MEASURABLE PARTITIONS, DISINTEGRATION AND CONDITIONAL MEASURES

Similar documents
Disintegration into conditional measures: Rokhlin s theorem

Lecture Notes Introduction to Ergodic Theory

13. Examples of measure-preserving tranformations: rotations of a torus, the doubling map

3 hours UNIVERSITY OF MANCHESTER. 22nd May and. Electronic calculators may be used, provided that they cannot store text.

Preprint Preprint Preprint Preprint

Measures and Measure Spaces

The Lebesgue Integral

Chapter 4. Measure Theory. 1. Measure Spaces

A VERY BRIEF REVIEW OF MEASURE THEORY

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

DRAFT MAA6616 COURSE NOTES FALL 2015

Introduction to Dynamical Systems

2 Lebesgue integration

Robustly transitive diffeomorphisms

Properties for systems with weak invariant manifolds

4. Ergodicity and mixing

On Periodic points of area preserving torus homeomorphisms

MATH41011/MATH61011: FOURIER SERIES AND LEBESGUE INTEGRATION. Extra Reading Material for Level 4 and Level 6

B 1 = {B(x, r) x = (x 1, x 2 ) H, 0 < r < x 2 }. (a) Show that B = B 1 B 2 is a basis for a topology on X.

Problems in hyperbolic dynamics

Bernoulli decompositions and applications

The Hopf argument. Yves Coudene. IRMAR, Université Rennes 1, campus beaulieu, bat Rennes cedex, France

Physical measures of discretizations of generic diffeomorphisms

Physical Measures. Stefano Luzzatto Abdus Salam International Centre for Theoretical Physics Trieste, Italy.

which element of ξ contains the outcome conveys all the available information.

Solutions to Tutorial 8 (Week 9)

Topological properties

Real Analysis Notes. Thomas Goller

Smooth Structure. lies on the boundary, then it is determined up to the identifications it 1 2

II - REAL ANALYSIS. This property gives us a way to extend the notion of content to finite unions of rectangles: we define

02. Measure and integral. 1. Borel-measurable functions and pointwise limits

Measurable functions are approximately nice, even if look terrible.

IRRATIONAL ROTATION OF THE CIRCLE AND THE BINARY ODOMETER ARE FINITARILY ORBIT EQUIVALENT

MARKOV PARTITIONS FOR HYPERBOLIC SETS

MAGIC010 Ergodic Theory Lecture Entropy

l(y j ) = 0 for all y j (1)

Lecture 3: Probability Measures - 2

Lebesgue Measure on R n

REAL ANALYSIS LECTURE NOTES: 1.4 OUTER MEASURE

5 Birkhoff s Ergodic Theorem

Chapter 1. Measure Spaces. 1.1 Algebras and σ algebras of sets Notation and preliminaries

MATHS 730 FC Lecture Notes March 5, Introduction

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

Periodic Sinks and Observable Chaos

THE CANTOR GAME: WINNING STRATEGIES AND DETERMINACY. by arxiv: v1 [math.ca] 29 Jan 2017 MAGNUS D. LADUE

SOME MEASURABILITY AND CONTINUITY PROPERTIES OF ARBITRARY REAL FUNCTIONS

Integration on Measure Spaces

Specification and thermodynamical properties of semigroup actions

Handlebody Decomposition of a Manifold

WORKSHOP ON TOPOLOGICAL DYNAMICS AND ROTATION THEORY ON SURFACES ABSTRACTS

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

arxiv: v3 [math.ds] 1 Feb 2018

The Banach-Tarski paradox

5 Measure theory II. (or. lim. Prove the proposition. 5. For fixed F A and φ M define the restriction of φ on F by writing.

THE STRUCTURE OF THE SPACE OF INVARIANT MEASURES

April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v.

Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics

A genus 2 characterisation of translation surfaces with the lattice property

An Introduction to Ergodic Theory

Problem: A class of dynamical systems characterized by a fast divergence of the orbits. A paradigmatic example: the Arnold cat.

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures

Existence of a Limit on a Dense Set, and. Construction of Continuous Functions on Special Sets

INTRODUCTION TO REAL ANALYTIC GEOMETRY

Indeed, if we want m to be compatible with taking limits, it should be countably additive, meaning that ( )

10. The ergodic theory of hyperbolic dynamical systems

THE SEMICONTINUITY LEMMA

The Caratheodory Construction of Measures

1.1. MEASURES AND INTEGRALS

Hausdorff Measure. Jimmy Briggs and Tim Tyree. December 3, 2016

Coexistence of Zero and Nonzero Lyapunov Exponents

Construction of a general measure structure

MINIMAL YET MEASURABLE FOLIATIONS

The dynamics of mapping classes on surfaces

How circular are generalized circles

Rudiments of Ergodic Theory

ABSOLUTE CONTINUITY OF FOLIATIONS

Hyperbolic Dynamics. Todd Fisher. Department of Mathematics University of Maryland, College Park. Hyperbolic Dynamics p.

Tools from Lebesgue integration

An extended version of the Carathéodory extension Theorem

Differentiation of Measures and Functions

POINTWISE DIMENSION AND ERGODIC DECOMPOSITIONS

Abstract. 2. We construct several transcendental numbers.

ERGODIC DYNAMICAL SYSTEMS CONJUGATE TO THEIR COMPOSITION SQUARES. 0. Introduction

SRB MEASURES FOR AXIOM A ENDOMORPHISMS

Introduction to Ergodic Theory

HAMILTONIAN ELLIPTIC DYNAMICS ON SYMPLECTIC 4-MANIFOLDS

HYPERBOLIC DYNAMICAL SYSTEMS AND THE NONCOMMUTATIVE INTEGRATION THEORY OF CONNES ABSTRACT

Dimension of stablesets and scrambled sets in positive finite entropy systems

We will begin our study of topology from a set-theoretic point of view. As the subject

SOME EXAMPLES OF NONUNIFORMLY HYPERBOLIC COCYCLES. L.-S. Young 1

SYMBOLIC DYNAMICS FOR HYPERBOLIC SYSTEMS. 1. Introduction (30min) We want to find simple models for uniformly hyperbolic systems, such as for:

Sequences. Chapter 3. n + 1 3n + 2 sin n n. 3. lim (ln(n + 1) ln n) 1. lim. 2. lim. 4. lim (1 + n)1/n. Answers: 1. 1/3; 2. 0; 3. 0; 4. 1.

x 0 + f(x), exist as extended real numbers. Show that f is upper semicontinuous This shows ( ɛ, ɛ) B α. Thus

Three hours THE UNIVERSITY OF MANCHESTER. 31st May :00 17:00

Lyapunov optimizing measures for C 1 expanding maps of the circle

Lebesgue measure on R is just one of many important measures in mathematics. In these notes we introduce the general framework for measures.

5 Set Operations, Functions, and Counting

arxiv: v3 [math.ds] 23 May 2017

Lebesgue Measure. Dung Le 1

Lebesgue measure and integration

Transcription:

MEASURABLE PARTITIONS, DISINTEGRATION AND CONDITIONAL MEASURES BRUNO SANTIAGO Abstract. In this short note we review Rokhlin Desintegration Theorem and give some applications. 1. Introduction Consider a measure space (M, A, µ). Suppose that we partition X in an arbitrary way. Is it possible to recover the measure µ from its restriction to the elements of the partition? In this note, we shall address this question, giving some affirmative answer and applying this idea to obtain interesting results. Let us start with a simple (positive) example. Example 1.1. Consider the two torus T 2 = S 1 S 1, endowed with the Lebesgue measure m. The torus can be easily partitioned by the sets {y} S 1. Figure 1. Denote by m y the Lebesgue measure over the circle {y} S 1, and ˆm the Lebesgue measure over S 1. If E T 2 is a measurable set we know from basic measure theory that (1.1) m(e) = m y (E)d ˆm(y) 2010 Mathematics Subject Classification. Primary. Thanks to Aaron Brown for helpful conversations and the organizing committee of the conference Workshop for young researchers: groups acting on manifolds for the opportunity of participating in this wonderful meeting. 1

2 BRUNO SANTIAGO We would like to have a disintegration like this of a measure with respect to a partition in more general situations. One would naively ask: does it always exist a disintegration for a given partition? As we shall see later, for some simple, dynamically defined, partitions no disintegration exists at all. In the next sections we shall define formally the notion of a disintegration and try to explore a little bit this concept. 2. Disintegration and Conditional Measures Notice that if we remove from S 1 all y Q S 1, for some measurable set Q S 1 with ˆm(Q) = 0, equality (1.1) is not affected. Thus, it is natural to think of negligible amounts of sets in a partition. More formally, let (M, B, µ) be a probability space. Let P be a partition of M into measurable sets. Let π : M P be the natural projection: π(x) is the unique element of P such that x π(x). We can turn P into a measure space (P, ˆB, ˆµ), by saying Q ˆB π 1 (Q) B, and ˆµ(Q) = µ(π 1 (Q)). Definition 2.1. A disintegration of µ with respect to P is a family of probabilities {µ P ; P P} M 1 (M) such that for every E B one has (1) µ p (P ) = 1 for ˆµ almost every P P. (2) P P µ P (E) R is ˆB-measurable. (3) µ(e) = µ P (E)dˆµ(P ). Each measure µ P is called a conditional measure. Example 2.2. Let P = {P 1,..., P n } be a finite partition of M. Assume that no element of this partition has zero measure. In this case, the conditional measures are given by µ i (E) = µ(e P i), for every E B. µ(p i ) Indeed, we have ˆµ({P i }) = µ(p i ) and n µ(e) = µ(p i ) µ(e P i) = µ(p i ) i=1 n ˆµ({P i })µ i (E). In the same way, we can show that every countable partition admits a disintegration. In the lemma below, we sate an important and useful property of a disintegration. The proof is left as an exercise. Lemma 2.3. Assume that B admits a countable generator. If {µ P ; P P} and {µ P ; P P} are disintegrations then µ P = µ P for ˆµ almost every P P. There are very natural examples of partitions for which no disintegration exist at all. i=1

MEASURABLE PARTITIONS, DISINTEGRATION AND CONDITIONAL MEASURES 3 Figure 2. Circle rotations Example 2.4. Let θ R\Q be an irrational number, m be the normalised Lebesgue measure of the unit circle S 1. We consider R θ : S 1 S 1 the circle rotation by an angle θ. Let P = { {Rθ n(x)} n Z; x S 1} be the partition into orbits of the irrational circle rotation. We claim that this partition admits no disintegration. Indeed, assume that there exists {µ P ; P P} a disintegration of Lebesgue measure with respect to this partition. We look at the push-forward measures {(R θ ) µ P ; P P}. Then, as each set P P is invariant under the rotation R θ we have: (1) (R θ ) µ P (P ) = µ P (R 1 θ (P )) = µ P (P ) = 1. (2) For each Lebesgue measurable set E the map P P (R θ ) µ P (E) = µ P (R 1 θ (E)) is ˆm measurable. (3) m(e) = m(r 1 θ (E)) = µ P (R 1 θ (E))d ˆm(P ) = (R θ ) µ P (E)d ˆm(P ). This shows that the family of push-forward measures {(R θ ) µ P ; P P} is a disintegration for m with respect to P. By Lemma 2.3 (R θ ) µ P = µ P, for ˆm almost every P P. Since irrational circle rotations are uniquely ergodic, i.e. the only measure left invariant under the map R θ is Lebesgue measure, we conclude that µ P = m for ˆm-almost every P P. However, this implies that m(p ) = m({rθ n(x)} n Z) = 1, which is absurd. 3. Measurable Partitions In this section we shall define a class of partitions for which we always can find a disintegration. Recall that a partition P is finer than a partition Q, which we denote by Q P, if every P P is contained in some Q Q. Definition 3.1. Let (M, B, µ) be a probability space A partition P is measurable if there exists M 0 M with µ(m 0 ) = 1 and a nested sequence of countable partitions P 1 P 2... P n... such that P M0 = n=1p n. In other words, for every P P there exists a sequence P n, with P n P n such that P M 0 = n=1(p n M 0 ).

4 BRUNO SANTIAGO Thus a measurable partition can be described as the joining of a nested sequence of countable partitions. Notice that, as in example 2.2, countable partitions always admit a disintegration. From this fact and from a suitable martingale argument, one can prove the following fundamental theorem. Theorem 3.2 (Rokhlin Disisntegration Theorem). If (M, d) is a complete and separable metric space and P is a measurable partition. Then, there exists {µ P ; p P} a disintegration of µ. Let us see some examples of partitions which are, and which are not, measurable. Example 3.3. In the two torus T 2 = S 1 S 1, consider for each pair i, n, with n a positive integer and i {1, 2, 3,..., 2 n } the interval J(i, n) = [ i 1 i 2, n 2 ]. Then, the n Figure 3. A measurable partition of T 2. partition P n = {S 1 J(i, n)} is a measurable partition. Example 3.4. Let f A : S 1 S 1 be the map induced by the integer matrix [ ] 2 1 A =. 1 1 Then, f A is an Anosov diffeomorphism. Let P = {W u (x); x T 2 } be the partition into unstable manifolds. We claim that P is not measurable. Indeed, if P were measurable, as it is the partition into orbits of an irrational flow, P = n=1 would imply that for each n there exists P n P n, with m(p n ) = 1. Thus, P = n=1p n P, and m(p ) = 1, which is absurd. 4. Ergodic Decomposition of Invariant Measures We proceed to give an important application of the disintegration theorem, namely the decomposition of invariant measures into ergodic measures. Let (M, B, µ) be a probability space and f : M M be a measurable map such that f µ = µ. We say that the measure preserving system (f, M, B, µ) is ergodic if every measurable invariant set under f has either zero or full measure. The goal of this section is to prove the following military principle: divide the space to conquer the ergodic decomposition. Theorem 4.1 (Ergodic Decomposition). Let (M, d) be a complete and separable metric space and (f, M, B, µ) a measure preserving system. Then there exists a measurable partition P whose disintegration {µ P ; P P} satisfies ˆµ almost every µ P is ergodic.

MEASURABLE PARTITIONS, DISINTEGRATION AND CONDITIONAL MEASURES 5 The idea is that an ergodic system is dynamically indecomposable, since its orbits spread more or less uniformly over the configuration space, and thus it is possible split the M into the indecomposable components of the dynamics. Let us see this more closely by recalling a fundamental result in ergodic theory. 4.1. The ergodic theorem. Consider the following statistical question: given a point p M and a certain positive measure set A M, how often does the future orbit of p under f visit A? From a more formal point of view this means to study the behaviour of the sequence χ A (f j (p)). n So, its natural to ask: does this sequence converges? If so, to what limit? From an heuristic point of view, it is reasonable to conjecture that a system if no positive measure invariant set (ergodic) is forced to visit every region of the configuration space uniformly, since otherwise some invariant with positive weight would be produced. The ergodic theorem clarifies this clumsy reasoning. Theorem 4.2. Let (f, M, B, µ) be a measure preserving system. Then for every measurable set A M the limit χ A (f j (p)) n exists for µ-almost every p M. It is not hard to show (though we will not do this here) that the ergodic theorem implies the following. Corollary 4.3. A measure preserving system (f, M, B, µ) is ergodic if and only if lim χ A (f j (p)) = µ(a), n n for µ-almost every p M, and every measurable set A. 4.2. Proof of Theorem 4.1. As we said before, we need to dive the space to conquer the ergodic decomposition. So, our first task is to choose a suitable partition of M. Let U be a countable basis for the topology of M, and A the algebra generated by U. Notice that A is countable and generates B. Then the ergodic theorem implies that for each A A there exists M A M with µ(m A ) = 1 and such that τ(a, x) = lim χ A (f j (x)) n n exists. Take M 0 = A A M A. Then µ(m 0 ) = 1. We insert the following equivalence relation in M 0 : τ(a, x) = τ(a, y), for every A A. x y if, and only if, Lemma 4.4. The partition P = {[x]; x M 0 } of M 0 into equivalence classes is measurable.

6 BRUNO SANTIAGO We shall finish the proof assuming Lemma 4.4. Proof of Theorem 4.1. Let {µ P ; p P} be the associated disintegration. We only have to prove that each µ P is ergodic. Fix P P and consider C = {E B; τ(e, x) is defined and constant for every x M 0 P }. Notice that A C, by definition of P. Moreover, if E 2 E 1 then τ(e 1 \ E 2, x) = τ(e 1, x) τ(e 2, x) exists and is constant over M 0 P. If {E i } are two by two disjoint then τ( i=1e i, x) = τ(e i, x) exists and is constant over M 0 P. We conclude that C is a monotone class (it is stable under increasing unions and decreasing intersections). By the monotone class theorem we conclude that C = B. By Corollary 4.3 we deduce that µ P is ergodic. Proof of Lemma 4.4. Let A = {A k } be an enumeration of A and {q k } = Q be an enumeration of the rational numbers. Fix n N. We define a partition P n in the following way: we mark in the line the points q 1,..., q n and consider the partition of the line induced by these points. i=1 Figure 4. The partition P n. We declare x n y if and only if τ(a i, x) and τ(a i, y) belong to the same interval of this partition for every i = 1,..., n (see figure 4). Clearly, τ(a i, x) = τ(a i, y) for every i if and only if x, y n=1p n, with P n P n, and thus P = n=1p n. 5. Measurable unstable partitions We close this note by stating a deep generalization of Example 3.4, which is due to Leddrapier-Young. Theorem 5.1. Let f : M M be a C 2 diffeomorphism, Λ M a hyperbolic set. Notice that the unstable W u and the stable manifolds W s form a partition of some invariant set which contains Λ. Then for every invariant and ergodic measure µ the following are equivalent: (1) h µ (f) = 0 (2) W u is measurable; (3) W s is measurable.

MEASURABLE PARTITIONS, DISINTEGRATION AND CONDITIONAL MEASURES 7 Let us give a very rough idea of 2 1. One first proves that if W u comprises a measurable partition then the disintegration are Dirac. Indeed, take a compact set K W u (f n (x)), with almost full measure (say 1 ε). As f is C 2, using distortion arguments we show that almost all the mass of µ W x), say 1 ε, is concentrated ( in a tiny neighbourhood of x inside W u (x). As ε is arbitrary, this shows that µ W u (x) = δ x. From this, one deduces that the entropy vanishes. Instituto de Matemática e Estatística, Universidade Federal Fluminense Current address: Rua Professor Marcos Waldemar de Freitas Reis, s/n, Bloco H - Campus do Gragoatá São Domingos- Niterói - RJ - Brazil CEP 24.210-201 E-mail address: brunosantiago@id.uff.br