Higher Order ODE's, (3A)

Similar documents
Higher Order ODE's (3A) Young Won Lim 7/8/14

Higher Order ODE's (3A) Young Won Lim 12/27/15

Higher Order ODE's (3A) Young Won Lim 7/7/14

Separable Equations (1A) Young Won Lim 3/24/15

Introduction to ODE's (0A) Young Won Lim 3/9/15

ODE Background: Differential (1A) Young Won Lim 12/29/15

Linear Equations with Constant Coefficients (2A) Young Won Lim 4/13/15

Introduction to ODE's (0P) Young Won Lim 12/27/14

Second Order ODE's (2A) Young Won Lim 5/5/15

Background Trigonmetry (2A) Young Won Lim 5/5/15

Background ODEs (2A) Young Won Lim 3/7/15

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 10/22/12

General Vector Space (2A) Young Won Lim 11/4/12

Definitions of the Laplace Transform (1A) Young Won Lim 1/31/15

Line Integrals (4A) Line Integral Path Independence. Young Won Lim 11/2/12

Differentiation Rules (2A) Young Won Lim 1/30/16

Matrix Transformation (2A) Young Won Lim 11/9/12

Surface Integrals (6A)

Relations (3A) Young Won Lim 3/27/18

Expected Value (10D) Young Won Lim 6/12/17

Root Locus (2A) Young Won Lim 10/15/14

Complex Functions (1A) Young Won Lim 2/22/14

Complex Series (3A) Young Won Lim 8/17/13

Matrix Transformation (2A) Young Won Lim 11/10/12

CLTI Differential Equations (3A) Young Won Lim 6/4/15

Differentiation Rules (2A) Young Won Lim 2/22/16

Background LTI Systems (4A) Young Won Lim 4/20/15

Surface Integrals (6A)

CT Rectangular Function Pairs (5B)

General CORDIC Description (1A)

Fourier Analysis Overview (0A)

DFT Frequency (9A) Each Row of the DFT Matrix. Young Won Lim 7/31/10

Complex Trigonometric and Hyperbolic Functions (7A)

Capacitor Young Won Lim 06/22/2017

The Growth of Functions (2A) Young Won Lim 4/6/18

Introduction to ODE's (0A) Young Won Lim 3/12/15

Detect Sensor (6B) Eddy Current Sensor. Young Won Lim 11/19/09

CLTI System Response (4A) Young Won Lim 4/11/15

Background Complex Analysis (1A) Young Won Lim 9/2/14

Chapter 4. Higher-Order Differential Equations

Digital Signal Octave Codes (0A)

Hyperbolic Functions (1A)

Signal Functions (0B)

Capacitor in an AC circuit

Discrete Time Rect Function(4B)

General Vector Space (3A) Young Won Lim 11/19/12

Fourier Analysis Overview (0A)

Propagating Wave (1B)

Signals and Spectra (1A) Young Won Lim 11/26/12

Digital Signal Octave Codes (0A)

Audio Signal Generation. Young Won Lim 1/29/18

Integrals. Young Won Lim 12/29/15

Discrete Time Rect Function(4B)

Dispersion (3A) 1-D Dispersion. Young W. Lim 10/15/13

Phasor Young Won Lim 05/19/2015

Digital Signal Octave Codes (0A)

Fourier Analysis Overview (0B)

Bayes Theorem (10B) Young Won Lim 6/3/17

Hamiltonian Cycle (3A) Young Won Lim 5/5/18

Digital Signal Octave Codes (0A)

Group & Phase Velocities (2A)

Digital Signal Octave Codes (0A)

Magnetic Sensor (3B) Magnetism Hall Effect AMR Effect GMR Effect. Young Won Lim 9/23/09

Down-Sampling (4B) Young Won Lim 10/25/12

Definite Integrals. Young Won Lim 6/25/15

Bilateral Laplace Transform (6A) Young Won Lim 2/16/15

Double Integrals (5A)

Digital Signal Octave Codes (0A)

Capacitor and Inductor

Capacitor and Inductor

FSM Examples. Young Won Lim 11/6/15

Bilateral Laplace Transform (6A) Young Won Lim 2/23/15

Down-Sampling (4B) Young Won Lim 11/15/12

Up-Sampling (5B) Young Won Lim 11/15/12

Probability (10A) Young Won Lim 6/12/17

Audio Signal Generation. Young Won Lim 2/2/18

Implication (6A) Young Won Lim 3/17/18

Bayes Theorem (4A) Young Won Lim 3/5/18

Sequential Circuit Timing. Young Won Lim 11/6/15

Bandpass Sampling (2B) Young Won Lim 3/27/12

CT Correlation (2A) Young Won Lim 9/9/14

Group Delay and Phase Delay (1A) Young Won Lim 7/19/12

Resolution (7A) Young Won Lim 4/21/18

Undersampling (2B) Young Won Lim 4/4/12

Audio Signal Generation. Young Won Lim 2/2/18

PRELIMINARY THEORY LINEAR EQUATIONS

Group Velocity and Phase Velocity (1A) Young Won Lim 5/26/12

Propositional Logic Resolution (6A) Young W. Lim 12/31/16

Propositional Logic Logical Implication (4A) Young W. Lim 4/11/17

CMOS Inverter. Young Won Lim 3/31/16

Series Solution of Linear Ordinary Differential Equations

Implication (6A) Young Won Lim 3/12/18

Capacitor in an AC circuit

Propositional Logic Resolution (6A) Young W. Lim 12/12/16

Signal Processing. Young Won Lim 2/20/18

Capacitor in an AC circuit

Propositional Logic Logical Implication (4A) Young W. Lim 4/21/17

Definitions of the Laplace Transform (1A) Young Won Lim 2/9/15

Capacitor in an AC circuit

Capacitor in an AC circuit

Transcription:

Higher Order ODE's, (3A) Initial Value Problems, and Boundary Value Problems

Copyright (c) 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". Please send corrections (or suggestions) to youngwlim@hotmail.com. This document was produced by using OpenOffice and Octave.

The Properties of a Line Equation (1) y = x f (1) = 1 f (2) = f (1+1)=f (1) + f (1) = 2 f (2) = 2 f (3) = f (2+1)=f (2) + f (1) = 3 f (3) = 3 f (4) = f (3+1)=f (3) + f (1) = 4 multiples of a unit y = x f (0.1) = 0.1 f (0.1) = f (0.1 1)=0.1 f (1) = 0.1 f (0.5) = 0.5 f (0.5) = f (0.5 1)=0.5 f (1) = 0.5 f (1.5) = 1.5 f (1.5) = f (1.5 1)=1.5 f (1) = 1.5 fractions of a unit Higher Order ODEs (3A) 3

The Properties of a Line Equation (2) multiples of a unit y = x fractions of a unit f (1) = 1 f (2) = 2 f (3) = 3 f (4) = 4 f (0.5) = 0.5 f (1.0) = 1.0 f (1.5) = 1.5 f (2.0) = 2.0 f (0.1) = 0.1 f (0.2) = 0.2 f (0.3) = 0.3 f (0.4) = 0.4 y = x f (x 1 + x 2 ) = f (x 1 ) + f ( x 2 ) f (k x) = k f (x) Higher Order ODEs (3A) 4

Linearity Property a( x 1 + x 2 ) a x 2 a x 1 y = a x Additivity f (x 1 + x 2 ) = f (x 1 ) + f ( x 2 ) a (x 1 + x 2 ) = a (x 1 ) + a ( x 2 ) x 1 x 2 x 1 +x 2 y = a x k a x a x Homogeneity f (k x) = k f ( x) x k x a (k x) = k(a x) Higher Order ODEs (3A) 5

Linearity & Affinity Linearity Affinity y = a x y = a x + b Translation a x 1 + b a x 2 + b a(x 1 + x 2 ) + b a x 1 + b a k x 1 + b k (a x + b) from linear + -ity. from the Latin, affinis, "connected with" f (x 1 + x 2 ) = f (x 1 ) + f ( x 2 ) f (k x) = k f (x) Additivity Homogeneity Additivity Homogeneity Higher Order ODEs (3A) 6

Linear Map Additivity f (x 1 + x 2 ) = f (x 1 ) + f (x 2 ) x 1 f (x) f (x 1 ) x 1 + x 2 f (x) f (x 1 ) + f ( x 2 ) x 2 f (x) f (x 2 ) Homogeneity f (k f (k x) = k f (x) f ( x) x f (x) f (x) k x f (x) k f ( x) Higher Order ODEs (3A) 7

Linear Operators Additivity d d f [f + g] = d x d x + d g d x f (x) d d x f ' (x) f (x) + g( x) d d x f ' (x ) + g' (x) g( x) d g' (x) d x Homogeneity d d x [k f ] = k d f d x f (k x) = k f ( x) f (x) d f ' (x) k f ( x) d k f '( x) d x d x Higher Order ODEs (3A) 8

Linear Systems Additivity S{g 1 (x) + g 2 (x)} = S {g 1 ( x)} + S{g 2 ( x)} g 1 (x) S y 1 ( x) g 1 (x) + g 2 ( x) S y 1 ( x) + y 2 ( x) g 2 ( x) S y 2 ( x) d 2 y d x 2 + a 1 d y d x + a 2 y = g( x) Homogeneity f (k x) = k f ( x) S{k f (x)} = k S{f (x)} g( x) S y(x) k g( x) S k y(x) Higher Order ODEs (3A) 9

Differential Operator Differential Operator D y(x) y '( x) D = d dx D y = d y dx D( y) = d y dx D( y(x)) = d y dx N-th Order Differential Operator y(x) L L( y(x)) L = a n ( x) D n + a n 1 ( x) D n 1 + + a 1 ( x) D + a 0 ( x) L( y) = {a n (x) D n + a n 1 (x) D n 1 + + a 1 ( x) D + a 0 (x)}( y) L( y) = a n ( x) D n ( y) + a n 1 ( x) D n 1 ( y) + + a 1 ( x)d( y) + a 0 ( x)( y) L( y) = a n (x) dn y d x n + a n 1 (x) dn 1 y d x n 1 + + a 1 ( x) d y d x + a 0( x) y Higher Order ODEs (3A) 10

Examples f (x) d d x f ' (x) d f d x = f '(x) D (D f ) = d dx ( d f d x ) = f ' ' (x) f (x) D f ' (x) D f = f '( x) D 2 f = d2 f d x 2 = f ' ' (x) Differential Operator : Linear D (c f (x)) = c D f (x) D (f (x) + g(x)) = D f ( x) + D g(x) D (α f ( x) + β g(x)) = α D f ( x) + β D g(x) n-th order Differential Operator L = a n (x)d n + a n 1 (x) D n 1 + + a 1 ( x)d + a 0 (x) (D 2 + 2 D + 1) f (x) = D 2 f ( x) + 2 D f ( x) + f (x) = f ' '( x) + 2 f '(x) + f ( x) n-th order Differential Equations using the Differential Operator y' ' + 5 y '+2 y = 3 x D 2 + 5 D + 2 = L L( y) = 0 L( y) = g(x) y' ' + 5 y '+2 y = 0 y' ' + 5 y '+2 y = 3 x Higher Order ODEs (3A) 11

Linear System Linear System g( x) S y (x) a n (x) dn y d x n + a n 1( x) dn 1 y d x n 1 + + a 1( x) d y d x + a 0( x) y = g(x) (a n (x)d n + a n 1 (x)d n 1 + + a 1 ( x) D + a 0 (x))( y( x)) = g( x) L( y(x)) = g( x) Higher Order ODEs (3A) 12

Linear Differential Equations a n (x) dn y d x n + a n 1( x) dn 1 y d x n 1 + + a 1( x) d y d x + a 0( x) y = g(x) a n (x) dn y d x n + a n 1( x) dn 1 y d x n 1 + + a 1( x) d y d x + a 0( x) y = 0 Non-homogeneous Equation Homogeneous Equation L = a n ( x) D n + a n 1 ( x) D n 1 + + a 1 ( x) D + a 0 ( x) y(x) L L( y(x)) L( y) = a n ( x) dn y d x n + a n 1(x) dn 1 y d x n 1 + + a 1(x) d y d x + a 0( x) y Higher Order ODEs (3A) 13

Linear Differential Equations Linear Equation - Additivity a n (x) dn y 1 d x n a n (x) dn y 2 d x n + a n 1(x) d n 1 y 1 d x n 1 + + a 1(x) d y 1 d x + a 0(x) y 1 = L( y 1 ) y 1 (x) L(y 1 (x)) + a n 1(x) d n 1 y 2 d x + + a 1(x) d y 2 n 1 d x + a 0(x) y 2 = L( y 2 ) y 2 (x) L(y 2 (x)) a n ( x) dn ( y 1 + y 2 ) d x n + a n 1 ( x) d n 1 ( y 1 + y 2 ) + + a d x n 1 1 ( x) d( y 1+ y 2 ) d x + a 0 (x)( y 1 + y 2 ) = L( y 1 + y 2 ) y 1 + y 2 L(y 1 )+L( y 2 ) Linear Equation - Homogeneity a n ( x) dn y 1 d x n + a n 1(x) d n 1 y 1 d x + + a 1(x) d y 1 n 1 d x + a 0(x) y 1 = L( y 1 ) y 1 (x) L( y 1 (x)) a n (x) dn k y 1 d x n + a n 1 (x) d n 1 k y 1 + + a d x n 1 1 (x) d k y 1 d x + a 0 (x)k y 1 = L(k y) k y 1 ( x) k L( y 1 (x)) Higher Order ODEs (3A) 14

Linear Differential Equation Solutions Linear Differential Equation Solution Additivity a n ( x) dn y 1 d x n + a n 1(x) d n 1 y 1 d x + + a 1(x) d y 1 n 1 d x + a 0(x) y 1 = g 1 (x) g 1 (x) y 1 (x) a n ( x) dn y 2 d x n + a n 1(x) d n 1 y 2 d x + + a 1(x) d y 2 n 1 d x + a 0(x) y 2 = g 2 (x) g 2 (x) y 2 (x) a n ( x) dn ( y 1 + y 2 ) d x n + a n 1 ( x) d n 1 ( y 1 + y 2 ) + + a d x n 1 1 ( x) d( y 1+ y 2 ) d x + a 0 (x)( y 1 + y 2 ) = g 1 (x) + g 2 (x) Superposition g 1 +g 2 y 1 + y 2 Linear Differential Equation Solution Homogeneity a n (x) dn y 1 d x n + a n 1(x) d n 1 y 1 d x + + a 1(x) d y 1 n 1 d x + a 0(x) y 1 = g 1 (x) g 1 (x) y 1 (x) a n (x) dn k y 1 d x n + a n 1 ( x) d n 1 k y 1 + + a d x n 1 1 ( x) d k y 1 d x + a 0 ( x) k y 1 = k g 1 ( x) k g 1 (x) k y 2 ( x) Higher Order ODEs (3A) 15

Homogeneous Equation a n (x) dn y d x n + a n 1( x) dn 1 y d x n 1 + + a 1( x) d y d x + a 0( x) y = g(x) a n (x) dn y d x n + a n 1( x) dn 1 y d x n 1 + + a 1( x) d y d x + a 0( x) y = 0 Associated Homogeneous Equation d n y a n d x + a d n 1 y n n 1 d x + + a d y n 1 1 d x + a 0 y = g( x) d n y a n d x + a d n 1 y n n 1 d x + + a d y n 1 1 d x + a 0 y = 0 Associated Homogeneous Equation with constant coefficients a n m n + a n 1 m n 1 + + a 1 m + a 0 = 0 Auxiliary Equation m = m 1, m 2,, m n y = c 1 e m 1 x + c 2 e m 2x + + c n e m n x n solutions of the Auxiliary Equation General Solutions of the Homogeneous Equation Higher Order ODEs (3A) 16

Non-homogeneous Equation a n (x) dn y d x n + a n 1( x) dn 1 y d x n 1 + + a 1( x) d y d x + a 0( x) y = g(x) a n (x) dn y d x n + a n 1( x) dn 1 y d x n 1 + + a 1( x) d y d x + a 0( x) y = 0 Associated Homogeneous Equation d n y a n d x + a d n 1 y n n 1 d x + + a d y n 1 1 d x + a 0 y = g( x) d n y a n d x + a d n 1 y n n 1 d x + + a d y n 1 1 d x + a 0 y = 0 Associated Homogeneous Equation with constant coefficients Particular Solution y = c 1 e m 1 x + c 2 e m 2 x + + c n e m n x + y p ( x) General Solutions of the Non-homogeneous Equation Higher Order ODEs (3A) 17

Initial Value Problem d n y d x n = f (x, y, y ',, y (n 1) ) on some interval I containing x 0 General Form d n 1 d x n 1 y(x 0) = k n 1 d d x y(x 0) = y' (x 0 ) = k 1 n Initial Conditions at x = x 0 y(x 0 ) = y(x 0 ) = k 0 IVP Higher Order ODEs (3A) 18

Initial Value Problem variable coefficients a n ( x) dn y d x n + a n 1(x) dn 1 y d x n 1 + + a 1(x) d y d x + a 0(x) y = g(x) Linear Equation with variable coefficients d n 1 d x n 1 y(x 0) = k n 1 d d x y(x 0) = y' (x 0 ) = k 1 n Initial Conditions at x = x 0 y(x 0 ) = y(x 0 ) = k 0 IVP Higher Order ODEs (3A) 19

Initial Value Problem constant coefficients n +1 d n y a n d x + a d n 1 y n n 1 d x + + a d y n 1 1 d x + a 0 y = g(x) Linear Equation with constant coefficients n d n 1 d x n 1 y(x 0) = y (n 1) (x 0 ) = k n 1 n d d x y(x 0) = y' (x 0 ) = k 1 n Initial Conditions at x = x 0 y(x 0 ) = y(x 0 ) = k 0 y = c 1 e m 1 x + c 2 e m 2 x + + c n e m n x + y p ( x) n Parameters c i Higher Order ODEs (3A) 20

Boundary Value Problem a 2 (x) d2 y d x 2 + a 1(x) d y d x + a 0(x) y = g(x) y(a) = y 0 y' (a) = y 0 y(a) = y 0 y' (a) = y 0 Various Boundary Conditions y(b) = y 1 y(b) = y 1 y' (b) = y 1 y' (b) = y 1 Higher Order ODEs (3A) 21

1st Order 2nd Order IVP's d y d x = f ( x, y) on some interval I containing x 0 y(x 0 ) = k 1 Initial Condition 0 at x = x 0 (x 0, k 0 ) y(x) 1st Order IVP I d y d x = f ( x, y, y ') on some interval I containing x 0 (x 0, k 0 ) y(x) y(x 0 ) = k 2 Initial Conditions 0 at x = x 0 slope = k 1 y '( x 0 ) = k 1 2nd Order IVP I Higher Order ODEs (3A) 22

Existence of a unique solution : 1 st Order IVPs d y d x = f (x, y) on some interval I containing x 0 y(x) y(x 0 ) = k 1 Initial Condition 0 at x = x 0 (x 0, k 0 ) 1st Order IVP I f (x, y) and f y are continuous on R The solution y(x) of the IVP 1) exists on the interval I0 2) is unique R a x b I0 x 0 h x x 0 +h (h>0) c y d contained in [a, b] Higher Order ODEs (3A) 23

Existence of a unique solution : Linear 1 st Order IVPs a 1 ( x) d y d x + a Non-homogeneous 0 ( x) y = g( x) on some interval I containing x 0 Equation with variable coefficients y(x 0 ) = k 0 1 Initial Condition at x = x 0 1st Order IVP a 1 ( x), a 0 ( x), g( x) are all continuous on the interval I and a n (x) 0 The solution y(x) of the IVP 1) exists on the interval I 2) is unique Higher Order ODEs (3A) 24

Existence of a unique solution : Linear 1 st Order IVPs d y d x + p( x) y = g( x) Non-homogeneous on some interval I containing x 0 Equation with variable coefficients y(x 0 ) = k 0 1 Initial Condition at x = x 0 1st Order IVP p(x), g(x) are all continuous on the interval I The solution y(x) of the IVP 1) exists on the interval I 2) is unique Higher Order ODEs (3A) 25

Existence : Proof y ' + p( x) y = g(x) y(x 0 ) = k 0 p(x) continuous on the interval I x x 0 p(s)ds differentiable d dx x x 0 μ( x) = e x0 p(s) ds = p(x) x p( s)ds μ '( x) = e p( s)ds x 0 p( x) x (μ( x) y ) ' = μ '( x) y + μ (x) y' = μ(x) p(x) y + μ(x) y ' (μ( x) y ) ' = μ (x) g( x) x [μ(x) y ] x0 x = μ(s) g(s) ds x 0 μ( x) y(x) μ( x 0 ) y(x 0 ) = x x 0 μ( s) g(s)ds x μ( x) y(x) y(x 0 ) = μ(s) g( s)ds x 0 y(x) = 1 { x μ( x) y(x 0) + x 0 μ(s) g(s) ds} http://faculty.atu.edu/mfinan/3243/diffq1book.pdf Higher Order ODEs (3A) 26

Uniqueness : Proof y 1 ' + p( x) y 1 = g(x) y 1 ( x 0 ) = k 0 y 2 ' + p( x) y 2 = g(x) y 2 ( x 0 ) = k 0 w ( x) = y 1 (x) y 2 ( x) w ' + p( x) w = 0 μ( x) = e x 0 x p( s)ds μ(x) w ' + μ( x) p( x) w = 0 (μ (x)w)' = 0 w ( x) = C e x 0 x p(s) ds w ( x 0 ) = y 1 ( x 0 ) y 2 ( x 0 ) = k 0 k 0 = 0 C = 0 w ( x) = 0 μ( x) w( x) = C w ( x) = C /μ( x) http://faculty.atu.edu/mfinan/3243/diffq1book.pdf Higher Order ODEs (3A) 27

1 st Order IVP Counter examples (1) y ' = y y(0) = y 0 IVP f (x, y) = f ( y) = y continuous y > 0 y < 0 y ' = y y ' = y f y = d f d y discontinuous over any interval containing y = 0 1 y d y = d x ln y = x + c y = e x + c y = C e x 1 y d y = d x ln y = x + c y = e x + c y = C e x a unique solution for [y > 0], [y = 0], [y < 0] f (x, y) and f y are continuous on R The solution y(x) of the IVP 1) exists on the interval I0 2) is unique R a x b I0 x 0 h x x 0 +h (h>0) c y d contained in [a, b] Higher Order ODEs (3A) 28

1 st Order IVP Counter examples (2) y ' = y 1/3 y(0) = 0 IVP f (x, y) = f ( y) = y 1/3 continuous y 1/3 d y = d x y 2/3 = 2 3 x f y = d f d y = 1 3 y 2/3 discontinuous 3 2 y2/3 = x + c y = 0 c = 0 y 2 = ( 2 3 x ) 3 y = ± ( 2 3 x ) 3/2 two possible solutions + {y = 0} f (x, y) and f y are continuous on R The solution y(x) of the IVP 1) exists on the interval I0 2) is unique R a x b I0 x 0 h x x 0 +h (h>0) c y d contained in [a, b] Higher Order ODEs (3A) 29

1 st Order IVP Counter examples (3) y ' = y y(0) = y 0 IVP y ' = y 1/3 y(0) = 0 IVP f (x, y) = y f (x, y) = y 1 /3 f y discontinuous over any interval containing y = 0 f y discontinuous over any interval containing y = 0 y = C e x y = ± ( 2 y = C e x 3 x ) 3/2 a unique solution for [y > 0], [y = 0], [y < 0] non-unique solutions Higher Order ODEs (3A) 30

1 st Order IVP Counter examples (4) y ' = y y(0) = y 0 IVP y ' = y 1/3 y(0) = 0 IVP Higher Order ODEs (3A) 31

Direction Field of ( x/y) dy dx = x y 2-d version of F(x,y) F (x, y) = x y Higher Order ODEs (3A) 32

3-d Plot of ( x/y) dy dx = x y F (x, y) = x y 3-d plot of F(x,y) 1 y x Higher Order ODEs (3A) 33

Existence of a unique solution a n ( x) dn y d x n + a n 1(x) dn 1 y d x n 1 + + a 1(x) d y d x + a 0(x) y = g(x) Non-homogeneous Equation with variable coefficients d n 1 d x n 1 y(x 0) = k n 1 d d x y(x 0) = y' (x 0 ) = k 1 n Initial Conditions at x = x 0 y(x 0 ) = y(x 0 ) = k 0 IVP a n ( x), a n 1 (x), a 1 (x), a 0 ( x), are all continuous on the interval I and a n ( x) 0 g(x) The solution y(x) of the IVP 1) exists on the interval I 2) is unique Higher Order ODEs (3A) 34

Continuous Function a continuous function is a function for which, intuitively, "small" changes in the input result in "small" changes in the output. Otherwise, a function is said to be a "discontinuous function". A continuous function with a continuous inverse function is called a homeomorphism. Removable discontinuity Jump discontinuity Essential discontinuity Higher Order ODEs (3A) 35

Differentiable Function a differentiable function of one real variable is a function whose derivative exists at each point in its domain. the graph of a differentiable function must have a non-vertical tangent line at each point in its domain, be relatively smooth, and cannot contain any breaks, bends, or cusps. not differentiable at x=0 Higher Order ODEs (3A) 36 a differentiable function

Differentiability and Continuity If f is differentiable at a point x0, then f must also be continuous at x0. any differentiable function must be continuous at every point in its domain. The converse does not hold: a continuous function need not be differentiable. Differentiable Continuous not differentiable at x=0 Higher Order ODEs (3A) 37

Check for Linear Independent Solutions Homogeneous Linear n-th order differential equation a n (x) d n y d x + a n 1(x) dn 1 y n d x n 1 + + a 1 (x) d y d x + a 0(x) y = 0 n-th order Homogeneous y 1, y 2,, y n n linearly independent solutions W ( y 1, y 2,, y n ) 0 {y 1, y 2,, y n } fundamental set of solutions y = c 1 y 1 + c 2 y 2 + + c n y n general solution The general solution for a homogeneous linear n-th order differential equation Higher Order ODEs (3A) 38

References [1] http://en.wikipedia.org/ [2] M.L. Boas, Mathematical Methods in the Physical Sciences [3] E. Kreyszig, Advanced Engineering Mathematics [4] D. G. Zill, W. S. Wright, Advanced Engineering Mathematics [5] www.chem.arizona.edu/~salzmanr/480a