arxiv:math/ v1 [math.gn] 10 Apr 2002

Similar documents
arxiv: v1 [math.lo] 4 Sep 2010

ON THE LACZKOVICH-KOMJÁTH PROPERTY OF SIGMA-IDEALS. 1. Introduction

ON DENSITY TOPOLOGIES WITH RESPECT

int cl int cl A = int cl A.

Classical Theory of Cardinal Characteristics

A NEW LINDELOF SPACE WITH POINTS G δ

arxiv: v1 [math.gn] 27 Oct 2018

Ultrafilters with property (s)

STEVO TODORCEVIC AND JUSTIN TATCH MOORE

SMALL COMBINATORIAL CARDINAL CHARACTERISTICS AND THEOREMS OF EGOROV AND BLUMBERG

On the Length of Borel Hierarchies

arxiv:math/ v1 [math.gn] 10 Apr ]54D35 THE MAXIMAL G-COMPACTIFICATIONS OF G-SPACES WITH SPECIAL ACTIONS

B-MEASURABILITY OF MULTIFUNCTIONS OF TWO VARIABLES

Compact subsets of the Baire space

ON THE UNIQUENESS PROPERTY FOR PRODUCTS OF SYMMETRIC INVARIANT PROBABILITY MEASURES

ALGEBRAIC SUMS OF SETS IN MARCZEWSKI BURSTIN ALGEBRAS

Uncountable γ-sets under axiom CPA game

On a Question of Maarten Maurice

The small ball property in Banach spaces (quantitative results)

Every Lusin set is undetermined in the point-open game

The ideal of Sierpiński-Zygmund sets on the plane

On the Length of Borel Hierarchies

A(»\{0,1},<,)-A(*\{0,1},,>).

Complexity of Ramsey null sets

ON A QUESTION OF SIERPIŃSKI

An introduction to OCA

FUBINI PROPERTY FOR MICROSCOPIC SETS

Measurable Envelopes, Hausdorff Measures and Sierpiński Sets

An inner model from Ω-logic. Daisuke Ikegami

VARIETIES OF ABELIAN TOPOLOGICAL GROUPS AND SCATTERED SPACES

SOME ADDITIVE DARBOUX LIKE FUNCTIONS

Covering Property Axiom CPA cube and its consequences

ON THE MEASURABILITY OF FUNCTIONS WITH RESPECT TO CERTAIN CLASSES OF MEASURES

Acta Universitatis Carolinae. Mathematica et Physica

SELF-DUAL UNIFORM MATROIDS ON INFINITE SETS

Composition and discrete convergence

Introduction to Hausdorff Measure and Dimension

Jónsson posets and unary Jónsson algebras

PCF THEORY AND CARDINAL INVARIANTS OF THE REALS

ON ALMOST COUNTABLY COMPACT SPACES. Yankui Song and Hongying Zhao. 1. Introduction

On the class of perfectly null sets and its transitive version

A Note on the Convergence of Random Riemann and Riemann-Stieltjes Sums to the Integral

FINITE BOREL MEASURES ON SPACES OF CARDINALITY LESS THAN c

IDEAL CONVERGENCE OF SEQUENCES AND SOME OF ITS APPLICATIONS

arxiv: v2 [math.lo] 15 Sep 2018

MEASURABLE 3-COLORINGS OF ACYCLIC GRAPHS CLINTON T. CONLEY AND BENJAMIN D. MILLER

arxiv:math/ v1 [math.gn] 28 Mar 2007

One some Pradoxical Point Sets in Different Models of Set Theory

arxiv: v1 [math.gr] 4 Mar 2015

NAME: Mathematics 205A, Fall 2008, Final Examination. Answer Key

Uniquely Universal Sets

Measure and Category. Marianna Csörnyei. ucahmcs

On Recognizable Languages of Infinite Pictures

INSEPARABLE SEQUENCES AND FORCING

MATHS 730 FC Lecture Notes March 5, Introduction

Annalee Gomm Math 714: Assignment #2

ANOTEONTHESET OF DISCONTINUITY POINTS OF MULTIFUNCTIONS OF TWO VARIABLES. 1. Introduction

A BOREL SOLUTION TO THE HORN-TARSKI PROBLEM. MSC 2000: 03E05, 03E20, 06A10 Keywords: Chain Conditions, Boolean Algebras.

CERTAIN WEAKLY GENERATED NONCOMPACT, PSEUDO-COMPACT TOPOLOGIES ON TYCHONOFF CUBES. Leonard R. Rubin University of Oklahoma, USA

RINGS ISOMORPHIC TO THEIR NONTRIVIAL SUBRINGS

Topology Proceedings. COPYRIGHT c by Topology Proceedings. All rights reserved.

FUNDAMENTALS OF REAL ANALYSIS

The descriptive set theory of the Lebesgue density theorem. joint with A. Andretta

GENERALIZED CANTOR SETS AND SETS OF SUMS OF CONVERGENT ALTERNATING SERIES

van Rooij, Schikhof: A Second Course on Real Functions

1 Measure and Category on the Line

MORE ABOUT SPACES WITH A SMALL DIAGONAL

CORRECTIONS AND ADDITION TO THE PAPER KELLERER-STRASSEN TYPE MARGINAL MEASURE PROBLEM. Rataka TAHATA. Received March 9, 2005

SMALL SUBSETS OF THE REALS AND TREE FORCING NOTIONS

A CHARACTERIZATION OF POWER HOMOGENEITY G. J. RIDDERBOS

SIMULTANEOUS SOLUTIONS OF THE WEAK DIRICHLET PROBLEM Jan Kolar and Jaroslav Lukes Abstract. The main aim of this paper is a geometrical approach to si

On Uniform Spaces with Invariant Nonstandard Hulls

4 Choice axioms and Baire category theorem

ON SOME PROPERTIES OF ESSENTIAL DARBOUX RINGS OF REAL FUNCTIONS DEFINED ON TOPOLOGICAL SPACES

arxiv: v2 [math.lo] 29 Mar 2015

Author s review of his research, achievements and publications

Homogeneous spaces and Wadge theory

ON JOINTLY SOMEWHAT NEARLY CONTINUOUS FUNCTIONS. 1. Introduction

arxiv: v1 [math.gn] 6 Jul 2016

Andrzej WROŃSKI ON PRUCNAL S MODEL DETERMINED LOGIC AND DEFINABLE PREDICATES

SOLUTION TO RUBEL S QUESTION ABOUT DIFFERENTIALLY ALGEBRAIC DEPENDENCE ON INITIAL VALUES GUY KATRIEL PREPRINT NO /4

Luzin and Sierpiński sets meet trees

On Recognizable Languages of Infinite Pictures

Representing Scott Sets in Algebraic Settings

Section 2: Classes of Sets

Quasi-invariant measures for continuous group actions

Wojciech Stadnicki. On Laver extension. Uniwersytet Wrocławski. Praca semestralna nr 2 (semestr letni 2010/11) Opiekun pracy: Janusz Pawlikowski

RESEARCH ANNOUNCEMENTS OPERATORS ON FUNCTION SPACES

Homotopy and homology groups of the n-dimensional Hawaiian earring

ON SPACES IN WHICH COMPACT-LIKE SETS ARE CLOSED, AND RELATED SPACES

Representing Scott Sets in Algebraic Settings

HIGHER INTEGRABILITY WITH WEIGHTS

Topological groups with dense compactly generated subgroups

GREGORY TREES, THE CONTINUUM, AND MARTIN S AXIOM

arxiv:math.gn/ v1 6 Dec 2003

Final. due May 8, 2012

Distributivity of Quotients of Countable Products of Boolean Algebras

Theorems of H. Steinhaus, S. Picard and J. Smital

On productively Lindelöf spaces

MULTIPLES OF HYPERCYCLIC OPERATORS. Catalin Badea, Sophie Grivaux & Vladimir Müller

Transcription:

Proceedings of the Ninth Prague Topological Symposium Contributed papers from the symposium held in Prague, Czech Republic, August 19 25, 2001 arxiv:math/0204146v1 [math.gn] 10 Apr 2002 NONSTANDARD PROOFS OF EGGLESTON LIKE THEOREMS SZYMON ŻEBERSKI Abstract. We prove theorems of the following form: if A R 2 is a big set, then there exists a big set P R and a perfect set Q R such that P Q A. We discuss cases where big set means: set of positive Lebesgue measure, set of full Lebesgue measure, Baire measurable set of second Baire category and comeagre set. In the first case (set of positive measure) we obtain the theorem due to Eggleston. In fact we give a simplified version of the proof given by J. Cichoń in [1]. To prove these theorems we use Shoenfield s theorem about absoluteness for Σ 1 2-sentences. 1. Introduction We use standard set theoretical notation. By ω we denote the set of natural numbers. The cardinality of a set X we denote by X. By [0,1] we denote the unit interval of the real line. By Perf([0,1]) we denote the Polish space of all non-empty perfect subsets of the interval [0, 1] with the Hausdorff metric. Similarly, by Perf(R) we denote the Polish space of all non-empty perfect subsets of the real line. By F σ we denote the family of all F σ subsets of the unit interval. By G δ we denote the family of all G δ subsets of the unit interval. By λ we denote Lebesgue measure on the real line, by λ 2 Lebesgue measure on the plane. L denotes the σ-ideal of null sets (L = {A : λ(a) = 0}). By L + we denote the family of positive Lebesgue measure sets. K denotes the σ-ideal of first Baire category sets. K + denotes the family of Baire measurable sets of second Baire category. Let us recall that if J is a proper σ-ideal then B J is a base of J iff ( J J)( B B) J B. Furthermore, we consider a cardinal number cof(j) defined as follows: cof(j) = min{ B : B is a base of J}. 2000 Mathematics Subject Classification. 03E15, 28A05. Key words and phrases. Lebesgue measure, perfect set. Szymon Żeberski, Nonstandard proofs of Eggleston like theorems, Proceedings of the Ninth Prague Topological Symposium, (Prague, 2001), pp. 353 357, Topology Atlas, Toronto, 2002. 353

354 SZYMON ŻEBERSKI It is well known that we can extend every countable standard transitive modelofzfcviaforcingextensiontoamodelofzfc+(cof(l) = ω 1 )+(2 ω = ω 2 ). We can also extend every countable standard transitive model of ZFC via forcing extension to a model of ZFC+(cof(K) = ω 1 )+(2 ω = ω 2 ). We can code Borel subsets of the real line by functions from ω ω in an absolute way (see [5]). Functions which code Borel sets are called Borel codes. We use the folowing notation: if f ω ω is a Borel code, then #f R is a set coded by f. By a canonical Polish space, we understand a countable product of spaces {0,1} ω, ω ω, [0,1], Perf([0,1]) and so on. A sentence ϕ is a Σ 1 2-sentence if for some canonical Polish spaces X, Y and some Borel subset B X Y we have ϕ = ( x X)( y Y) (x,y) B. Spaces X, Y and the set B are called parameters of the sentence ϕ. We shall use the following classical theorem about absoluteness of Σ 1 2-sentences (see [6]): Theorem 1 (Shoenfield). Suppose that M N are standard transitive models of the theory ZF such that ω1 N M. Let ϕ be a Σ1 2-sentence with parameters from the model M. Then M = ϕ N = ϕ. Notice that ifthemodeln isagenericextensionofthestandardtransitive model M then both models M and N have the same ordinal numbers, so the inclusion ω1 N M trivially holds. Let us note that if A is a coanalytic subset of a Polish space and A > ω 1 then there exists a nonempty perfect subset of A. Indeed, there exists a family {B α } α<ω1 of Borel sets such that A = α<ω 1 B α (see [3]). Hence, if A > ω 1 then there exists α < ω 1 such that B α > ω 1, so B α has a nonempty perfect subset. 2. Main result We give a new proof of Eggleston s theorem (see [4]) and then by a simple modification of this proof we get new results about inscribing special rectangles into big sets in the sense of measure or category. 2.1. Measure case. In the paper [2] we can find the following result: Theorem 2 (Cichoń, Kamburelis, Pawlikowski). There exists a dense subset of the measure algebra Borel(R)/L of cardinality cof(l). Using this theorem we can deduce the following fact: Fact 1. There exists a family B Perf(R) L + such that B = cof(l) and ( A R) ( λ(a) > 0 ( P B) P A ). Using this fact, we can obtain a simple proof of the following theorem from [4]:

NONSTANDARD PROOFS OF EGGLESTON LIKE THEOREMS 355 Theorem 3 (Eggleston). Let A be a subset of the plane of positive Lebesgue measure. Then we can find perfect subsets of the real line P, Q such that λ(p) > 0 and P Q A. Proof. Without loss of generality we can assume that A is a Borel set. Let V be a generic extension of the universe V such that V = ZFC+(cof(L) = ω 1 )+(2 ω = ω 2 ). For a while we will work in the universe V. For y R let A y = {x R : (x,y) A} and we put Y = {y R : λ(a y ) > 0}. It follows from Fubini s theorem that λ(y) > 0. In particular Y = ω 2. Using Fact 1 we get a family B Perf(R) L + such that ( A R) ( λ(a) > 0 ( P B) P A ) and B = cof(l) = ω 1. Foreveryy Y wecanfindp B suchthatp A y. So there exists P Perf(R) L + such that {y Y : P A y } = ω 2. But {y Y : P A y } is a coanalytic set of cardinality ω 2 so we can find a perfect set Q such that Q {y Y : P A y }. It means that in the universe V the following sentence holds: ( P,Q Perf(R))( r R 2 ) λ(p) > 0 (r P Q r A). But this is a Σ 1 2-sentence, hence it is also true in the original universe V. Now, we show the theorem about inscribing special rectangles into sets of full Lebesgue measure. At first, we have to formulate the following fact: Fact 2. There exists a family F F σ of measure one subsets of the unit interval such that F = cof(l) and ( A [0,1]) ( λ(a) = 1 ( F F) F A ). Using this fact, we prove the following theorem: Theorem 4. Let A be a subset of [0,1] 2 such that λ 2 (A) = 1. Then we can find two sets F, Q [0,1] such that F is a F σ set, λ(f) = 1, Q is a perfect set and F Q A. Proof. Without loss of generality A is a Borel set. Let V be a generic extension of the universe V such that V = ZFC+(cof(L) = ω 1 )+(2 ω = ω 2 ). Similarly as in the proof of theorem 3, using Fact 2, we deduce that in the universe V the folowing sentence holds ( F F σ )( Q Perf([0,1])) λ(f) = 1 F Q A. But we can formulate this sentence in the folowing way ( f ω ω )( Q Perf([0,1])) f codes F σ set λ(#f) = 1 #f Q A. This is also a Σ 1 2-sentence, hence it is true in the original universe V.

356 SZYMON ŻEBERSKI 2.2. Category case. Now, we will formulate and prove theorems about inscribing special rectangles into big sets in the sense of category. We start with two observations (similar to Fact 1 and 2). Namely, we have the following facts: Fact 3. There exists a family G G δ K + such that G = cof(k) and ( A K + )( G G) G A. Fact 4. There exists a family C G δ of comeagre subsets of the unit interval such that C = cof(k) and ( A [0,1]) ( A is comeagre ( C C) C A ). Using these facts, we prove the following theorems: Theorem 5. Let A [0,1] 2 be a Baire measurable set of second Baire category. Then we can find two sets G, Q [0,1] such that G is a G δ set of second Baire category, Q is a perfect set and G Q A. Theorem 6. Let A [0,1] 2 be a comeagre set. Then we can find two sets C, Q [0,1] such that C is a comeagre G δ set, Q is a perfect set and C Q A. Proof of Theorem 5 and Theorem 6. We start with extending the universe V to V (by generic extension) such that V = ZFC+(cof(K) = ω 1 )+(2 ω = ω 2 ). Similarly as in the proof of Theorem 3(naturally using Facts 3, 4 respectively fortheorem5and6), wededucethatifaisabairemeasurablesecondbaire category set (Theorem 5) then in the model V the following sentence holds: ( G G δ )( Q Perf([0,1])) G K + G Q A. When A is comeagre (Theorem 6) then in the universe V the following sentence holds: ( C G δ )( Q Perf([0,1])) C is comeagre C Q A. Similarly as in the proof of Theorem 4, we can use Borel coding for replacing quantifiers of the type ( A G δ ) by ( a ω ω ) a codes G δ set and replace A by#a. After this modification we obtain equivalent sentences, which are Σ 1 2-sentences, hence they are true in the original universe V.

NONSTANDARD PROOFS OF EGGLESTON LIKE THEOREMS 357 References [1] J. Cichoń, Applications of Shoenfield absoluteness Theorem, unpublished. [2] J. Cichoń, A. Kamburelis, and J. Pawlikowski, On dense subsets of the measure algebra, Proc. Amer. Math. Soc. 94 (1985), no. 1, 142 146. MR 86j:04001 [3] J. Cichoń, A. Kharazishvili, and B. Wȩglorz, Subsets of the Real Line, Wydawnictwo Uniwersytetu Lódzkiego, Lódź (1995), 63 70. [4] H. G. Eggleston, Two measure properties of Cartesian product sets, Quart. J. Math., Oxford Ser. (2) 5 (1954), 108 115. MR 16,344e [5] Thomas Jech, Set theory, second ed., Springer-Verlag, Berlin, 1997. MR 99b:03061 [6] J. R. Shoenfield, The problem of predicativity, Essays on the foundations of mathematics, Magnes Press, Hebrew Univ., Jerusalem, 1961, pp. 132 139. MR 29 #2177 Institute of Mathematics, University of Wroc law, pl. Grunwaldzki 2/4, 50-384 Wroc law, Poland E-mail address: szebe@math.uni.wroc.pl