A REMARK ON THEOREMS OF DE FRANCHIS SEVERI(Complex Analysis on Hyperbol. Citation 数理解析研究所講究録 (1994), 882:

Similar documents
Title multiplicity (New topics of transfo. Citation 数理解析研究所講究録 (2015), 1968:

Citation 数理解析研究所講究録 (2008), 1605:

Citation 数理解析研究所講究録 (1994), 886:

Citation 数理解析研究所講究録 (2004), 1396:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2012), B32:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2011), B25:

A linear programming instance with. Author(s) Mizuno, Shinji; Megiddo, Nimrod; Ts. Citation 数理解析研究所講究録 (1996), 945: 68-74

Citation 数理解析研究所講究録 (2010), 1679:

Citation 数理解析研究所講究録 (2010), 1716:

Citation 数理解析研究所講究録 (2009), 1665:

systems and harmonic analysis) Citation 数理解析研究所講究録 (2002), 1294:

INTERPRETATION OF RACK COLORING KNO. Low-dimensional Topology) Author(s) TANAKA, KOKORO; TANIGUCHI, YUMA. Citation 数理解析研究所講究録 (2012), 1812:

FIXED POINT PROPERTIES FOR SEMIGROU TitleNONEXPANSIVE MAPPINGS ON BI-TOPOLOG. Author(s) LAU, ANTHONY TO-MING; TAKAHASHI, WA

REGULARITY OF POWERS OF SOME IDEALS. Citation 数理解析研究所講究録 (1999), 1078:

THE EXISTENCE AND THE CONTINUATION TitleHOLOMORPHIC SOLUTIONS FOR CONVOLUTI EQUATIONS IN A HALF-SPACE IN $C^n$ Citation 数理解析研究所講究録 (1997), 983: 70-75

Citation 数理解析研究所講究録 (2006), 1465:

Citation 数理解析研究所講究録 (1999), 1078:

Citation 数理解析研究所講究録 (2013), 1871:

Theory and Related Topics) 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2010), B16:

Citation 数理解析研究所講究録 (1996), 966:

Title (Variational Problems and Related T. Author(s) Ichikawa, Yosuke; Ikota, Ryo; Yanag. Citation 数理解析研究所講究録 (2004), 1405:

Citation 数理解析研究所講究録 (2013), 1841:

BRAUER CORRESPONDENCE AND GREEN. Citation 数理解析研究所講究録 (2008), 1581:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2008), B5:

Riemannゼータ関数の近似関数等式に対する平均値公式 ( 解析数論と数論諸分野の交流 ) Citation 数理解析研究所講究録 (1999), 1091:

Title (The 8th Workshop on Stochastic Num. Citation 数理解析研究所講究録 (2009), 1620:

and Their Backgrounds) Citation 数理解析研究所講究録 (1993), 844:

Citation 数理解析研究所講究録 (2001), 1191:

Title series (Analytic Number Theory and. Citation 数理解析研究所講究録 (2009), 1665:

Riemann surfaces with extra automorphisms and endomorphism rings of their Jacobians

On mean-field approximation of part annihilation and spikes (Probabilit. Citation 数理解析研究所講究録 (2017), 2030:

関数型 SIRMs 結合型ファジィ推論法による非線形同定に関する一考察 ( モデリングと最適化の理論 ) Citation 数理解析研究所講究録 (2006), 1526:

Citation 数理解析研究所講究録 (2005), 1440:

Title Geometric Univalent Function Theory. Citation 数理解析研究所講究録 (2008), 1579:

number theory and related topics) Citation 数理解析研究所講究録 (2010), 1710: 1-6

Citation 数理解析研究所講究録 (2016), 1995:

CONSIDERATION OF COMPACT MINIMAL SURFACES IN 4-DIMENSIONAL FLAT TORI IN TERMS OF DEGENERATE GAUSS MAP

Holomorphic maps between Riemann surfaces of small genera

Citation 数理解析研究所講究録 (2006), 1466:

DIFFERENTIAL OPERATORS AND SIEGEL-M. Author(s) IMAMOGLU, OZLEM; RICHTER, OLAV K. Citation 数理解析研究所講究録 (2010), 1715:

arxiv:math/ v1 [math.gt] 15 Aug 2003

Fujii, Masatoshi; Kim, Young Ok; Ku Nakamoto, Ritsuo. Citation 数理解析研究所講究録 (2011), 1753:

Title numbers (Mathematics of Quasi-Perio. Citation 数理解析研究所講究録 (2011), 1725:

Citation 数理解析研究所講究録 (2017), 2014:

RADON TRANSFORM OF HYPERFUNCTIONS A PROBLEMS OF SUPPORT. Citation 数理解析研究所講究録 (1996), 937:

Citation 数理解析研究所講究録 (2012), 1805:

Theory and its related Fields) Citation 数理解析研究所講究録 (2009), 1669:

Title analysis for nonlinear phenomena) Citation 数理解析研究所講究録 (2016), 1997:

On p-hyperelliptic Involutions of Riemann Surfaces

Title of the notion of independence and d. Citation 数理解析研究所講究録 (2011), 1741:

Citation 数理解析研究所講究録 (2007), 1570:

Siegel Moduli Space of Principally Polarized Abelian Manifolds

TitleImplementing Sturm's Algorithm and. Citation 数理解析研究所講究録 (1997), 986:

TOROIDAL ALGEBRAIC GROUPS1

Elliptic modular transformations on. Teichmuller spaces and moduli space. 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2010), B17: 1-20

Citation 数理解析研究所講究録 (1996), 941:

Citation 数理解析研究所講究録 (2015), 1942:

Algebras, Representations and Quant Title. Approaches from mathematical scienc. Mechanical and Macroscopic Systems)

1. Divisors on Riemann surfaces All the Riemann surfaces in this note are assumed to be connected and compact.

Citation 数理解析研究所講究録 (2004), 1368:

DE FRANCHIS CONTRIBUTIONS TO THE THEORY OF ALGEBRAIC CURVES. Edoardo Sernesi

(Theory of Biomathematics and its A. Citation 数理解析研究所講究録 (2010), 1704:

Hamiltonian Toric Manifolds


Citation Osaka Journal of Mathematics. 43(1)

Citation 数理解析研究所講究録 (2002), 1254:

Title (Properties of Ideals on $P_\kappa\ Citation 数理解析研究所講究録 (1999), 1095:

Abelian Varieties and the Fourier Mukai transformations (Foschungsseminar 2005)

Citation 数理解析研究所講究録 (2012), 1807:

VARIETIES WITHOUT EXTRA AUTOMORPHISMS I: CURVES BJORN POONEN

1 Hermitian symmetric spaces: examples and basic properties

FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS

Kahler submanifolds of a quaternion (Geometry of homogeneous spaces and. Citation 数理解析研究所講究録 (2003), 1346:

arxiv:math/ v1 [math.ag] 18 Oct 2003

Citation 数理解析研究所講究録 (2002), 1244:

Citation 数理解析研究所講究録 (2013), 1866:

Author(s) Aoshima, Makoto; Srivastava, Muni S. Citation 数理解析研究所講究録 (1999), 1101:

Citation 数理解析研究所講究録 (1999), 1099:

A note on Samelson products in the exceptional Lie groups

PERIODS OF PRINCIPAL HOMOGENEOUS SPACES OF ALGEBRAIC TORI

Citation 数理解析研究所講究録 (2003), 1334:

in the geometric function theory) Author(s) Shigeyoshi; Darus, Maslina; Cho, Na Citation 数理解析研究所講究録 (2010), 1717: 95-99

Citation 数理解析研究所講究録 (2014), 1898:

Citation 数理解析研究所講究録 (2015), 1963:

Algebraic Curves and Riemann Surfaces

CIRCLE PACKINGS ON SURFACES WITH PROJECTIVE STRUCTURES AND UNIFORMIZATION. Sadayoshi Kojima, Shigeru Mizushima, and Ser Peow Tan

On metacyclic extensions

Citation 数理解析研究所講究録 (2003), 1308:

NON-DIVERGENT INFINITELY DISCRETE TEICHMÜLLER MODULAR TRANSFORMATION

Citation 数理解析研究所講究録 (2012), 1794:

On a theorem of Ziv Ran

Riemann Forms. Ching-Li Chai. 1. From Riemann matrices to Riemann forms

Finiteness of the Moderate Rational Points of Once-punctured Elliptic Curves. Yuichiro Hoshi

Trace fields of knots

independence notions in model theor Citation 数理解析研究所講究録 (2010), 1718:

Betti numbers of abelian covers

EXERCISES IN MODULAR FORMS I (MATH 726) (2) Prove that a lattice L is integral if and only if its Gram matrix has integer coefficients.

Holonomy groups. Thomas Leistner. School of Mathematical Sciences Colloquium University of Adelaide, May 7, /15

Homotopy and homology groups of the n-dimensional Hawaiian earring

Author(s) SAITO, Yoshihiro; MITSUI, Taketomo. Citation 数理解析研究所講究録 (1991), 746:

Transcription:

Title A REMARK ON THEOREMS OF DE FRANCHIS SEVERI(Complex Analysis on Hyperbol Author(s) TANABE MASAHARU Citation 数理解析研究所講究録 (1994) 882: 110-113 Issue Date 1994-08 URL http://hdl.handle.net/2433/84236 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University

$\overline{x}$ $g(>1)$ 882 1994 110-113 110 A REMARK ON THEOREMS OF DE FRANCHIS AND SEVERI MASAHARU TANABE ( ) 1. INTRODUCTION The purpose of this paper is to study holomorphic maps between compact Riemann surfaces. There are two famous finiteness theorems related to this problem. be a compact Riemann surface of genus $>1$. Then one is that for fixed compact Riemann surface $X$ of genus $>1$ the number of nonconstant holomorphic maps is finite $\overline{x}arrow X$ and another is that there are only finitely many compact $\underline{\{}x_{i}$ Riemann surfaces } of genus $>1$ such that for each there exists a nonconstant holomorphic map $X_{i}$ $Xarrow X_{i}$. The first assertion is due to de Franchis and second one is due to Severi. $S(\overline{X})=\{X_{i}\}$ where is as in Severi s theorem. $\{X_{i}\}$ $h:\overline{x}arrow X $ $n= \sum_{x\in S(\overline{X})}\#${ nonconstant holomorphic}. Then by the theorems above we see $n<\infty$ at once. Howard and Sommese [2] showed that there is a bound on which depends only on the genus of by giving an explicit estimate. Here we will give some theorems related to rigidity of holomorphic maps between compact Riemann surfaces and show that we may take an explicit bound on depending only on the genus of smaller than one in [2]. 2. PRELIMINARIES $X$ be compact Riemann surfaces of genera $\tilde{g}$. We denote by $H_{1}(X)$ the first homology group (with integer coefficients) of $X$. Any basis of $H_{1}(X)$ with intersection matrix $J=(\begin{array}{ll}0 E-E 0\end{array})$ will be called a canonical homology basis where $E$ is the identity matrix of $g\cross g$ sized. Similarly for. $\{\tilde{\chi}_{1} \ldots\tilde{\chi}_{2\overline{g}}\}(\{\chi_{1} \ldots \chi_{2g}\})$ $H_{1}(\overline{X})$ be a canonical homology basis for ( $H_{1}(X)respectively\underline{).}$ $\{\tilde{w}^{1} \ldots\tilde{w}^{\overline{9}}\}$ and $\{w^{1} \ldots w^{9}\}$ be dual bases for holomorphic differentials on $X$ $X$ (i.e. $\int_{\chi_{j}}w^{k}=\delta_{jk}$ $\delta_{jk}$ where $\tilde{\pi}=$ is Kronecker s delta) and $(\tilde{e}\tilde{z})$ $\Pi=(E Z)$ be the associated period matrices. $h$ : $\tilde{x}arrow X$ be a nonconstant holomorphic map. Then $h$ $h_{*}$ induces a homomorphism : $H_{1}(\overline{X})arrow H_{1}(X)$. $M=(m_{kj})\in M(2g 2\tilde{g};Z)$ where ( We denote by $h_{*}( \tilde{\chi}_{j})=\sum_{k=1}^{2g}m_{kj}\chi_{k}.$ $M(m n;k)$ the set of $m\cross n$ matrices with K-coefficients.) We will call $M$ the matrix representation of $h$ with respect to $\{\tilde{\chi}_{1} \ldots \tilde{\chi}_{2\overline{g}}\}$ and. $\{\chi_{1} \ldots \chi_{2g}\}$ The $\int_{h_{e}(\overline{\chi}_{j})}w^{i}$ integral may be evaluated Typeset by $A_{\mathcal{M}}S-Tm$

$\overline{x}$ is $\kappa$ are 111 in $h_{*}(\tilde{\chi}_{j})$ in two ways; by expressing $w^{i}$ in $H_{1}(X)$ or by expressing the pull back of of the holomorphic differentials on. This leads us to the Hurwitz relation terms $A\Pi=\overline{\Pi}M$ where $A\in M_{-}(g\tilde{g};\mathbb{C})$. The set of $M\in M(2g 2\tilde{g};\mathbb{Q})$ such that there exists $A\in M(gg;C)$ with $A\Pi=\Pi M$ will be called the space of Hurwitz relations. It is easy to see that it is a Q-vector space. Lemma[4]. In the space of Hurwitz relations $<M$ $N>=tr(\tilde{J}{}^{t}MJ^{-1}N)$ inner product ( denotes transposition of ${}^{t}m$ $M$ ). deffies an In particular when $M$ is a matrix representation of a holomorphic map : $h$ $\overline{x}arrow X$ $<M$ $M>=2dg$ where is the degree of the holomorphic map. $d$ $h$ The Jacobian variety of $X$ is where $J(X)=\mathbb{C}^{9}/\Gamma$ $\Gamma$ the lattice (over Z) generated by $\Pi$ $2g$-columns of. Similarly for. For any holomorphic map $J(\tilde{X})$ $h:xarrow X$ there exists a homomorphism $H$ $J(\overline{X})arrow J(X)$ : with where $\kappa\circ h=h\circ\tilde{\kappa}$ $\tilde{\kappa}$ canonical injections. By an underlying real structure for $J(X)$ we mean the real torus together $\mathbb{r}^{2g}/z^{2g}$ with a map $\mathbb{r}^{2g}/z^{2g}arrow J(X)$ induced by a linear map. It is wellknown that for any homomorphism $H$ : $\mathbb{r}^{2_{9}}\ni x-\succ\pi x\in \mathbb{c}^{9}$ $J(\tilde{X})arrow J(X)$ there are and $A\in M(g\tilde{g};\mathbb{C})$ $M\in M(2g 2\tilde{g};Z)$ such that the following diagram is commutative (precicely apart $hom$ an additive constant). $\mathbb{r}^{2\overline{g}}arrow^{\pi\overline}\mathbb{c}^{\overline{9}}arrow J(\tilde{X})$ $\downarrow M$ $\downarrow A$ $\downarrow H$ $\mathbb{r}^{2g}arrow^{\pi}\mathbb{c}^{9}arrow J(X)$ In particular if $h$ is induced by a holomorphic map $h$ : $\tilde{x}arrow X$ $M$ is the matrix representation of. $h$ Giving a nonconstant holomorphic map $h:\tilde{x}arrow X$ we dnote by a divisor $h^{*}(q)\subset\tilde{x}$ of the preimages of $Q\in X$ with multiplicities. Defining $\tilde{\kappa}(h^{*}(q))$ by linearity we get a holomorphic map $Xarrow J(\overline{X})$ which can be extended to a homomorphism $H^{*}$ : $J(X)arrow$ $J(\overline{X})$. $H^{*}$ is called the Rosati adjoint of H. $H^{*}$ is induced by the matrix $M^{*}=\tilde{J}{}^{t}MJ^{-1}$ acting on the underlying real tori[4]. 3. STATEMENTS Theorem 1. $X$ be compact Riemann surfaces ofgenera $\tilde{x}arrow X$ $\tilde{g}g(>1)$ $h_{i}$. : $be$ a nonconstant holo $m$orphic map and $M_{i}\in M(2g 2\tilde{g};Z)$ be a matrix representation of $h_{i}(i=12)$. $Su$ ppose that there is an integer $l>\sqrt{8(\tilde{g}-1)}$ with $M_{1}\equiv M_{2}$ (mod. $l$). Then. $h_{1}=h_{2}$ $m_{i}^{j}$ denote the j-th row vector of $M_{i}(i=12)$. Theorem 2. $h_{1}$ $h_{2}andm_{1}$ be as in Theorem 1. Suppose that there is an integer $M_{2}$ \mathfrak{m}_{2}^{j}$ (mod. l) for every $j\in\{1 \ldots g\}$. Then. $h_{1}=h_{2}$ $l>8(\tilde{g}-1)$ with $\mathfrak{m}_{1}^{j}\equiv It is already known that $M_{1}=M_{2}$ implies $h_{1}=h_{2}$ (see [3]).

112 Theorem 3. be compact RiemaIln urfaces of genus $g>1$. $X_{1}$ $X_{2}$ $s$ $h_{i}$ $\tilde{x}arrow X_{i}$ : be a onconstant holomorphic $map$ and be a matrix representation of $M_{i}$ $h_{i}(i=12)$. Suppose that there is an integer $l>\sqrt{8}(\tilde{g}-1)$ with (mod. $l$). Then are $M_{1}\equiv M_{2}$ $X_{1}$ $X_{2}$ conformally $eq$uivalent and there exis a $con$form map $ts$ $al$ $f$ : $X_{1}arrow X_{2}$ with. $f\circ h_{1}=h_{2}$ Only outlines of the proofs are given here. For complete proofs see [5] which will be published elsewhere. As we have seen in the lemma before we have an inner product in the space of Hurwitz relations. Therefore we may induce a distance in it. Using this distance we have Theorem 1 and 2. To get Theorem 3 we use the Rosati adjoint. $G_{i}=M_{i^{*}}M_{i}=JM_{i}J^{-1}M_{i}(i\sim_{t}=$ $J(\overline{X})$ $12)$. Then we have endmorphisms of with the matrices acting on the underlying real tori. If $G_{1}=G_{2}$ then the targets are conformally equivalent. Using the $X_{1}$ $X_{2}$ $G_{1}$ $G_{2}$ distance induced by the inner product we have Theorem 3. Next we will give an bound on which was defined in section 1. $S_{9}=\{X\in S(\tilde{X}) genusg\}$ and $Hol_{9}( \tilde{x})=\bigcup_{x\in S_{9}}$ { $h:\tilde{x}arrow X nonconstant$ holomorphic}. $l$ $F_{l}=Z/(l)$ where is a prime number. $>\sqrt{8}(\tilde{g}-1)$ By Theorem 1 and 3 we have an injection $Hol_{9}(\tilde{X})arrow M(2g 2\tilde{g};F_{l})$. Thus we consider each matrix representation in $M(2g 2\tilde{g};F_{l})$ for the convenience of calculation. $h_{i}$ be an element of $Hol_{9}(\tilde{X})$ and $M_{i}\in M(2g 2\tilde{g};F_{l})$ a matrix representation of $h_{i}(i=12)$. If there exists $S\in Sp(2g;F_{l})$ with $M_{2}=SM_{1}$ $h_{1}$ $h_{2}$ then targets of say $X_{1}$ $X_{2}$ are conformally equivalent and there is a conformal map $f$ : $X_{1}arrow X_{2}$ with $f\circ h_{1}=h_{2}$ ( $Sp$ denotes symplectic groups). $M_{i}$ satisfies $M_{i}\tilde{J}{}^{t}M_{i}=d_{i}J$ $d_{i}$ where $h_{i}$ is the degree of. Therefore we have $\neq Hol_{9}(\tilde{X})\leq\sum_{d}\#\{M\in M(2g 2\tilde{g};f ) M\tilde{J}{}^{t}M=dJ\}\cross 84(g-1)/\# Sp(2g;F_{l})$ where runs through all considerable numbers as degrees of holomorphic maps. We have $d$ $\# Sp(2g;F_{l})=l^{9^{2}}(l^{2}-1)(l^{4}-1)\ldots(l^{2g}-1)$ (see [1]) and we may take $l$ with $\sqrt{8}(\tilde{g}-1)<l<2\sqrt{8}(\tilde{g}-1)$. Consequently $n\leq 42(\tilde{g}-1)(\tilde{g}-2)2^{2\overline{g}}(4\sqrt{2}(\tilde{g}-1))^{\overline{9}^{2}+\overline{9}/2}+84(\tilde{g}-1)$. Howard and Sommese [2] showed that $n\leq(2\sqrt{6}(\tilde{g}-1)+1)^{2\overline{g}^{2}+2}\tilde{g}^{2}(\tilde{g}-1)(\sqrt{2})^{\overline{g}(\overline{g}-1)}+84(\tilde{g}-1)$. It is easy to see that our bound is smaller for every $\tilde{g}>1$.

113 REFERENCES 1. E.Artin Geometric Algebra Interscience Publishers Inc. 1957. 2. A.Howard A.J.Sommese On the theorem of de $F\succ anchis$ Ann. Scoula. Norm. Sup. Pisa 10 (1983) 429-436. 3. H.H.Martens $Obse\tau wations$ of morphisms of closed Riemann surfaces Bull. London Math. Soc. 10 (1978) 209-212. 4. Mappings of dosed Riemann surfaces Proc. of Symp. in Pure Math. 49 (1989 Part 1) 531-539. 5. M.Tanabe On finiteness of holomorphic maps of $\omega mpact$ Riemann surfaces (to appear). DEPARTMENT OF MATHEMATICS TOKYO INSTITUTE OF TECHNOLOGY OHOKAYAMA MEGURO TOKYO 152 JAPAN