Universal Extra-Dimension at LHC

Similar documents
Kaluza-Klein Dark Matter

BEYOND THE SM (II) Kaustubh Agashe (University of Maryland)

Dark matter and collider signatures from extra dimensions

Exploring Universal Extra-Dimensions at the LHC

Phenomenology of 5d supersymmetry

SEARCH FOR EXTRA DIMENSIONS WITH ATLAS AND CMS DETECTORS AT THE LHC

Introduction to the Beyond the Standard Model session

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge

Search for Extra Dimensions with the ATLAS and CMS Detectors at the LHC

Introduction to the Beyond the Standard Model session

Exotic Dark Matter as Spin-off of Proton Stability. Kaustubh Agashe (University of Maryland)

Universal extra dimensions and charged LKPs

INTRODUCTION TO EXTRA DIMENSIONS

Search for SUperSYmmetry SUSY

Discovery Physics at the Large Hadron Collider

Theories with Compact Extra Dimensions

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Extra Dimensional Signatures at CLIC

Light KK modes in Custodially Symmetric Randall-Sundrum

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Gauge-Higgs Unification on Flat Space Revised

Cosmological Constraint on the Minimal Universal Extra Dimension Model

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

New Physics at the TeV Scale and Beyond Summary

Ricerca di nuova fisica a HERA

Searches for exotic particles in the dilepton and lepton plus missing transverse energy final states with ATLAS

Introduction to Supersymmetry

Gustaaf Brooijmans. New Signatures at Hadron Colliders. Breaking the Electroweak

Lecture 18 - Beyond the Standard Model

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

Little Higgs Models Theory & Phenomenology

Higgs Signals and Implications for MSSM

The Standard Model and Beyond

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

BSM physics at the LHC. Akimasa Ishikawa (Kobe University)

Constraints on UED Models

Cosmological Constraint on the Minimal Universal Extra Dimension Model

Introduction to (Large) Extra Dimensions

PoS(Kruger 2010)034. CMS searches for new physics. Mara Senghi Soares On behalf of the CMS Collaboration.

Theoretical Developments Beyond the Standard Model

In Pursuit of the Next Discovery: A New Neutral Resonance. Chris Hays, Oxford University

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

Electroweak and Higgs Physics

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data

Hunting radions at linear colliders

Mono Vector-Quark Production at the LHC

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration.

Universal extra dimensions : life with BLKTs

Beyond the Standard Model

Large Extra Dimensions and the Hierarchy Problem

Hidden two-higgs doublet model

Compositeness at ILC250?

A model of the basic interactions between elementary particles is defined by the following three ingredients:

ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW. Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011

Non-Abelian SU(2) H and Two-Higgs Doublets

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Hidden Higgs boson in extended supersymmetric scenarios at the LHC

arxiv: v1 [hep-ph] 22 Apr 2015

125 GeV Higgs Boson and Gauge Higgs Unification

Introduction : Extra dimensions. Y. Hosotani, PPP2011, YITP, 8 March 2011, - 2

Split SUSY and the LHC

Light Pseudoscalar Higgs boson in NMSSM

Search for physics beyond the Standard Model at LEP 2

Summary: Beyond the Standard Model WG

WIMPs and superwimps. Jonathan Feng UC Irvine. MIT Particle Theory Seminar 17 March 2003

Potential Discoveries at the Large Hadron Collider. Chris Quigg

arxiv:hep-ph/ v2 17 Jun 2005

arxiv:hep-ph/ v2 10 Jan 2003

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Phenomenological constraints on universal extra dimensions at LHC and electroweak precision test

Electroweak Physics and Searches for New Physics at HERA

New Phenomenology of Littlest Higgs Model with T-parity

Double Higgs production via gluon fusion (gg hh) in composite models

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

Aharonov-Bohm Effect and Unification of Elementary Particles. Yutaka Hosotani, Osaka University Warsaw, May 2006

Beyond the SM: SUSY. Marina Cobal University of Udine

The Physics of Heavy Z-prime Gauge Bosons

Physics Beyond the Standard Model at the LHC

Beyond the standard model searches at the Tevatron

5. Higgs Searches. The Higgs-mechanism in the SM Yukava-coupling, masses of fermions Higgs Production: Higgs decay channels. Higgs search at the LHC

Top Seesaw, Custodial Symmetry and the 126 GeV (Composite) Higgs

Radiative corrections to Kaluza-Klein masses

EXTRA DIMENSIONS I and II

Constraining New Models with Precision Electroweak Data

IX. Electroweak unification

Probing SUSY Dark Matter at the LHC

Elementary/Composite Mixing in Randall-Sundrum Models

arxiv: v2 [hep-ph] 26 Feb 2018

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

SUPERSYMETRY FOR ASTROPHYSICISTS

Beyond the Standard Model

Accidental SUSY at the LHC

Day2: Physics at TESLA

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Models of Neutrino Masses

Transcription:

Universal Extra-Dimension at LHC Swarup Kumar Majee National Taiwan University UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.1

Plan Hierarchy problem Extra-dimensions Flat extra-dimension (ADD and UED model) Warped extra-dimension (RS-model) Universal Extra Dimension (UED) The Scalar, Fermion, and Gauge particles in the UED model Evolution of Gauge Couplings Tree level and Radiative Corrected KK-Mass spectra Decay modes and Branching ratios of KK-particle Collider Signature of UED at LHC Conclusion UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.2

Standard Model Higgs SM: SU(3) }{{ C SU(2) } L U(1) }{{ Y } Strong(g) E W(W ±,Z and γ) UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.3

Standard Model Higgs SM: SU(3) }{{ C SU(2) } L U(1) }{{ Y } Strong(g) E W(W ±,Z and γ) Higgs: Φ (1,2,1) ( φ + φ 0 ) V = m 2 Φ Φ+λ(Φ Φ) 2 λ > 0 UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.3

Standard Model Higgs SM: SU(3) }{{ C SU(2) } L U(1) }{{ Y } Strong(g) E W(W ±,Z and γ) Higgs: Φ (1,2,1) ( φ + φ 0 ) V = m 2 Φ Φ+λ(Φ Φ) 2 λ > 0 m 2 > 0 UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.3

Standard Model Higgs SM: SU(3) }{{ C SU(2) } L U(1) }{{ Y } Strong(g) E W(W ±,Z and γ) Higgs: Φ (1,2,1) ( φ + φ 0 ) V = m 2 Φ Φ+λ(Φ Φ) 2 λ > 0 m 2 > 0 m H = 2m 2, v = m 2 < 0 0 φ 0 0 = v m 2 λ = 246 GeV Other components of Φ Goldstone bosons UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.3

Hierarchy problem Due to femion loop Π f hh = ( 1) Λ 0 d 4 k (2π) 4 Tr = λ2 f 8π 2 Λ 2 +... m 2 H = m2 H 0 +δm 2 H { ( iλ f 2 ) i k m f ( iλ f } i 2 ) p k m f If 10 16 GeV, required fine-tuning to 1 part in 10 26. UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.4

Hierarchy problem and SUSY Due to femion loop Π f hh = ( 1) Λ 0 d 4 k (2π) 4 Tr = λ2 f 8π 2 Λ 2 +... m 2 H = m2 H 0 +δm 2 H { ( iλ f 2 ) i k m f ( iλ f } i 2 ) p k m f If 10 16 GeV, required fine-tuning to 1 part in 10 26. Due to scalar loop : δm 2 H = λ S 16π Λ 2... 2 λ S = λ f 2 Supersymmetry UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.4

Extra Dimensions Consider, a massless particle in 5D Cartesian co-ordinate system, and assume that the Lorentz invariance holds. p 2 = 0 = g AB p A p B = p 0 2 p 2 ±p 5 2, with g AB = diag(1, 1 1 1,±1) So, p 0 2 p 2 = p µ p µ = m 2 = p 5 2 = time-like ED: m 2 = ve tachyon We consider only one space-type extra dimension(y) UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.5

Extra Dimensions Consider, a massless particle in 5D Cartesian co-ordinate system, and assume that the Lorentz invariance holds. p 2 = 0 = g AB p A p B = p 0 2 p 2 ±p 5 2, with g AB = diag(1, 1 1 1,±1) So, p 0 2 p 2 = p µ p µ = m 2 = p 5 2 = time-like ED: m 2 = ve tachyon We consider only one space-type extra dimension(y) free particle moving along x-direction = non-compact ψ = Ae ipx +Be ipx, momentum p is not quantized particle in a box = so V(x) = 0, 0 < x < L = infinite elsewhere = compact quantized momenta p = nπ L UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.5

ADD-model Consider a D-dimensional spacetime D = 4+δ Space is factorised into R 4 M δ, where M δ is a δ-dimensional space with volume V δ R δ. This implies the four-dimensional effective M Pl is M 2 Pl = M2+δ Pl(4+δ) Rδ Assuming M Pl(4+δ) m EW, we get M 2 Pl = m2+δ EW Rδ implies, R 10 30 17 δ cm ( ) 1TeV 1+ 2 δ m EW δ = 1 R = 10 13 cm is excluded due to the deviation from Newtonian gravity. But, for δ = 2 it is in the mm range. ( N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali) UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.6

RS-model m IR = m UV exp( πkr) (pic from José Santiago s talk) for kr 12, a mass m UV O(M Pl ) on the UV-brane corresponds to a mass on the IR brane with a value m IR O(M EW ). (Randall, Sundrum) UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.7

UED at a glance In UED model each particle can access all dimensions. ( Appelquist, Cheng, Deobrescu) We consider only one space-type extra dimension(y) So our co-ordinate system : {x(t, x),y} Compactification : S 1 /Z 2 Z 2 symmetry : y y necessary to get the chiral fermions of the SM Translational symmetry breaks p 5, hence KK number (n) is not conserved. y y +πr symmetry preserve KK parity ( 1) n conserved. 0 πr UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.8

UED at a glance n = 1 states must be produced in pairs Lightest n = 1 state is stable LKP All heavier n = 1 states finally decay to LKP and corresponding SM (n = 0) states Collider signals are soft SM particles plus large E Limit on the R 1 250-300 GeV from g µ 2, B 0 B 0 mixing, Z b b (Agashe, Deshpande, Wu; Chakraverty, Huitu, Kundu; Buras, Spranger, Weiler; Oliver, Papavassiliou, Santamaria) 300 GeV from oblique parameters (Gogoladze, Macesanu) 600 GeV from b sγ at NLO (Haisch, Weiler) LKP dark matter Upper bound 1 TeV from overclosure of the universe (Servant, Tait) UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.9

Scalar, Fermion, and Gauge boson Scalar : φ(x, y) = 2 2πR φ (0) (x)+ 2 2πR n=1 φ (n) (x)cos ny R. UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.10

Scalar, Fermion, and Gauge boson Fermions : Scalar : Q i (x,y) = U i (x,y) = D i (x,y) = φ(x, y) = 2 2πR φ (0) (x)+ 2 2πR [ (ui ) 2 (x)+ 2 2πR d i L 2 [u ir (x)+ 2 2πR 2 2πR [d ir (x)+ 2 n=1 n=1 n=1 [ [ [ n=1 Q (n) ny il (x)cos U (n) ny ir (x)cos D (n) ny ir (x)cos φ (n) (x)cos ny R. R +Q(n) ir R +U(n) il R +D(n) il (x)sin ny R (x)sin ny R (x)sin ny R ] ], ] ]. ] ], UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.10

Scalar, Fermion, and Gauge boson Fermions : Scalar : Q i (x,y) = U i (x,y) = D i (x,y) = φ(x, y) = 2 2πR φ (0) (x)+ 2 2πR [ (ui ) 2 (x)+ 2 2πR d i L 2 [u ir (x)+ 2 2πR 2 2πR [d ir (x)+ 2 n=1 n=1 n=1 [ [ [ n=1 Q (n) ny il (x)cos U (n) ny ir (x)cos D (n) ny ir (x)cos φ (n) (x)cos ny R. R +Q(n) ir R +U(n) il R +D(n) il (x)sin ny R (x)sin ny R (x)sin ny R ] ], ] ]. ] ], Gauge boson : A µ (x,y) = A 5 (x,y) = 2 2πR A (0) µ (x)+ 2 2πR 2 2πR n=1 n=1 A (n) ny 5 (x)sin R. A (n) µ (x)cos ny R, UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.10

Effects of KK-modes on RGE RGE in SM : 16π 2 E dg i de = b ig 3 = β SM (g) d dlne α i 1 (E) = b i 2π Solution : α i 1 (E) = α i 1 (M Z ) b i 2π ln E M Z with b Y b 2L b 3C = 41 10 19 6 7. UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.11

Effects of KK-modes on RGE RGE in SM : 16π 2 E dg i de = b ig 3 = β SM (g) d dlne α i 1 (E) = b i 2π Solution : α i 1 (E) = α i 1 (M Z ) b i 2π ln E M Z with b Y b 2L b 3C = 41 10 19 6 7. In UED, DDG-Nucl.Phys.B537:47-108,1999 16π 2 E dg i de = β SM(g)+(S 1)β UED (g) where, S = ER β UED = b i g i 3 with by b2l b3c = 81 10 7 6 5 2. UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.11

Gauge Couplings 70 60 50 U(1) α 1 40 30 SU(2) 20 10 SU(3) 0 2 4 6 8 10 12 14 16 18 20 log 10 (E/GeV) UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.12

Gauge Couplings 70 70 60 50 U(1) 60 U(1) 50 α 1 40 30 SU(2) α -1 g 40 30 SU(2) 1 TeV 5 TeV 20 TeV 20 20 10 SU(3) 10 SU(3) 0 2 4 6 8 10 12 14 16 18 20 log 10 (E/GeV) 0 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 log 10 (E/GeV) (Bhattacharyya, Datta, Majee, Raychaudhuri) UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.12

Radiatvie Corrections Cheng, Matchev, Schmaltz UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.13

Radiative corrections Tree level n th mode KK-mass m n = m 2 0 +n2 /R 2 Consider the kinetic term of a scalar field as L kin = Z µ φ µ φ Z 5 5 φ 5 φ, Tree level KK masses originate from the kinetic term in the y-direction. If there is Lorentz invariance, then Z = Z 5, there is no correction to those masses. A direction is compactified Lorentz invariance breaks down. Then, Z Z 5, leading to m n (Z Z 5 ). UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.14

Radiative: Bulk Corrections These corrections are finite and nonzero only for bosons. These corrections, for a given field, are the same for any KK mode. For a KK boson mass m n (B), these corrections are given by δm 2 n(b) = κ ζ(3) 16π 4 ( 1R ) 2 κ = 39g 2 1 /2, 5g2 2 /2 and 3g2 3 /2 for Bn,W n and g n, respectively. UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.15

Radiative: Orbifold Corrections Orbifolding additionally breaks translational invariance in the y-direction. The corrections to the KK masses arising from interactions localized at the fixed points are logarithmically divergent. δm n (f) m n (f) ( δm 2 ) n (B) m 2 n(b) = ( a g2 3 16π 2 +b g2 2 ) 16π 2 +c g2 1 16π 2 ln Λ2 µ 2, The mass squared matrix of the neutral KK gauge boson sector in the B n, Wn 3 given by basis is n2 R 2 + ˆδm 2 B n + 1 4 g2 1 v2 1 4 g 1g 2 v 2 1 4 g 1g 2 v 2 n2 R 2 + ˆδm 2 W n + 1 4 g2 2 v2 For n = 1 and R 1 = 500 GeV, it turns out that sin 2 θ 1 W 0.01 (<< sin2 θ W 0.23), i.e., γ 1 and Z 1 are primarily B 1 and W 1 3, respectively. UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.16

Mass Spectra UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.17

Mass Spectra UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.17

Allowed transitions UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.18

Branching ratios γ 1 is the LKP. It is neutral and stable. KK W - and Z-bosons Hadronic decays closed. Can not decay to their corresponding SM-mode and LKP, as kinematically not allowed. W ± 1 and Z 1 decay democratically to all lepton flavors: B(W ± 1 ν 1L ± 0 ) = B(W± 1 L± 1 ν 0) = 1 6 B(Z 1 ν 1 ν 0 ) = B(Z 1 L ± 1 L 0 ) 1 6 for each generation. Z 1 l ± 1 l 0 decays are suppressed by sin2 θ 1. UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.19

Branching ratios γ 1 is the LKP. It is neutral and stable. KK W - and Z-bosons Hadronic decays closed. Can not decay to their corresponding SM-mode and LKP, as kinematically not allowed. W ± 1 and Z 1 decay democratically to all lepton flavors: B(W ± 1 ν 1L ± 0 ) = B(W± 1 L± 1 ν 0) = 1 6 B(Z 1 ν 1 ν 0 ) = B(Z 1 L ± 1 L 0 ) 1 6 for each generation. Z 1 l ± 1 l 0 decays are suppressed by sin2 θ 1. KK leptons The level 1 KK modes of the charged leptons and neutrinos directly decay to γ 1 and corresponding zero mode states. UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.19

Branching ratios The heaviest KK particle at the 1st KK-level g 1. B(g 1 Q 1 Q 0 ) B(g 1 q 1 q 0 ) 0.5. UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.20

Branching ratios The heaviest KK particle at the 1st KK-level g 1. B(g 1 Q 1 Q 0 ) B(g 1 q 1 q 0 ) 0.5. KK quarks SU(2)-singlet quarks (q 1 ): B(q 1 Z 1 q 0 ) sin 2 θ 1 10 2 10 3 B(q 1 γ 1 q 0 ) cos 2 θ 1 1 SU(2)-doublet quarks (Q 1 ): SU(2) W -symmetry B(Q 1 W ± 1 Q 0 ) 2B(Q 1 Z 1 Q 0 ) and furthermore for massless Q 0 we have B(Q 1 W ± 1 Q 0 ) 65%, B(Q 1 Z 1 Q 0 ) 33% and B(Q 1 γ 1 Q 0 ) 2%. UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.20

Collider Signature Bhattacharyya, Datta, Majee, Raychaudhuri UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.21

Production M{qg QV 1 } 2 = πα s (ŝ)(a 2 L +a2 R ) { 2ŝˆt+2ŝm 2 } { 2ŝˆt 4ˆtm 2 Q Q +2ŝm2 Q +4m2 V 6 ŝ 2 + 1 m 2 } Q (ˆt m 2 Q )2 2{ 2ˆtm 2 +2(ŝ+ˆt)m 2 Q V + 1 +2m 2 V 1 m 2 Q 2m4 V 1 } ŝ(ˆt m 2 ) Q Excited quark SU(2) Doublet(Q) (a R = 0) SU(2) Singlet (q) (a L = 0) Excited boson a L a R W 1 2 g 0 Z 1 g ( T3 e Q sin 2 θw) 1 g ( eq sin 2 θw) 1 γ 1 2cosθ 1 W e Q cosθ W cosθ 1 W 2cosθ 1 W e q cosθ W cosθ 1 W UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.22

Production Crosssection Production cross section (fb) 10000 1000 100 10 1 q 1 γ 1 Q 1 γ 1 q 1 Z 1 Q 1 W 1 Q 1 Z 1 0.1 300 450 600 750 900 R -1 (GeV) - // _ s = 14 TeV q 1 γ 1 Q 1 γ 1 q 1 Z 1 Q 1 W 1 Q 1 Z 1 _ /s = 10 TeV 300 450 600 750 900 R -1 (GeV) - / 1000 UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.23

Basic cuts and n l crosssection basic cuts p jet T > 20GeV p lepton T p miss T > 5GeV > 25GeV M li l j > 5GeV η < 2.5 for all leptons and jet lepton isolation : R > 0.7, (n l 2 cases) crosssection (fb) Channel 0l 1l 2l 3l 4l Signal (500 GeV) 106.4 17.92 29.58 9.39 1.01 Signal (1 TeV) 2.02 0.35 0.606 0.210 0.025 Background 4.7 10 5 1.3 10 6 8.6 10 4 1183.21 0.13 UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.24

Two Leptons Signal Q 1 W 1 production followed by Q 1 Q W 1 Q 1 Z 1 production followed by Q 1 QZ 1 We separately consider like-flavor, i.e., e + e or µ + µ, as well as unlike-flavor, i.e., µ + e + e + µ, in our discussion. Background dominanat: t t and b b severely cut down: p jet T > 20GeV W pair production in association with a jet. Z pair (real or virtual) Zγ Additional Cuts: p T l 1 < 25 GeV, p T l 2 < 25 GeV, and M l1 l 2 M Z > 10 GeV UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.25

Two Leptons dσ/dp T l 1 5.5 4.4 3.3 2.2 1.1 0 0 30 60 90 120 150 dσ/dp T l 2 3 2.4 1.8 1.2 0.6 0 0 30 60 90 120 150 dσ/dm l1 l 2 1.6 1.2 0.8 0.4 0 0 40 80 120 160 200 p T l 1 p T l 2 M l1 l 2 dσ/dp T l 1 5.5 4.4 3.3 2.2 1.1 0 0 5 10 15 20 25 30 dσ/dp T l 2 1.6 1.2 0.8 0.4 0 0 20 40 60 80 100 dσ/dm l1 l 2 1.2 0.9 0.6 0.3 0 0 30 60 90 120 150 p T l 1 p T l 2 M l1 l 2 dσ/dp T l 1 1.2 0.9 0.6 0.3 0 0 5 10 15 20 25 30 dσ/dp T l 2 1.2 0.9 0.6 0.3 0 0 5 10 15 20 25 30 dσ/dm l1 l 2 0.5 0.4 0.3 0.2 0.1 0 0 20 40 60 80 100 p T l 1 p T l 2 M l1 l 2 dσ/dp T l 1 1.2 0.9 0.6 0.3 0 0 5 10 15 20 25 30 dσ/dp T l 2 1.2 0.9 0.6 0.3 0 0 5 10 15 20 25 30 dσ/dm l1 l 2 0.5 0.4 0.3 0.2 0.1 0 0 20 40 60 80 100 p T l 1 p T l 2 M l1 l 2 UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.26

Two Leptons s 14 TeV 10 TeV Cut used Signal Background Signal Background Basic cuts 29.58 (43.10) 8.6 10 4 (17 10 4 ) 10.0 (14.6) 5 10 4 (9.6 10 4 ) Lepton isolation 24.24 (35.24) 218.38 (429.64) 8.28 (12.06) 108.54 (212.78) p l 1 T < 25 GeV 21.66 (30.88) 78.67 (154.90) 7.52 (10.74) 41.10 (80.70) p l 2 T < 25 GeV 12.58 (18.00) 9.44 (18.40) 4.53 (6.52) 5.27 (10.22) M l1 l 2 M Z > 10 12.52 (17.88) 9.18 (17.98) 4.51 (6.48) 5.17 (10.08) Cross section (in fb) at the LHC signal and background for the like-flavour(unlike-flavour) dilepton plus missing p T plus single jet for R 1 = 500GeV. UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.27

Three Leptons Signal Q 1 W 1 production followed by Q 1 Q 0 Z 1 Q 1 Z 1 production followed by Q 1 Q 0 W 1 Background t t production, WZ or Wγ production in association with a jet. Additional Cuts p T l 1 < 25 GeV, p T l 2 < 25 GeV, and M l1 l 2 M Z > 10 GeV. UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.28

Three Leptons s 14 TeV 10 TeV Cut used Signal Background Signal Background Basic cuts 9.39 1183.21 3.21 555.85 Lepton isolation 6.96 21.69 2.41 10.53 p l 2 T < 25 GeV 5.63 4.09 2.01 1.75 p l 3 T < 40 GeV 5.12 1.31 1.86 0.64 M li l j M Z > 10 GeV 5.03 1.16 1.82 0.57 Cross section (in fb) at the LHC of signal and background for the trilepton plus one jet and missing p T channel for R 1 = 500 GeV. UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.29

Four Leptons Signal Q 1 Z 1 production followed by Q 1 Q 0 Z 1 M li l j M Z > 10 GeV for i,j = 1,2,3,4, i j. s 14 TeV 10 TeV Cut used Signal Background Signal Background Basic cuts 1.01 0.130 0.350 0.068 Lepton isolation 0.665 0.029 0.233 0.015 M li l j M Z > 10 GeV 0.573 0.004 0.206 0.002 Cross section (in fb) at the LHC of signal and background for the tetralepton plus one jet and missing p T channel for R 1 = 500 GeV. UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.30

Luminosity plot for a 5σ signal 1000 4-Lep 2-Lep(U) 2-Lep(U) 4-Lep 3-Lep 3-Lep 2-Lep(L) 2-Lep(L) 100 10 1 _ s = 14 TeV / _ s = 10 TeV Integrated Luminosity (fb -1 ) - - // / 0.1 300 400 500 600 700 800 300 400 500 600 700 R -1 (GeV) R -1 (GeV) UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.31

Conclusions we have focussed on the production of the n = 1 excitation of a EW gauge boson along with an n = 1 excited quark. First, we imposed some basic cuts to suit LHC observability: the leptons are required to satisfy p T > 5 GeV, the jet must have a p T not less than 20 GeV, the missing transverse momentum must be more than 25 GeV. R > 0.7 Single jet + p/ T + two leptons: Signal: 12.52 f b, Background: 9.18 f b, Single jet + p/ T + three leptons: Signal: 5.00 f b, Background: 1.02 f b, Single jet + p/ T + four leptons: Signal: 0.573 f b, Background: 0.004 f b. The analysis performed here is based on a parton-level simulation and is of an exploratory nature. UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.32

UED@LHC S. K. Majee NCTS-NTHU, 17-May-2011 p.33