Mathematica Slovaca. Antonín Dvořák; David Jedelský; Juraj Kostra The fields of degree seven over rationals with a normal basis generated by a unit

Similar documents
ON THE EXISTENCE OF AN INTEGRAL NORMAL BASIS GENERATED BY A UNIT IN PRIME EXTENSIONS OF RATIONAL NUMBERS

Acta Mathematica Universitatis Ostraviensis

Mathematica Slovaca. Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences. Terms of use:

Mathematica Slovaca. Dragan Marušič; Tomaž Pisanski The remarkable generalized Petersen graph G(8, 3) Terms of use:

Mathematica Slovaca. Miroslav Lašák Wilson's theorem in algebraic number fields. Terms of use: Persistent URL:

Mathematica Bohemica

Commentationes Mathematicae Universitatis Carolinae

Mathematica Slovaca. Zbigniew Piotrowski Somewhat continuity on linear topological spaces implies continuity

Czechoslovak Mathematical Journal

MINIMAL GENERATING SETS OF GROUPS, RINGS, AND FIELDS

Commentationes Mathematicae Universitatis Carolinae

Mathematica Slovaca. Ján Jakubík On the α-completeness of pseudo MV-algebras. Terms of use: Persistent URL:

Acta Universitatis Carolinae. Mathematica et Physica

Commentationes Mathematicae Universitatis Carolinae

Linear Differential Transformations of the Second Order

Czechoslovak Mathematical Journal

Acta Universitatis Carolinae. Mathematica et Physica

Mathematica Bohemica

Časopis pro pěstování matematiky

Matematický časopis. Robert Šulka The Maximal Semilattice Decomposition of a Semigroup, Radicals and Nilpotency

Aplikace matematiky. Gene Howard Golub Numerical methods for solving linear least squares problems

be a sequence of positive integers with a n+1 a n lim inf n > 2. [α a n] α a n

Some algebraic number theory and the reciprocity map

arxiv: v1 [math.nt] 2 Jul 2009

Časopis pro pěstování matematiky

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille

Name: Solutions Final Exam

Czechoslovak Mathematical Journal

Archivum Mathematicum

Časopis pro pěstování matematiky

Commentationes Mathematicae Universitatis Carolinae

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

WSAA 14. A. K. Kwaśniewski Algebraic properties of the 3-state vector Potts model. Terms of use:

Galois theory (Part II)( ) Example Sheet 1

Maximal Class Numbers of CM Number Fields

GENERATORS OF FINITE FIELDS WITH POWERS OF TRACE ZERO AND CYCLOTOMIC FUNCTION FIELDS. 1. Introduction

Acta Mathematica et Informatica Universitatis Ostraviensis

Czechoslovak Mathematical Journal

Aplikace matematiky. Jiří Neuberg Some limit properties of the best determined terms method. Terms of use:

Matematický časopis. Bedřich Pondělíček A Note on Classes of Regularity in Semigroups. Terms of use: Persistent URL:

Mathematica Bohemica

Časopis pro pěstování matematiky a fysiky

Czechoslovak Mathematical Journal

Časopis pro pěstování matematiky

Galois fields/1. (M3) There is an element 1 (not equal to 0) such that a 1 = a for all a.

Quasi-reducible Polynomials

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Czechoslovak Mathematical Journal

Czechoslovak Mathematical Journal

Mathematica Slovaca. Ján Borsík Products of simply continuous and quasicontinuous functions. Terms of use: Persistent URL:

SOLVING SOLVABLE QUINTICS. D. S. Dummit

Mathematica Slovaca. Pavol Šoltés Oscillatoriness of solutions of a nonlinear second order differential equation

Časopis pro pěstování matematiky

Class numbers of cubic cyclic. By Koji UCHIDA. (Received April 22, 1973)

Commentationes Mathematicae Universitatis Carolinae

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

Archivum Mathematicum

University of Southern California, Los Angeles, University of California at Los Angeles, and Technion Israel Institute of Technology, Haifa, Israel

Stickelberger s congruences for absolute norms of relative discriminants

A connection between number theory and linear algebra

A short proof of Klyachko s theorem about rational algebraic tori

Kybernetika. Jiří Demel Fast algorithms for finding a subdirect decomposition and interesting congruences of finite algebras

Applications of Mathematics

IUPUI Qualifying Exam Abstract Algebra

Mathematica Bohemica

UNIIAMIFIED EXTENSIONS OF QUADRATIC NUMBER, FIELDS,

Kybernetika. Milan Mareš On fuzzy-quantities with real and integer values. Terms of use:

Algebra Exam Topics. Updated August 2017

Finite Fields and Error-Correcting Codes

Archivum Mathematicum

A COMPUTATION OF MINIMAL POLYNOMIALS OF SPECIAL VALUES OF SIEGEL MODULAR FUNCTIONS

ARITHMETIC PROGRESSIONS OF SQUARES, CUBES AND n-th POWERS

Dirichlet Series Associated with Cubic and Quartic Fields

Sample algebra qualifying exam

COUNTING MOD l SOLUTIONS VIA MODULAR FORMS

The Outer Automorphism of S 6

On the minimum distance of LDPC codes based on repetition codes and permutation matrices

Field Theory Problems

Commentationes Mathematicae Universitatis Carolinae

A TARGETED MARTINET SEARCH

ON GALOIS GROUPS OF ABELIAN EXTENSIONS OVER MAXIMAL CYCLOTOMIC FIELDS. Mamoru Asada. Introduction

THE SPIEGELUNGSSATZ FOR p = 5 FROM A CONSTRUCTIVE APPROACH

A linear resolvent for degree 14 polynomials

Chapter 5. Modular arithmetic. 5.1 The modular ring

Archivum Mathematicum

Kybernetika. Jan Havrda; František Charvát Quantification method of classification processes. Concept of structural a-entropy

POWER INTEGRAL BASES IN A PARAMETRIC FAMILY OF TOTALLY REAL CYCLIC QUINTICS

EQUADIFF 1. Milan Práger; Emil Vitásek Stability of numerical processes. Terms of use:

ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008

ALGEBRA PH.D. QUALIFYING EXAM SOLUTIONS October 20, 2011

Časopis pro pěstování matematiky

p-class Groups of Cyclic Number Fields of Odd Prime Degree

Toposym Kanpur. T. Soundararajan Weakly Hausdorff spaces and the cardinality of topological spaces

An unusual cubic representation problem

Course 2316 Sample Paper 1

Aplikace matematiky. Gene Howard Golub Least squares, singular values and matrix approximations. Terms of use:

SL 3 (F 2 )-extensions of Q and arithmetic cohomology modulo 2

Profinite Groups. Hendrik Lenstra. 1. Introduction

Galois Theory TCU Graduate Student Seminar George Gilbert October 2015

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

Transcription:

Mathematica Slovaca Antonín Dvořák; David Jedelský; Juraj Kostra The fields of degree seven over rationals with a normal basis generated by a unit Mathematica Slovaca, Vol. 49 (1999), No. 2, 143--153 Persistent URL: http://dml.cz/dmlcz/136747 Terms of use: Mathematical Institute of the Slovak Academy of Sciences, 1999 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Math. SlOVaCa, 49 (1999), NO. 2, 143-153 r\/tathematica Slovaca 1999 Slovák Academy of Sciences THE FIELDS OF DEGREE SEVEN OVER RATIONALS WITH A NORMAL BASIS GENERATED BY A UNIT ANTONIN DVORAK* DAVID JEDELSKY** JURAJ KOSTRA*** (Communicated by Stanislav Jakubec ) ABSTRACT. In this paper we determine all fields of degree seven over rationals which have an integral normal basis generated by a unit. In this paper we determine all fields of degree 7 over rationals which have integral normal basis generated by a unit. In [1] the following necessary condition was found for the existence of such a basis in the prime extensions of rationals. THEOREM 1. Let K be a tamely ramified extension of Q of prime degree I and let m=p l -p 2...p 3 be a conductor of the field K. Let there exist an integral normal basis generated by a unit in the field K. Then or l l = 1 (modpj, i = 1,2,...,$, l l = -1 (mod p.), i = 1,2,..., 5. Let [K : Q] = 7 with the conductor m. If there exists an integral normal basis generated by a unit in the field K, then the above theorem determines the possible values of m. We have to find all primes p, p = 1 (mod 7), for which 7 7 = 1 (mod p), and all primes p, p = 1 (mod 7), for which 7 7 = -1 (modp). From the first congruence we get three possible values of the conductor m: m = 29, m = 4733, m = 29 * 4733. AMS Subject Classification (1991): Primary 11R33. Key words: normal basis, unit, circulant matrix. This paper has been supported by grant 201/97/0433 of GA CR 143

ANTONÍN DVOŘÁK DAVID JEDELSKÝ JURAJ KOSTRA From the second congruence we get the three remaining possible values of the conductor m: m=113, m = 911, m = 113* 911. Let m be a prime number. Then there exists only one field K, [K : Q] = 7, with Galois group G(Q(( m )/K) generated by cr 11^-, where a is the generator ofo(q(cro)/*0- Let m = PiP 2 be a product of two primes p x and p 2, then, by [2; Lemma 2], an arbitrary K C Q(C m )' [If : Q] = 7, is a subfield of the composite L K X K 2 where [K x : Q] = 7, [K 2 : Q] = 7 and K x C Q(C P1 ), K 2 C Q(C P2 ) The Galois group is G(K X K 2 /Q) = G(K X /Q) x G(K 2 /Q), where G(KJQ) is generated by p and G(K 2 /Q) is generated by r. In this situation, there exist six fields K with conductor m and [K : Q] =7. They are determined by the subgroups G(L/K) of G(L/Q) generated by 1. [P,T] 4. [p,t 4 ] 2. [p,t 2 ] 5. [p,t 5 ] 3. [p,t 3 ] 6. [p,t 6 ]. In any such field K, there exists an integral normal basis generated by a = Tr Q(Cm)/K(Cm)» where C m 1s a primitive mth root of unity. We have the following possibilities for the fields K: (1) For m = 29, Q C K x C Q(C 29 ), N Ki/Q (a) = -1. (2) For m = 4733, Q C K 2 C Q(C A733 ), N K2/Q (a) = -28161351. (3) For m = 29*4733, fields K 3,...,K S correspond to subgroups of G(L/K) generated by the restrictions of automorphism S G G f (Q(C m )/Q) > i n *^e following table: к i 5 NK t /Q( a ) 3 4 5 6 7 8 Ґ i_ү /85537 S>ro ""*' <>m C ^m ^yč ^m 41921 ґ ^v z-41921 ^m ^ S m C н>c 16807 ^m ^m C ь->c 75735 ^ГО 'ГО Ґ,_. ЛШ260 <> m ^ S,m 251154785688281 898325927423-76788374021713 91709057071919-144070291575808 179069050883 144

THE FIELDS OF DEGREE SEVEN OVER RATIONALS (1) For m = 113, Q C K 9 C Q(C 113 ), N Kg/Q (a) = l. (2) For m = 911, Q C K 10 C Q(C 9 n), N Klo/q (a) = 225929. (3) For m = 113 * 911, the fields K n,...,k 16 correspond to subgroups of G(L/K) generated by the restrictions of the automorphism S G(Q(Cm)/Q). in the following table: \ к * 11 12 13 14 15 16 S C m "+ C m (._. /-5134 ^m ^ S m C ^m "> ^m Ci 8413 Cn ^m " ^m Clľ 81 ґ ң. ^50673 ^m ^m /-., /-15078 *»m ^ S m - /.-,/<_(«) -24680042975707-41156429602663 52987176319235-84808664064 150145053959387-143192889457 For iifj (ra = 29) and K 9 (m = 113) the generator a of the normal basis is a unit. For the remaining K { we shall investigate the set of all integral normal bases as follows: We shall use the fact that, in our case, the linear mapping which transforms an integral normal basis of the field K into an integral normal basis of the field K is represented by a unimodular circulant matrix of degree 7. By [1] the group of all unimodular circulant matrices of degree 7 is isomorphic to the subgroup E of finite index in the group of all units of the field Q(C 7 ) For the subgroup E we have E = {7 e Q(C 7 ); 7 is a unit, 7 = ±1 (mod (1 - C 7 ))}. The group of all units of the field Q(C 7 ) is generated by two fundamental units, e.g. and The group E generated by and 77І = i + C 7 + C 7 2 + c 7 4 + C 7 5 ^ = i + C 7 2 + C 7 3 + c 7 5 7?i = -^W 2 _=- 1 + c 7 + C6 145

ANTONIN DVOftAK DAVID JEDELSKY JURAJ KOSTRA is of index 3 in the group of all units of the field Q(C 7 )- We obtain an arbitrary integral normal basis of the field K by the transformation of an integral normal basis generated by a by means of a unimodular circulant matrix which corresponds to E. Let corresponds to rj x and A = circ 7 (-l, 1,0,0,0,0,1) B = circ 7 (-l, 2,0, -1,0,2, -1) corresponds to r) 2. That means that any integral normal basis /?-., /? 2,,P? of the field K (up to sign and order) can be obtained as follows (/?!, P 2,..., P 7 ) = (a,, a 2,..., a 7 ) A* B". Now we shall investigate the set {^K/Q(PI)> (P 1,P 2,...,P 7 ) = (a 1,a 2,...,a 7 )-A'-.B% t,v Z} (*) modulo p {, where p { is appropriate prime number. If there exists an integral normal basis generated by a unit P x in the field K, clearly N K^(P X ) = ±1 (mod p.). Let the period of the matrix M modulo p i be denoted as r, i.e. we have the following: M k mod ft = l', k = r, where I' is either the unit matrix or the unit matrix with permuted rows. Let the norm N K/Q (P 1 ) = p (mod pj, where p is either 1 or -1, for some i i } y = v x from (*). If there exists an integral normal basis generated by a unit in the field K then there should exist powers i t and v t such that for some ken i t = i k ' r tr +i i) modr p t v t = ( k ' r p 1 +u i) modr p B t > (o) N K/Q(PI) = P Mft)- If such powers do not exist then no integral normal basis generated by unit exists in the field. Prime numbers Pi,p 2,... were chosen such that the periods r^, r^, i = 2, 3,... are multiples of periods r^, r^, respectively. The prime numbers which were used for computations are shown in following table. 146

THE FIELDS OF DEGREE SEVEN OVER RATIONALS І Pi Pi PІ 1 43 42 14 2 127 3*42 3*14 3 211 5*42 5*14 4 883 7*42 21*14 The results of the computations are in the tables at the end of this paper. The columns p i contain those primes which satisfy (o). The Tables show that in none of the fields K 2,..., K s, K l0,..., K 16 does there exist an integral normal basis generated by a unit. Thus the integral normal basis generated by a unit exists only in the fields K 1 and K 9. Remark. All the fields of prime degree I so far known with an integer normal basis generated by a unit have a prime conductor and they are generated by a Gaussian period a. For / = 3, Q C K = Q(C 3 ) and Q C K C Q(C 5 ). For / = 5, QC K C Q(Cn) and Q C K C Q(C 7 i)- For primes equal to 21 + 1 or 4/ + 1 fields K of degree /, Q C K C Q(C P ), have an integral normal basis generated by a unit, because a sum of two or four roots of unity is a unit. 147

ANTONÍN DVOŘÁK DAVID JEDELSKÝ JURAJ KOSTRA Results for m = 911 and m = 4733, fields K 10 and K 2. L V P Pi 1 1-1 43,127 4 4 43 6 12 43 7 6 43 7 7 43 8 9-1 43 8 11-1 43 11 11 43 12 14 43 13 12-1 43,127 15 9 43 20 3 43 20 12 43,127 23 14 43 24 6 43 25 3-1 43 26 14 43 30 6 43 33 5 43 34 2-1 43 34 3 43 34 10 43,127 37 3-1 43 39 1-1 43 39 6-1 43 41 10-1 43 42 5 43 42 7-1 43 L V P Pi 2 7 43 4 11-1 43 5 5-1 43 8 2-1 43 9 11 43 10 13-1 43 10 14 43 13 12 43 14 7-1 43 15 12 43 15 13-1 43 17 11-1 43 17 13-1 43 18 9-1 43 22 5 43 23 6 43 23 10 43,127 30 9-1 43 38 2-1 43 39 3 43 40 2-1 43 40 5 43,127 148

THE FIELDS OF DEGREE SEVEN OVER RATIONALS Results for m = 29 * 4733, fields K 3, K 4 and K b. L V P Pi 3 1 43 4 3-1 43 4 7-1 43 6 3 43 8 10-1 43 9 7 43 10 3-1 43 11 2-1 43 11 12-1 43,127 12 1-1 43,127 12 14 43 15 11-1 43 17 5-1 43 18 2 43 20 2 43 20 5 43 20 8-1 43 21 2 43 21 8-1 43 21 9 43 21 10-1 43 22 5-1 43 22 10-1 43 23 1-1 43 24 8 43 25 11-1 43 27 6 43,127 27 13-1 43 29 1-1 43 30 12 43 31 9 43,127 34 11-1 43 35 7 43,127,211 37 13-1 43 37 14-1 43 38 4 43 39 11-1 43 40 3-1 43 41 4-1 43 L V P Pi L V P Pi 1 7, -1 43 1 10 43 6 lť -Л 43 3 14 43,127 10 4-1 43 4 5-1 43 10 11 43 7 8-1 43 11 14-1 43 7 9 43 12 4 43 8 5-1 43 12 5 43 9 11-1 43 12 7 43 11 4-1 43 15 5-1 43 11 11-1 43 17 10-1 43 16 1 43,127 18 14-1 43 17 13-1 43 19 6 43 18 7-1 43 20 4-1 43 19 9-1 43 20 7 43,127 20 5 43 22 3 43 23 12 43 22 4-1 43 26 3 43 23 9 43 26 10-1 43 24 12-1 43 26 11-1 43 28 2 43 28 9-1 43 28 5-1 43 31 4 43 30 10-1 43 33 1 43 31 8 43 33 14 43 32 9 43,127 34 4 43 33 3-1 43,127 34 7-1 43,127 34 7 43 36 6 43 37 7 43 39 9 43 37 11-1 43 40 9 43 38 12 43 42 10-1 43 149

ANTONÍN DVOŘÁK DAVID JEDELSKÝ JURAJ KOSTRA Results for m = 29 * 4733, fields K 6, K 7 and K s. 1 V P Pi 3 1-1 43 6 13 43 8 9 43 10 6-1 43 11 4 43 12 10 43 14 2-1 43 15 2-1 43 15 6 43 16 6 43 16 10 43 20 9 43 21 8-1 43 22 4 43 25 4 43 26 2-1 43 26 5-1 43 26 11 43 28 14-1 43 29 5 43 29 6-1 43 29 10 43 32 6-1 43 32 11 43,127,211 33 1 43 37 8-1 43 39 5-1 43 39 14-1 43 40 7 43 42 1-1 43 í V P Pi 1 11 43 5 13-1 43,127 6 13-1 43 6 14-1 43 8 11-1 43 11 2-1 43 11 13 43 15 1 43 15 2-1 43 15 5-1 43 18 7 43 19 10 43 20 8 43 21 2-1 43 24 6-1 43 28 1-1 43 30 4 43 31 2 43 31 12-1 43 31 14-1 43 33 2-1 43 33 5-1 43 35 1-1 43 35 3-1 43 35 6 43 35 7 43 37 12-1 43,127 41 7 43 41 12 43 41 13 43 42 4 43 i V P Pi 1 12 43 2 14-1 43 4 4-1 43,127 4 7 43 5 4 43 8 7-1 43 11 2-1 43 14 8 43 17 8 43 19 6 43 22 7-1 43 22 12-1 43 23 4-1 43 24 7 43 25 12-1 43 29 10 43 33 4 43 37 1 43 38 3-1 43 150

THE FIELDS OF DEGREE SEVEN OVER RATIONALS Results for m = 113 * 911, fields K u, K 12 and K 13. 1 V P Pi 5 4-1 43 6 7-1 43 6 8 43 8 1 43 11 6-1 43 12 11 43,127,211 15 5 43 15 9 43,127,211 16 12-1 43 18 3 43 19 2 43 19 3 43 21 12 43 22 10-1 43 25 6-1 43 27 3-1 43 31 10-1 43 32 10 43 33 7 43 35 2-1 43 36 5 43 37 5-1 43 39 2 43 39 6-1 43 39 13.43 40 4 43 40 9-1 43 41 10-1 43 Í. V P Pi 4 9 43,127 5 2 43 6 8 43 15 7-1 43 15 14 43 16 1-1 43 16 11-1 43 17 2 43 18 13-1 43,127 21 9 43 27 4-1 43 29 12 43 36 13-1 43 37 3-1 43 37 10-1 43 39 9 43 40 7 43 41 13 43 ь V P Pi 1 6 43 1 7-1 43 2 10 43 3 5 43 10 2-1 43 10 9 43 11 8-1 43 12 3 43 12 11-1 43 13 7-1 43 14 3 43 18 5-1 43 21 2-1 43 27 7 43 29 10 43 30 4-1 43 31 3 43 32 5 43 33 4 43 33 6-1 43 34 4 43,127 34 5 43 35 4-1 43 35 9-1 43 38 12 43 40 8-1 43 42 7 43 151

ANTONÍN DVOŘÁK DAVID JEDELSKÝ JURAJ KOSTRA Results for m = 113 * 911, fields K 14, K l5 and K 16. L V P Pi L V P Pi L V P Pi 2 12-1 43 1 5 43 5 12 43 6 9 43 4 3-1 43 6 7 43 7 9-1 43 4 4 43 7 10 43 10 4 43 5 1-1 43 8 1 43 11 2-1 43 5 14-1 43 9 12-1 43 12 1-1 43 16 5-1 43 10 2 43 13 10-1 43 19 14 43 11 7-1 43 14 4 43 20 3 43 11 10 43 21 13 43 20 12-1 43 15 10 43 23 1 43 21 3-1 43 17 5 43 24 12 43 22 4-1 43 19 10-1 43 26 1-1 43 25 3-1 43 22 3-1 43 27 9-1 43 25 4 43 25 5 43 30 4 43 29 11 43 25 8 43 33 2 43 30 2-1 43,127 26 7 43 33 10 43 31 7-1 43 29 9 43 35 11 43 33 7-1 43 31 1 43 36 3-1 43 33 10-1 43 31 9-1 43 39 14-1 43 35 5 43 35 12-1 43 40 14-1 43 35 7 43 36 7-1 43 42 5 43 35 8 43 39 8 43 42 8 43,127 38 10 43 39 10-1 43 42 6-1 43 42 11 43,127 42 14 43 152

THE FIELDS OF DEGREE SEVEN OVER RATIONALS REFERENCES [1] JAKUBEC, S KOSTRA, J. NEMOGA, K.: On the existence of an integral normal basis generated by a unit in prime extensions of rational numbers, Math. Comp. 56 (1991), 809-815. [2] JAKUBEC, S KOSTRA, J.: A note on normal bases of ideals, Math. Slovaca 42 (1992), 677-684. Received July 16, 1997 * IRAFM and Department of Mathematics University of Ostrava Bráfova 7 CZ-701 03 Ostrava CZECH REPUBLIC E-mail: dvoraka@osu.cz ** IRAFM University of Ostrava Bráfova 7 CZ-701 03 Ostrava CZECH REPUBLIC E-mail: jedelsky@osu.cz *** Department of Mathematics University of Ostrava Bráfova 7 CZ-701 03 Ostrava CZECH REPUBLIC E-mail: kostra@osu.cz 153