Electronic Supporting Information. Photophysical properties of 3-[2-(Nphenylcarbazolyl)benzoxazol-5-yl]alanine

Similar documents
Photochemical & Photobiological Sciences

Supporting Information

Computational Chemistry Workshops West Ridge Research Building-UAF Campus 9:00am-4:00pm, Room 009

Thermochromic Absorption, Fluorescence Band Shifts and Dipole Moments of BADAN and ACRYLODAN

Thermochromic Shifts of Absorption and Fluorescence Spectra and Excited State Dipole Moment of PRODAN*

Room temperature phosphorescence vs thermally activated delayed fluorescence in carbazole pyrimidine cored compounds

S1. 1 H NMR spectrum for PTTBD in CDCl 3. Insert shows the expansion of the aromatic region and the sharp proton resonances.

Bistable Polyaromatic Aminoboranes: Bright Solid State Emission and Mechanochromism

Supporting Information

Supporting information

Electronic Spectra of Complexes

Solvatochromic studies of pull-push molecule containing dimethylaniline and aromatic hydrocarbon linked by acetylene unit

Ground and Excited State Dipole Moments of LAURDAN Determined from Solvatochromic and Thermochromic Shifts of Absorption and Fluorescence Spectra

Electronic Supplementary Information (ESI)

Investigation of Cation Binding and Sensing by new Crown Ether core substituted Naphthalene Diimide systems

Fluorescence Workshop UMN Physics June 8-10, 2006 Quantum Yield and Polarization (1) Joachim Mueller

I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy.

Low-Affinity Zinc Sensor Showing Fluorescence

Chapter 3. Electromagnetic Theory, Photons. and Light. Lecture 7

1. Transition dipole moment

I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy.

Supplementary Information

Electronic supplementary information. Strong CIE activity, multi-stimuli-responsive fluorescence and data

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy

ELECTRONIC SUPPLEMENTARY INFORMATION

Contrasting the optical properties of the different isomers of. oligophenylene

Luminescence Research Group, Institute of Experimental Physics, University of Gdańsk, Wita Stwosza 57, Gdańsk, Poland. (Received June 19, 1990)

FLUORESCENCE PROPERTIES OF AN ELECTRON ACCEPTOR SUBSTITUTED BIS-PYRAZOLO-PYRIDINE DERIVATIVE: NO2-DMPP*

Supporting Materials

State-of-the-art ab initio Quantum Chemical Computational Methods for Describing the Challenging Photobehaviour of Cationic Dyes

[ppm] Electronic supplementary information. Figure H NMR of P4 in 1,2-dichlorobenzene-d 4 at 373 K.

Lecture 5. Anisotropy decay/data analysis. Enrico Gratton

Application of IR Raman Spectroscopy

Electronic Structure and Geometry Relaxation at Excited State

A Novel Fluorescent Chemosensor Based on Tetra-peptide for Measuring Zinc Ions in Aqueous Solutions and Live Cells

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray

Operational lifetimes of organic light-emitting diodes dominated by Förster

Physical Chemistry Lab II CHEM 4644 Spring 2011 Final Exam 5 questions at 3 points each equals 15 total points possible.

Signaling preferences of substituted pyrrole coupled six-membered spirocyclic rhodamine probes towards Hg 2+ ion detection

Supplementary Materials

A Chemical and Photophysical Analysis of a Push-Pull Compound

Chemistry 416 Spectroscopy Winter Semester 1996 Dr. Rainer Glaser

Influence of organic solvents on papain kinetics

Protein-based Sensitive, Selective and Rapid Fluorescence Detection of Picric Acid in Aqueous Media

ESI. for. Substitution Pattern on Anthrol Carbaldehydes: Excited State Intramolecular Proton

Chapter 3: Fluorescence Studies on Lumichrome

2,4-Dioxo-4-phenylbutanoic acid (1). Yield: 7.90 g, 80 %; pale yellow powder; m.p.: C, dcc** (from AcOEt/benzene); C10H8O4, FW: 192.

A Hybrid Bis(Amino-Styryl) Substituted Bodipy Dye and its Conjugate Diacid: Synthesis, Structure, Spectroscopy and Quantum Chemical Calculations

Photophysics and redox properties of aza-bodipy dyes with electronwithdrawing

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Supplementary Materials for

wbt Λ = 0, 1, 2, 3, Eq. (7.63)

Rational Design of a blue TADF Emitter Family using a Trifluoromethylphenyl Core

The Synthesis and Spectral Properties of Conjugated Dye Systems

Supporting Information

Supplementary information

Effect of Deuterated Solvents on the Excited State Photophysical Properties of Curcumin

Electronic Supplementary Information

1) Which electron would be most likely to emit x-ray electromagnetic energy?

Singlet. Fluorescence Spectroscopy * LUMO

Fluorescence (Notes 16)

Solvatochromic shifts of a polarity probe implicit and explicit solvent modeling

Phosphonic anchoring groups in organic dyes for solid-state solar cells

Supporting Information. A Facile Methodology for Engineering the Morphology of CsPbX 3 Perovskite Nanocrystals under Ambient Condition

Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-

SUPLEMENTARY MATERIALS

Excited States in Organic Light-Emitting Diodes

Optically Triggered Stepwise Double Proton Transfer in an Intramolecular Proton Relay: A Case Study of 1,8-Dihydroxy-2-naphthaldehyde (DHNA)

Chapter-4: Photophysical Properties of Luminol

Hour Examination # 4

Supporting Information. Selective Synthesis of Iridium(III) End-Capped. Polyynes by Oxidative Addition of 1-Iodopolyynes

Supporting Information

Rotational Brownian motion; Fluorescence correlation spectroscpy; Photobleaching and FRET. David A. Case Rutgers, Spring 2009

Wavelength Dependence of Metal-Enhanced Fluorescence

Supporting Information for

Theoretical Photochemistry WiSe 2016/17

Dihedral Angle Control of Blue Thermally-

Supporting Information

4 Single molecule FRET

Supporting Information. Evaluating steady-state and time-resolved fluorescence as a tool to study the behavior of asphaltene in toluene

Chem G8316_10 Supramolecular Organic Chemistry

Laurdan solvatochromism: influence of solvent polarity and hydrogen bonds

Triplet state diffusion in organometallic and organic semiconductors

Chap. 12 Photochemistry

Supplementary information for. Observation of photovoltaic action from photoacid-modified Nafion due to light-driven ion transport

Electronic Excitation by UV/Vis Spectroscopy :

Electronic Supporting Information Measuring Viscosity inside Mesoporous Silica Using Protein-Bound Molecular Rotor Probe

Supporting Information

Aula 5 e 6 Transferência de Energia e Transferência de Elétron Caminhos de espécies fotoexcitadas

Supplementary Information for: Ionization Dynamics of a Phenylenediamine Derivative in. Solutions as Revealed by Femtosecond Simultaneous and

Highly sensitive detection of low-level water contents in. organic solvents and cyanide in aqueous media using novel. solvatochromic AIEE fluorophores

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2004

Neeraj K. Giri, Abhinandan Banerjee, Robert W. J. Scott, Matthew F. Paige,* and Ronald P. Steer* Supporting Information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

Supporting information Solvatochromism Unravels the Emission Mechanism of Carbon Nanodots

Electronic Supplementary Information

Electronic Supplementary Information

Perhaps the most striking aspect of many coordination compounds of transition metals is that they have vivid colors. The UV-vis spectra of

SUPPORTING INFORMATION

XV 74. Flouorescence-Polarization-Circular-Dichroism- Jablonski diagram Where does the energy go?

Transcription:

Electronic Supporting Information Photophysical properties of 3-[2-(Nphenylcarbazolyl)benzoxazol-5-yl]alanine derivatives experimental and theoretical studies Katarzyna Guzow a, *, Marlena Czerwińska a, Agnieszka Ceszlak a, Marta Kozarzewska a, Mariusz Szabelski b,c, Cezary Czaplewski a, Anna Łukaszewicz b, Aleksander A. Kubicki b, Wiesław Wiczk a a Faculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland b Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Univeristy of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland c Current address (M. Sz.): Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland * corresponding author: e-mail: kasiag@chem.univ.gda.pl 1

Figure 1S. Fluorescence spectra of 2 in dimethoxyethane and DMF as well as the spectrum of its exciplex formed in dimethoxyethane obtained as a difference between these spectra. Figure 2S. Fluorescence intensity decay observed at 380 nm and 490 nm as well as timeresolved spectra of 2 in dimethoxyethane. 2

Table 1S. The values of estimated coefficients (y 0 and a) and their standard errors as well as regression coefficients (r) obtained from the linear fit of photophysical properties (νɶ abs, νɶ fluo, νɶ, φ F and τ) of 1 versus E N T solvent polarity scale. Np denotes a number of solvents used in the analysis. Compound 1 y Equation y=(y 0 ±a) + (b±c)*e T N y 0 ±a b±c r Np νɶ abs [cm -1 ] νɶ fluo [cm -1 ] νɶ [cm -1 ] φ F τ [ns] all solvents 29350±40 -(230±90) 0.2933 22 aprotic 29370±50 -(260±200) 0.3709 12 protic 29390±180 -(170±290) 0.1989 10 all solvents 26140±390 -(5900±840) 0.8440 22 aprotic 26930±350 -(10920±1290) 0.9366 12 protic 27560±1050 -(7550±1680) 0.8464 10 all solvents 3210±380 5780±830 0.8423 22 aprotic 2450±340 10660±1260 0.9362 12 protic 1830±1090 7390±1750 0.8310 10 all solvents 0.65±0.06 -(0.12±0.12) 0.3354 22 aprotic 0.70±0.05 -(0.57±0.20) 0.4652 12 protic 1.18±0.14 -(0.90±0.22) 0.8156 10 all solvents 1.83±0.28 5.06±0.60 0.8834 22 aprotic 1.21±0.13 9.00±0.50 0.9849 12 protic 0.87±0.94 6.10±1.50 0.8220 10 3

Table 2S. The values of estimated coefficients (y 0 and a) and their standard errors as well as regression coefficients (r) obtained from the linear fit of photophysical properties (νɶ abs, νɶ fluo, νɶ, φ F and τ) of 2 versus E N T solvent polarity scale. Np denotes a number of solvents used in the analysis. Compound 2 y Equation y=(y 0 ±a) + (b±c)*e T N y 0 ±a b±c r Np νɶ abs [cm -1 ] νɶ fluo [cm -1 ] νɶ [cm -1 ] φ F all solvents 30711±94 -(769±220) 0.5387 32 aprotic 30643±50 -(274±171) 0.3364 21 protic 30480±1050 -(558±1660) 0.1179 11 all solvents 26688±64 -(1682±149) 0.8998 32 aprotic 26736±57 -(2119±195) 0.9250 21 protic 27686±319 -(3094±505) 0.9080 11 all solvents a 4023±101 913±235 0.5784 31 aprotic 3907±44 1846±149 0.9402 21 protic 2794±839 2537±1328 0.5560 11 all solvents a 0.74±0.03 0.41±0.08 0.6705 31 aprotic 0.72±0.05 0.55±0.20 0.5528 21 protic 0.93±0.05 0.09±0.07 0.4008 10 τ [ns] all solvents b 2.01±0.08 -(0.65±0.18) 0.5542 30 aprotic 2.11±0.10 -(1.17±0.39) 0.5803 20 protic 1.02±0.08 0.97±0.13 0.9339 10 a without formamide b without formamide and dimethoxyethane 4

Table 3S. Estimated from eq. 3 coefficients (y o. a SPP, b SA, c SB ), their standard errors and correlation coefficients (r) for the multiple linear regression analysis of νɶ abs, νɶ fluo, νɶ, φ F, τ of 1 as a function of Catalán three-parameter solvent scale. y y 0 SPP SA SB r νɶ abs [cm -1 ] 29438±50 29445±41 -(276±87) -(263±72) -(2±62) -(26±101) 0.6448 0.6422 νɶ fluo [cm -1 ] 27340±371 -(4857±651) -(1359±460) -(1005±755) 0.9403 νɶ [cm -1 ] -(3909±860) -(3782±836) φ F 0.82±0.14 0.83±0.13 11537±1232 11087±1080 -(0.54±0.20) -(0.55±0.19) 2148±606 2039±584 -(0.02±0.10) 0.35±0.09 0.35±0.09 -(447±567) 0.9540 0.9524 0.6870 0.6859 τ [ns] -(4.04±0.51) 9.77±0.74 2.24±0.36 -(0.66±0.34) 0.9771 Table 4S. Estimated from eq. 2 coefficients (y o, a π*, b α, c β,), their standard errors and correlation coefficients (r) for the multiple linear regression analysis of νɶ abs, νɶ fluo, νɶ, φ F, τ of 1 as a function of Kamlet-Taft solvent scale. y y 0 π * α β r νɶ abs [cm -1 ] 29438±50 29445±41 -(276±87) -(263±72) -(2±62) -(26±101) 0.6448 0.6422 νɶ fluo [cm -1 ] 27340±371 -(4857±651) -(1359±460) -(1005±755) 0.9403 νɶ [cm -1 ] 2098±406 2323±370 φ F 0.53±0.05 0.57±0.05 τ [ns] 1.00±0.31 1.15±0.27 4580±713 4988±643 -(0.25±0.10) -(0.24±0.09) 3.87±0.54 4.13±0.48 1357±503 1754±396 -(0.02±0.07) 0.27±0.11 0.24±0.09 1.34±0.58 1.64±0.29 1031±825 0.9252 0.9180 0.6016 0.5981 0.64±0.62 0.9407 0.9367 5

Table 5S. Estimated from eq. 3 coefficients (y o. a SPP, b SA, c SB ), their standard errors and correlation coefficients (r) for the multiple linear regression analysis of νɶ abs, νɶ fluo, νɶ, φ F, τ of 2 as a function of Catalán three-parameter solvent scale. y y 0 SPP SA SB r νɶ abs [cm -1 ] 31027±287 30966±269 νɶ fluo [cm -1 ] 27354±269 23087±255 νɶ [cm -1 ] 3679±340 3665±322 φ F 0.40±0.13 0.34±0.12 -(678±426) -(516±363) -(1361±399) -(1238±343) 672±505 711±434 0.58±0.20 0.68±0.15 -(1002±252) -(958±235) -(1606±326) -(1536±222) 596±294 607±281 -(154±200) 0.5218 0.5154 -(142±188) 0.7959 0.7883 37±234 0.5669 0.5664 0.16±0.12 -(0.01±0.09) 0.6553 0.6276 τ [ns] 2.86±0.25 -(1.25±0.37) 1.38±0.22 -(2.29±0.18) 0.6962 Table 6S. Estimated from eq. 2 coefficients (y o, a π*, b α, c β,), their standard errors and correlation coefficients (r) for the multiple linear regression analysis of νɶ abs, νɶ fluo, νɶ, φ F, τ of 2 as a function of Kamlet-Taft solvent scale. y y 0 π * α β r νɶ abs [cm -1 ] 30721±92 30759±85 νɶ fluo [cm -1 ] 26760±85 26788±78 νɶ [cm -1 ] 3962±106 3972±96 φ F 0.73±0.04 0.73±0.04 τ [ns] 2.16±0.08 2.17±0.08 -(458±165) -(393±154) -(974±152) -(928±140) 515±189 531±173 0.22±0.07 0.22±0.06 -(0.44±0.14) -(0.44±0.14) -(579±159) -(467±119) -(780±147) -(699±109) 216±183 254±134 0.14±0.07 0.15±0.05 -(229±216) 0.5135 0.4946 -(164±199) 0.7990 0.7942 60±248 0.6021 0.6010 0.00±0.10 0.6761 0.6761 -(0.08±0.14) -(0.26±0.19) -(0.34±0.14) 0.7091 0.7046 6

Table 7S. Theoretically calculated absorption wavelengths (for f 0.1) for 1 using def2- TZVP/pbe0 functional. acetonitrile cyclohexane λ [nm] f MO contribution (%) λ [nm] f MO contribution (%) 355.5 0.565 HOMO LUMO 98.0 356.9 0.248 HOMO LUMO 98.0 308.3 0.07 HOMO LUMO+1 92.0 307.2 0.075 HOMO LUMO+1 91.9 290.5 0.483 HOMO-2 LUMO 93.0 291.0 0.517 HOMO-2 LUMO 92.5 271.7 0.112 HOMO-3 LUMO HOMO-2 LUMO 89.2 3.6 271.2 0.112 HOMO-1 LUMO+1 HOMO LUMO+4 73.1 20.8 236.4 281.2 225.3 222.0 0.351 0.260 0.198 0.149 HOMO LUMO+4 HOMO-4 LUMO HOMO-1 LUMO+1 HOMO-2 LUMO+2 HOMO-1 LUMO+6 HOMO LUMO+7 HOMO-1 LUMO+3 HOMO-4 LUMO+1 HOMO-1 LUMO+3 HOMO-1 LUMO HOMO-1 LUMO+6 HOMO LUMO+4 HOMO-2 LUMO+2 HOMO-6 LUMO HOMO-2 LUMO+3 HOMO-1 LUMO+4 HOMO LUMO+3 HOMO-3 LUMO+1 HOMO LUMO+5 HOMO-2 LUMO+1 HOMO-6 LUMO+1 39.1 25.4 10.3 6.6 4.3 4.0 2.4 55.8 8.7 8.4 8.3 6.7 3.0 30.0 24.5 18.8 8.2 3.2 2.7 2.6 0.9 272.0 237.3 225.7 222.3 0.095 0.364 0.228 0.163 HOMO-3 LUMO HOMO-4 LUMO HOMO LUMO+4 HOMO-4 LUMO HOMO-1 LUMO+1 HOMO-1 LUMO+6 HOMO LUMO+7 HOMO-2 LUMO+2 HOMO-1 LUMO+3 HOMO-4 LUMO+1 HOMO-1 LUMO+3 HOMO-1 LUMO HOMO LUMO+4 HOMO-1 LUMO+6 HOMO-5 LUMO HOMO-6 LUMO HOMO-2 LUMO+3 HOMO-1 LUMO+4 HOMO LUMO+3 89.5 3.4 49.6 12.9 10.6 6.0 4.7 4.7 3.4 49.8 11.4 8.6 8.5 7.5 4.3 53.1 22.9 8.8 5.7 7

Table 8S. Theoretically calculated absorption wavelengths (for f 0.1) for 2 using def2- TZVP/pbe0 functional. acetonitrile cyclohexane λ [nm] f MO contribution (%) λ [nm] f MO contribution (%) 326.2 0.580 HOMO LUMO HOMO LUMO+1 85.4 8.2 323.5 0.490 HOMO LUMO HOMO LUMO+1 78.6 13.7 315.9 0.210 HOMO LUMO+1 HOMO-1 LUMO HOMO LUMO 71.5 14.8 8.5 314.3 0.350 HOMO+1 LUMO+1 HOMO LUMO HOMO-1 LUMO 67.5 15.2 12.3 288.5 261.6 0.565 0.112 HOMO-2 LUMO HOMO-2 LUMO+1 HOMO LUMO+1 HOMO-1 LUMO+2 HOMO-3 LUMO+6 HOMO LUMO+7 HOMO-2 LUMO+3 HOMO LUMO+1 HOMO-1 LUMO+3 HOMO LUMO HOMO-1 LUMO+6 71.5 10.5 9.0 31.5 22.8 11.1 7.1 4.8 2.8 2.2 2.1 286.8 271.2 262.1 237.3 0.512 0.112 0.225 0.364 HOMO-1 LUMO HOMO-1 LUMO+1 HOMO LUMO+1 HOMO LUMO HOMO-1 LUMO+1 HOMO-3 LUMO HOMO-2 LUMO HOMO LUMO+5 HOMO LUMO+2 HOMO-1 LUMO HOMO LUMO 69.8 13.1 6.3 2.6 33.7 25.9 15.5 4.9 4.0 3.2 2.4 Figure 3S. HOMO and LUMO orbitals of 1. 8

Figure 4S. HOMO and LUMO orbitals of 2. Figure 5S. Theoretically calculated structure of 1 in the ground (green) and excited state (yellow) with the orientation of the dipole moments in the ground (red arrow) and excited state (blue arrow) as well as transition dipole moment in emission (green arrow). The excited state dipole moment and transition dipole moment are enlarged for 3 and 200 times, respectively. The transition dipole moment in absorption is not presented because of overlapping with the transition dipole moment in emission. 9

Figure 6S. Theoretically calculated structure of 2 in the ground (green) and excited state (yellow) with the orientation of the dipole moments in the ground (red arrow) and excited state (blue arrow) as well as transition dipole moment in emission (green arrow). The transition dipole moment in absorption is not presented because of too small angle (4.1 degree) between both transition dipole moments. 10

The experimentally obtained emission anisotropy course can be fitted with the expression obtained by Kawski and Gryczyński: 3 2 1 r ( β, Rd ) = r ( Rd ) cos β 2 2 ( ) r R d where: 1 2 2 2 2 2 1 ( a 1) + 2a ( a 1) 3a arcsin 3 a 1 = 1 2 2 1 2 2 2 ( a 1) 2arcsin a a 2 = R 2 d 2 ( Rd 1) R d denotes the stretching factor and β denotes the angle between the transition dipole moment in absorption and emission. Figure 7S. Emission anisotropy versus linear dichroism R d for 1 in PVA film at 293 K. Solid line has been obtained from Kawski-Gryczyński model and the best fit to experimental data was obtained for the value of β specified in the text box. 11

Figure 8S. Emission anisotropy versus linear dichroism R d for 2 in PVA film at 293 K. Solid line has been obtained from Kawski-Gryczynski model and the best fit to experimental data was obtained for the value of β specified in the text box. 12