Heavy Probes in Heavy-Ion Collisions Theory Part IV

Similar documents
Heavy flavor with

T-Matrix approach to heavy quarks in the Quark-Gluon Plasma

Heavy-Quark Transport in the QGP

Heavy-Quark Transport in the QGP

Heavy Quarks in Heavy-Ion Collisions

Heavy-Quark Kinetics in the Quark-Gluon Plasma

Steffen Hauf

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Bottomonia physics at RHIC and LHC energies

A prediction from string theory, with strings attached

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

The relation between cross-section, decay width and imaginary potential of heavy quarkonium in a quark-gluon plasma

Beijing. Charmed hadron signals of partonic medium. Olena Linnyk

Charmonium Production and the Quark Gluon Plasma

Quarkonia in Medium: From Spectral Functions to Observables

Heavy-ion collisions in a fixed target mode at the LHC beams

Disintegration of quarkonia in QGP due to time dependent potential

Heavy quark free energies, screening and the renormalized Polyakov loop

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

annihilation of charm quarks in the plasma

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

Hadronic Effects on T cc in Relativistic Heavy Ion Collisions

Heavy quarks and charmonium at RHIC and LHC within a partonic transport model

The Quark-Gluon plasma in the LHC era

The Dilepton Probe from SIS to RHIC

Heavy quark and quarkonium evolutions in heavy ion collisions

Charm production at RHIC

Latest results on Quarkonium production in nuclear matter at the LHC

Thermal width and quarkonium dissociation in an EFT framework

Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions.

J/ suppression in relativistic heavy-ion collisions

arxiv: v2 [hep-ph] 2 Nov 2015

Heavy Flavours in ALICE

Overview of Quarkonium Production in Heavy-Ion Collisions at LHC

8.882 LHC Physics. Experimental Methods and Measurements. Onia as Probes in Heavy Ion Physics [Lecture 10, March 9, 2009]

arxiv: v1 [nucl-ex] 12 May 2008

Disintegration of quarkonia in QGP due to time dependent potential

Heavy quark free energies and screening from lattice QCD

Charmonium production in antiproton-induced reactions on nuclei

Critical Behavior of heavy quarkonia in medium from QCD sum rules

Quarkonia Production and Dissociation in a Langevin Approach

The Dilepton Probe from SIS to RHIC

arxiv:hep-lat/ v2 17 Jun 2005

Production of Charmed Hadrons by Statistical Hadronization of a Quark Gluon Plasma as a proof of deconfinement

LLR, École polytechnique IN2P3/CNRS, Palaiseau, France 2. LAPTh, Université de Savoie CNRS, Annecy-le-Vieux, France 3

Heavy quarkonium in a weaky-coupled plasma in an EFT approach

Phenomenology of Heavy-Ion Collisions

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab

arxiv: v1 [nucl-th] 19 Nov 2018

Introduction to the physics of the Quark-Gluon Plasma and the relativistic heavy-ion collisions

Medium Modifications of Hadrons and Electromagnetic Probe

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

arxiv: v2 [hep-ph] 29 Jun 2010

Heavy quark(onium) at LHC: the statistical hadronization case

Quarkonia and heavy-quark production in proton and nuclear collisions at the LHC

Quarkonium production in proton-nucleus collisions

Formation Time of Hadronic Resonances

Transport Theoretical Studies of Hadron Attenuation in Nuclear DIS. Model Results Summary & Outlook

Quarkonium results in pa & AA: from RHIC to LHC

Tina Leitner Oliver Buß, Ulrich Mosel und Luis Alvarez-Ruso

Heavy-flavour meson production at RHIC

Quarkonium Free Energy on the lattice and in effective field theories

Prospects with Heavy Ions at the LHC

Electromagnetic Probes in Ultrarelativistic Heavy-Ion Collisions

Quarkonium production measurement in Pb-Pb collisions at forward and mid rapidity with the ALICE experiment

Charm production in AA collisions

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions

J/Ψ-suppression in the hadron resonance gas

Dileptons in NN and AA collisions

Thermalization of Color Glass Condensate within Partonic Cascade BAMPS and Comparison with Bottom-Up Scenario.

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

Recent Results from RHIC: On the trail of the Quark-Gluon Plasma

Heavy quarkonia at finite temperature: The EFT approach

LLR, École polytechnique IN2P3/CNRS, Palaiseau, France 2. LAPTh, Université de Savoie CNRS, Annecy-le-Vieux, France 3

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

MD Simulations of classical sqgp

Ultra-Relativistic Heavy Ion Collision Results

Charmonium production in heavy ion collisions.

Heavy quark production and elliptic flow at RHIC and LHC

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC

Heavy Flavor Results from STAR

THE NUCLEUS AS A QCD LABORATORY: HADRONIZATION, 3D TOMOGRAPHY, AND MORE

Investigation of jet quenching and elliptic flow within a pqcd-based partonic transport model

Heavy Mesonic Spectral Functions at Finite Temperature and Finite Momentum

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

arxiv:hep-ph/ v1 6 Feb 1997

Measurement of quarkonium production at the LHC: from pp to Pb Pb collisions with insight into the Quark-Gluon Plasma

News on Hadrons in a Hot Medium

Quarkonia and Open Heavy Flavor Results from CMS

Quarkonium as Probe of Hot QCD Medium. Ágnes Mócsy

arxiv:hep-lat/ v1 5 Feb 2007

Recent results from relativistic heavy ion collisions

STAR heavy-ion highlights

Outline: Open charm in heavy-ion collisions. A Heavy-Ion Seminar talk by Szymon Harabasz

arxiv: v1 [hep-ex] 14 Jan 2016

QGP event at STAR. Patrick Scott

Recent Quarkonia results by PHENIX

arxiv:hep-ph/ v2 8 Aug 2002

The Quark-Gluon Plasma and the ALICE Experiment

Transcription:

Heavy Probes in Heavy-Ion Collisions Theory Part IV Hendrik van Hees Justus-Liebig Universität Gießen August 31-September 5, 21 Institut für Theoretische Physik JUSTUS-LIEBIG- UNIVERSITÄT GIESSEN Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 1 / 31

Outline 1 Heavy quarkonia in the vacuum Stable charmonium and bottomonium states (M < 2m D ) Non-relativistic potential models 2 Heavy quarkonia in the sqgp J/ψ suppression Heavy-quarkonium dissociation In-medium modification of bound-state potentials Heavy-quarkonia dissociation and regeneration in the QGP Dissociation Cross Sections Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 2 / 31

Charmonium states no flavor-changing neutral currents in weak interactions prediction of fourth quark GIM mechanism (Glashow, Iliopolous, Maiani) CKM-quark-mixing matrix (Cabibbo, Kobayashi, Maskawa) discovered as cc bound state simultaneously by Ting (BNL) and Richter (RHIC) name J/ψ today many charmonia known (only stable states) higher excitations can decay strongly to D + D Name η c J/ψ χ c χ c1 χ c2 ψ mass (GeV) 2.98 3.1 3.42 3.51 3.56 3.69 E B (GeV).75.64.32.22.18.5 state 1S 1S 1P 1P 1P 2S J P C + 1 ++ 1 ++ 2 ++ 1 [L. Kluberg, H. Satz, Landolt-Börnstein 23/I, 6-1 (21)] Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 3 / 31

Bottomonium states Υ as first bb-bound state discovered by Ledermann (Fermi Lab) 1977 even more stable bottomonium states (due to stronger binding) higher excitations can decay strongly to B + B Name Υ χ b χ b1 χ b2 Υ χ b χ b1 χ b2 Υ mass (GeV) 9.46 9.86 9.89 9.91 1.2 1.23 1.26 1.27 1.36 E B (GeV) 1.1.7.67.64.53.34.3.29.2 state 1S 1P 1P 1P 2S 1P 1P 1P 3S J P C 1 ++ 1 ++ 2 ++ 1 ++ 1 ++ 2 ++ 1 [L. Kluberg, H. Satz, Landolt-Börnstein 23/I, 6-1 (21)] light-quark mesons: mass from strong interaction (confinement) heavy quarkonia: mass due to quark masses can be treated as (quasi-)non-relativistic bound states Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 4 / 31

Non-relativistic potential models use phenomenological static potentials, e.g., Cornell potential V (r) = σr α r long-range scale: confining (non-perturbative QCD), string tension, σ.2 GeV 2 short-range scale: Coulomb-like (pqcd), α π/12 heavy-quarkonium states from non-relativistic Schrödinger equation [ 2m Q 1 ] + V (r) Φ i ( r) = M i φ i (r) m Q fit to spin-averaged heavy-quarkonium spectra m c = 1.25 GeV, m b = 4.65 GeV, σ =.445 GeV, α = π/12 from wave function r 2 i = Φi r Φ i Name J/ψ χ c ψ Υ χ b Υ χ b Υ mass (GeV) 3.1 3.53 3.68 9.46 9.99 1.2 1.26 1.36 E B (GeV).64.2.5 1.1.67.54.31.2 M i (GeV).2 -.3.3.36 -.6 -.6 -.8 -.7 r (fm).5.72.9.28.44.56.68.78 Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 5 / 31

J/ψ suppression as probe for QGP formation heavy quarkonia break up in sqgp dissociation through inelastic scattering with medium particles gluon dissociation, quasi-free knock-out reactions in-medium modification of strong interaction; color screening suppression of heavy quarkonia as signal for QGP formation [T. Matsui, H. Satz, J/ψ PLB 178, 416 (1986)] caveat! already suppression in pa collisions compared to pp absorption, shadowing, Cronin effect as cold-nuclear-matter effects must be taken into account to determine anomalous suppression Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 6 / 31

Heavy-quarkonium dissociation from non-rel. potential models: tightly bound states of small size need hard parton to dissociate heavy quarkonia leading-order process via hard gluon hot hadron gas hadron of high momentum p h distribution of gluons with momentum xp h : g(x) (1 x) 2 average gluon-momentum fraction 1 x = dxxg(x) 1 dx g(x) = 1 5 in hadronic medium with T < T c average momentum p gluon = 3T/5.1 GeV E B.6 GeV deconfined matter (QGP) p gluon 3T for T 1.2T c gluo dissociation of J/ψ possible Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 7 / 31

Heavy-quarkonium dissociation dissociation cross section (similar to photo effect in QED) g + J/ψ c + c [M.E. Peskin, NPB 156, 365 (1979), G. Bhanot, M.E. Peskin, NPB 156, 391 (1979)] σ g+j/ψ c+c 1 m 2 c (k/e B 1) 3/2 (k/e B ) 5 for hadron: convolution with parton-distribution function g(x) g ψ J/ ψ 1e+ π ψ σ [mb] 1e 1 h 1e 2 1 1 [L. Kluberg, H. Satz, Landolt-Börnstein 23/I, 6-1 (21)] k [GeV] Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 8 / 31

Potential models in the medium modify Cornell potential by Debye screening confining part: Laplace equation in 1D perturbative part: Laplace equation in 3D Debye-screened Cornell potential V (r, T ) σr 1 exp( µ Dr) µ D r shortcomings of this model α r exp( µ Dr) confining part treated as 1D-gauge theory different in 3D µ D taken in high-energy form µ T lqcd µ D different close to T c (strong interactions sqgp!) [F. Karsch, M.-T. Mehr, H. Satz. ZPC 37, 617 (1988); F. Karsch, H. Satz, ZPC 51, 29 (1991)] Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 9 / 31

Static heavy-quark potentials from lattice QCD lattice QCD at finite temperature: calculate free energy F = U T S calculate difference between F QQ with Q and Q at distance, r and F average Hamiltonian for static QQ: H T = U = T 2 (F/T )/ T M quarkonium long-distance limit: 2M D (T ) 2m c + U(, T ) can be reinterpreted as medium-modified heavy-quark mass short-distance: polarization zones overlap enhancement of U over T = Cornell potential right potential V = xu + (1 x)f? V lqcd Kaczmarek et al F(r,T=) U(r,T) F(r,T) T S(r,T) r D T > T c r Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 1 / 31

Heavy-quarkonium spectral functions from lqcd lqcd: thermal expectation values of imaginary-time operators Monte Carlo evaluation of path integrals of discreticed QCD action current-correlation function for heavy quarkonia G α (τ, r) = j α (τ, r)j α(, ) connection with spectral function T G α (τ, p; T ) = K(E, τ; T ) = deσ α (E, p; T )K(E, τ; T ) cosh[e(τ β/2)] sinh(βe/2) with inversion problematic on (discretized) imaginary time τ β statistical maximum-entropy method (MEM) Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 11 / 31

T-matrix approach for quarkonium-bound-state problem T-matrix Brückner approach for heavy quarkonia as for HQ diffusion consistency between HQ diffusion and QQ suppression! Q c T q k q = V + V T Σ = Σ glu + T 4D Bethe-Salpeter equation 3D Lippmann-Schwinger equation relativistic interaction static heavy-quark potential (lqcd) T α (E; q, q) =V α (q, q) + 2 π {1 n F [ω 1 ( k)] n F [ω 2 (k)]} dk k 2 V α (q, k)g Q Q(E; k)t α (E; k, q) q, q, k relative 3-momentum of initial, final, intermediate QQ state [F. Riek, R. Rapp, arxiv:15.769 [hep-ph]] Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 12 / 31

The potential Q Q Q Q non-perturbative static gluon propagator D ( k) = 1/( k 2 + µ 2 D) + m 2 G/( k 2 + m 2 D) 2 finite-t HQ color-singlet-free energy from Polyakov loops exp[ F 1 (r, T )/T ] = Tr[Ω(x)Ω (y)]/n c [ g 2 = exp A,α 2N c T 2 (x)a,α (y) A 2,α(x) ] + O(g 6 ) identify A,α (x)a,α (y) = D (x y) color-singlet free energy F 1 (r, T ) = 4 { } 3 α exp( md r) s + m2 G [exp( m D r) 1] + m D r 2 m D in vacuo m D, m D F 1 (r) = 4 3 [F. Riek, R. Rapp, arxiv:15.769 [hep-ph]] α s r + σr, σ = 2α sm 2 G 3 Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 13 / 31

Heavy quarkonia fit parameters, α s (T ), m D (T ), m D (T ), m G (T ) to lqcd calculate internal energy U(r, T ) = F (r, T ) T T F (r, T ) solve Lippmann-Schwinger equation adjust m Q to get s-wave charmonia/bottomonia masses in vacuum in the following potential 1: N f = 2 + 1 [O. Kaczmarek] potential 2: N f = 3 [P. Petreczky] BbS: Blancenblecler-Sugar reduction scheme Th: Thompson reduction scheme vacuum-mass splittings uncertainty for charmonia 5-1 MeV uncertainty for bottomonia 3-7 MeV overall uncertainty 1% melting temperatures with U and F s-wave (η c, J/ψ): 2-2.5T c, 1.3T c, Υ: > 2T c, 1.7T c, 1T c, 2T c, 1T c, 1T c p-wave (χ c ): 1.2T c, 1T c, χ b : 1.7T c, 1.2T c, all 1T c [F. Riek, R. Rapp, arxiv:15.769 [hep-ph]] Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 14 / 31

Quarkonium-spectral functions in the vacuum Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 15 / 31

In-medium charmonium-spectral functions (s states) Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 16 / 31

In-medium charmonium-spectral functions (p states) Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 17 / 31

J/ψ suppression and regeneration dissociation rate Γ Ψ = i d 3 k (2π) 3 f i(ω k, T )v rel σ (diss) Ψi (s) g + Ψ Q + Q ( gluon dissociation ) σ gψ (k ) = 2π 3 ( 32 3 ) 2 ( ) 1/2 mq 1 E b m 2 Q (k /E B 1) 3/2 (k /E) 5 for decreasing binding energy: cross section sharply peaked at low k gluon dissociation becomes inefficient for loosely bound states additional channel: quasi-free dissociation g + Ψ g + Q + Q [L. Granchamp, R. Rapp, PLB 523, 6 (21); R. Rapp EPC 43, 91 (25)] Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 18 / 31

Dissociation Cross Sections need dissociation cross sections to evaluate Υ yield Usual mechanism: gluon dissociation (in dipole approximation) Problem: becomes inefficient for loosely bound states σ gυ [mb].5.4.3.2 p 2 thermal-dist (T=3 MeV) gluo-diss. (ε med ) gluo-diss. (ε vac ) τ Υ [fm/c] 1 3 1 2 1 1 1 ε 1s (T) ε 2s (T) ε 1p (T) (1s), m b =5.28.1 1-1 1 2 3 ω [GeV] Γ Y = τ 1 Y =.2.4.6.8 1 T [GeV] d 3 k (2π) 3 f q,g(ω k, T )v rel σy diss (s) m Y = 2m b (T ) ɛ Y (T ) = const ɛ Y (T ) from Schrödinger eq. with screened Cornell potential [Karsch, Mehr, Satz 88] Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 19 / 31

Dissociation Cross Sections breakup mechanism for loosely bound states: quasifree dissociation use LO pqcd cross sections for elastic scattering [Combridge 79] g c g c τ Υ [fm/c] 1 3 1 2 1 1 ε 1s (T) ε 2s (T) ε 1p (T) ε 1s =1.1 GeV ε 2s =.54 GeV ε 1p =.66 GeV 1.2.4.6.8 1 T [GeV] Color screening reduces Υ lifetime by factor of 1! Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 2 / 31

J/ψ suppression and regeneration use of in-medium binding energies: need both gluon absorption + quasi-free scattering [L. Granchamp, R. Rapp, PLB 523, 6 (21); R. Rapp EPC 43, 91 (25)] Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 21 / 31

Quarkonium transport in heavy-ion collisions quarkonium transport in the sqgp p µ p µ f Ψ (x, p) = Γ Ψ (x, p) + β Ψ (x, p) gain/regeneration term (e.g., for Q + Q g + Ψ) β Ψ (x, p) = 1 d 3 k d 3 p Q d 3 p Q 2p (2π) 3 2ω k (2π) 3 2ω Q (2π) 3 2ω Q f Q (x, p Q )f Q(x, gψ p Q)W Q Q (s)θ[t diss T (x)] (2π) 4 δ (4) (p + q p Q p Q) W gψ Q Q = σ Q Q gψ v rel4ω Q ω Q cross section must be the same as for dissociation (up to kinematics) detailed balance Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 22 / 31

Rate equations for quarkonia integrate Boltzmann equation over x, p assume thermalized Q/ Q distributions in the sqgp rate equation dn Ψ = Γ Ψ (N Ψ N (eq) Ψ dτ ) detailed balence ensures correct equilibrium limit conservation of heavy-quark number N Q Q = N Q = N Q over whole evolution of the medium HQ fugacity factors N Q Q = 1 2 N I 1 (N op ) op N op = n (eq) Ψ (T ) I (N op ) + V FBγQ 2 Ψ { V FB γ Q 2n (eq) Q (m Q, T ) for QGP α (T, µ B ) for hadron gas V FB γ Q α n(eq) Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 23 / 31

Initial conditions QQ pairs produced in primordial hard collisions only subject to cold-nuclear-matter effects nuclear absorption: dissociation by interaction with surrounding nucleons Cronin effect: broadening of Ψ-p T spectra due to rescattering of gluons before charmonium formation (anti-)shadowing: modification of the parton-distribution functions in nuclei after formation time: assume equilibrium distributions p T distributions direct part: from pp + cold-nuclear-matter effects regenerated part: boosted Boltzmann distribution (blast wave) dn Ψ m T p T dp T R dr r K 1 ( mt cosh y T T ) ( ) pt sinh y t I T Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 24 / 31

Centrality dependence of J/ψ in AA collisions mid rapidity B µµ σ(j/ψ)/σ(dy) 2.9-4.5 35 3 25 2 15 1 5 Pb-Pb (17.3 A GeV) NA5 direct coalescence total Nuc. Abs. 2 4 6 8 1 12 E T (GeV) R AA 1.4 1.2 1.8.6.4.2 Au-Au (2 A GeV) y <.35 PHENIX direct coalescence total Nuc. Abs. 5 1 15 2 25 3 35 N part [X. Zhao, R. Rapp, EPC 62, 19 (29)] Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 25 / 31

Centrality dependence of J/ψ in AA collisions forward rapidity with and without shadowing 1.4 1.2 1 Au-Au (2 A GeV) y : [1.2,2.2] PHENIX direct coalesence total Nuc. Abs. w/sh. 1.4 1.2 1 Au-Au (2 A GeV) y : [1.2,2.2] PHENIX direct coalesence total Nuc. Abs. R AA.8.6 R AA.8.6.4.4.2.2 1 2 3 4 N part 1 2 3 4 N part [X. Zhao, R. Rapp, EPC 62, 19 (29)] Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 26 / 31

p T dependence of J/ψ R AA mid rapidity 2 1.5 PHENIX coalescence direct total -2% y <.35 2 1.5 PHENIX direct coalescence total 2-4% y <.35 R AA 1 R AA 1.5.5 2 1.5 PHENIX direct coalescence total 4-6% y <.35 2 1.5 6-92% y <.35 PHENIX coalescence direct total R AA 1 R AA 1.5.5 2 4 6 8 p t (GeV) [X. Zhao, R. Rapp, EPC 62, 19 (29)] 2 4 6 8 p t (GeV) Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 27 / 31

p T dependence of J/ψ R AA forward rapidity 2 1.5 PHENIX direct coalescence total -2% y : [1.2, 2.2] 2 1.5 PHENIX direct coalescence total 2-4% y : [1.2, 2.2] R AA 1 R AA 1.5.5 2 1.5 PHENIX direct coalescence total 4-6% y : [1.2, 2.2] 2 1.5 6-92% y : [1.2, 2.2] PHENIX direct coalescence total R AA 1 R AA 1.5.5 2 4 6 8 p t (GeV) [X. Zhao, R. Rapp, EPC 62, 19 (29)] 2 4 6 8 p t (GeV) Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 28 / 31

Instead of a summary: questions How are heavy quarkonia in the vacuum theoretically described? What can we learn from that about fundamental properties of QCD? Which cold-nuclear matter (initial state) effects are important for heavy quarkonia? What are the main mechanisms behind heavy-quarkonium suppression in the sqgp? How are the bound-state properties of heavy quarkonia in the medium described? How are the heavy-quarkonium observables in heavy-ion collisions described? Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 29 / 31

Summary Heavy quarkonium states (non-relativistic) bound QQ states potential: color-coulomb (pert.) + confining (non-pert.) part good description of charmonia, J/ψ, χ C,... and bottomonia, Υ, χ b,... tightly bound states with small size Heavy quarkonia in the medium dissociation via scattering with medium particles main mechanism: gluon dissociation, quasi-free break-up reaction J/ψ suppression as signal for QGP formation in HICs cold-nuclear-matter effects (absorption, shadowing Cronin effect) anomalous suppression QGP signal Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 3 / 31

Summary Potential models in the medium heavy quarkonia with lqcd difficult to extract spectral properties (MEM) potential models in the medium use in-medium potentials from the lattice free energy or internal energy? use screened color-coulomb + confining ansatz for potential fit medium dependent parameters to lqcd leads to survival of some quarkonia above T c regeneration important Dissociation/Regeneration of heavy quarkonia in the QGP initial conditions: production cross sections, cold-nuclear matter effects dissociation cross sections for gluon absorption + quasi-free scattering Transport approach to dissociation and regeneration of heavy quarkonia in-medium bound-state properties Hendrik van Hees (JLU Gießen) Heavy Probes in HICs (Theory IV) August 31-September 5, 21 31 / 31