5 4 3 2 1 0 KO LG HG LG HG PLACE SEQUENCE

<

idx

1 1 3 1 3 1,2 1 2 3

o o

o th th i,m ppc 0 = P Nm P Nm j=1 k6=j sin ( j,m ) sin ( k,m )+cos ( j,m ) cos ( k,m ) N m(n m 1)

m ppc 1 = P M P M P Nm P Nm m=1 l6=m j=1 sin ( j,m ) sin ( k,l )+cos ( j,m ) cos ( k,l ) k=1 P M P M m=1 l6=m NmN l ppc 1 < i i i th â R(a) =r 1 P 2 n n j=1 cos j 2 ax j + 1 P 2 n n j=1 sin j 2 ax j

' p R ' =âr p 2 i i x i

PPC a 0.015 0.01 pyramidal CTR KO b PPC 0.025 0.02 0.015 interneurons 0.005 0.01 0.005 0 10 20 30 40 50 60 70 80 90 100 frequency (Hz) 0 10 20 30 40 50 60 70 80 90 100 frequency (Hz)

2 < < < < < <

a c PPC e -180 o 15 90 180 0 0.56 0.04 0.03 0.02 0.01 0 o Theta phase locking 180 o 270 1-3 4-6 7-9 session 8-12 13-15 0.69 85 75 65 b CTR KO d performance (%) f fraction mod. cells 20 ppc of mod. cells 1 0.8 0.6 0.4 0.2 0 0.04 0.03 0.02 0.01 0 Theta locking 0.008 all spikes 0.004 * 90 180 0 270 correct incorrect P idx 5 S idx 10-5 0 0.04 0.08 peak PPC to theta 0 0 0.04 0.08 peak PPC to theta idx idx

o < 2 < < < < < < idx idx idx idx < idx idx < <

1 a Theta phase locking b c 90 0.8 CTR KO 180 0.41 0 270 0.58 fraction mod. cells ppc of mod. cells 0.6 0.4 0.2 0 0.06 0.04 0.02 0 * avg P idx PYR avg S idx PYR 16 12 8 4 0 0 0.1 0.2 peak PPC 16 12 8 4 0 0 0.04 0.08 0.12 peak PPC < idx idx idx < <

a fraction b c 90 d 90 peak ppc mod. cells 0.03 0.3 * ** LG Locking HG Locking ** 0.02 180 0 180 0 0.15 0.10 0.01 0.29 0 0 LG HG LG HG 0.31 0.36 270 270 2 < < < < <

idx idx < 2 < < < < <

a avg S idx PYR 12 8 4 r = 0.35 p = 0.04 0-0.005 0.015 0.035 PPC LG b PPC LG in SEQ. Trials 0.02-0.04 r = -0.64 p < 0.05-0.1 0 0.1 0.2 PPC LG in PLACE Trials idx < < < idx < < <

a trial 1 trial 2 trial 3 trial 4 trial 5 phase (deg) precession R-value phase range (deg) 600 400 200 0 100 150 100 150 100 150 100 150 100 150 position (cm) b c d CTR KO CTR KO CTR KO -0.4-0.8 e 0 0-100 -200 CTR TrT PLACE SEQ. KO slope (deg/cm) 0-10 -20 f CTR * * 90 180 0 270 place field size(cm) 16 8 0 spike phase KO 180 * 90 270 0

o < < < < <

< < o <

< < idx idx

o

% ± <

1 3 3 1 1,2 1 2 3

± µ

µ µ

ISV D = 100 V v V 0.26 A PV, v 0.26 v PV %

a b c CTR CTR KO 120 2 2 4 4 KO 11.9 15.0 6 6 80 8 8 10 10 12 40 8.7 18.4 12 14 14 16 0 normalized firing rate max 0 43 86 129 172 0 43 86 129 172 0 distance (cm) distance (cm) trial # place field size (cm) d per session *** 40 30 20 10 0 CTR KO per trial CTR KO < < ± ± ± <

A B D CTR jitter trial # fraction of place cells 0.12 0.08 0.04 jitter(cm) 60 *** 40 20 0 jitter (cm) 16 14 12 10 CTR KO * trial # 0 43 86 129 172 distance (cm) KO 0 43 86 129 172 distance (cm) 0 normalized FR 1 fraction of place cells C 0.06 0.6 *** 0.04 0.02 0 0 50 100 150 jitter (cm) 0.4 0.2 0 0-1 -0.6-0.2 0.2 0.6 1 E 8 0.7 0.65 0.6 0.55 0.5 0.45 5 10 15 trial * ** 5 10 15 trial ± ± < ± ± ±

< < < < < < < < < < <

< < < < < ± ±0.005,NR1 KO =0.022± <

A CTR trial number B slope (deg) 0-4 CTR KO -8-12 -16-50 -150-250 normalized slope phase (deg) C 16 12 0 0 40 80 120 160 200 distance (cm) 8 4 0-100 -200 normalized firing rate trial number KO phase range (deg) -50-150 -250 normalized slope phase (deg) 16 12 0 40 80 120 160 200 0 distance (cm) 8 4 distance D covered (cm) 16 12 8 4 0 normalized firing rate

< < < < < < < <

fraction place cells A B C 0.05 0.04 0.03 0.02 0.01 stability index CTR KO *** 0-0.5 0 0.5 1 Pearson's R (first-second half) N trials 15 10 5 1 0 0.2 trials to stable PF * 0.4 * * * * * 0.6 0.8 threshold 1 0.5 0.4 R 0.3 0.2 stability index *** r = 0.12 2 4 6 8 10 session cm D 130 110 90 70 Place Field Size Spatial Information ** [1 2] * session [9 10] bits/spike 0.6 0.5 0.4 0.3 0.2 * * [1 2] session [9 10] st nd < < < < < < < < < < < < < < < < <

* < A B C 1.8 1.6 1.4 1.2 1 CTR KO 2 4 6 8 10 12 14 trial ** 1.4 1.3 1.2 1.1 1 2 4 6 8 1012 14 trial * 1 0.5 0-0.5-1 -1.5 *** D 0-0.04-0.08-0.12-0.16-0.2 2 4 6 8 10 12 14 trial < < < < < < < < < < <

< <

A CTR KO B cell # 50 100 150 200 250 50 100 150 200 norm distance 1 0.8 0.6 0.4 0.2 0 0.2 CTR 0.4 0.6 0.8 norm distance from departure 0.1 0.2 0.3 0.4 0.5 0.6 0.7 C same-distance norm distance norm FR norm distance 0 0.2 0.4 0.6 0.8 1 same-location 0 0.05 0.10.15 0.20.25 0.30.35 *** *** *** *** D 0.18 0.14 0.1 0.06-0.4-0.2 0 0.2 0.4 0.4 0.3 0.2 0.1 0-0.4-0.2 0 0.2 0.4 norm distance norm distance 1 0.8 0.6 0.4 0.2 0 0 0.2 KO 0.4 0.6 0.8 norm distance from departure 1 < 5

< < < 5

fraction of place fields A 0.2 0.15 0.1 0.05 0 0.05 0.15 PF location along maze CTR KO 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 normalized position of PF COM B place field size(cm) 90 80 70 60 50 40 30 20 0 0.2 0.4 0.6 0.8 1 normalized position of PF COM < < < <

< <

th th

>

idx

TRAINING TRIAL CA1 CA3 EC LG HG

CA1 CA1 SC EC SC EC CA3 PP CA3 PP DG CONTROL DG NR1-KO

+