Front flange FLV. Max. [knm/stroke]

Similar documents
Formulae and examples of calculation

Compendium Screw Jacks

DYNAMICS MOMENT OF INERTIA

Precision Ball Screw/Spline

UNIT 4 FLYWHEEL 4.1 INTRODUCTION 4.2 DYNAMICALLY EQUIVALENT SYSTEM. Structure. Objectives. 4.1 Introduction

Bettis RGS F-Series. Quarter-Turn Spring-Return (SR) and Double-Acting (DA) Pneumatic Actuators. Product Data Sheet RGS Rev.

SOLUTION di x = y2 dm. rdv. m = a 2 bdx. = 2 3 rpab2. I x = 1 2 rp L0. b 4 a1 - x2 a 2 b. = 4 15 rpab4. Thus, I x = 2 5 mb2. Ans.

Linear guide drives. Synchronous shafts The use of synchronous shafts enables several linear axes to be operated with one drive.

Selection table for guided systems (crank driven)

Single Phase Motors Technical Datasheets

Quiz Number 4 PHYSICS April 17, 2009

The basic dynamic load rating C is a statistical number and it is based on 90% of the bearings surviving 50 km of travel carrying the full load.

HRN/HRN-C Series Hydraulic Vane Rotary Actuators

Product description. Compact Modules. Characteristic features. Further highlights

OUTCOME 1 MECHANICAL POWER TRANSMISSION SYSTEMS TUTORIAL 3 FLYWHEELS. On completion of this short tutorial you should be able to do the following.

Ball screw. Linear. Coupling cover. 1Positioning table of a structure with enhanced sealing property. 3 High corrosion resistance

PhysicsAndMathsTutor.com 1

Engineering Reference

Chapter 6. Hydraulic cylinders/rams (linear motors), and Lines/fittings. - Transforms the flow of a pressurized fluid into a push or pull of a rod.

Selection Calculations For Linear & Rotary Actuators

Dynamics of Rotation

Physics Courseware Physics I Energy Conservation

Drive Units with Ball Screw Drives R310EN 3304 ( ) The Drive & Control Company

A 954 C HD. Technical Description Hydraulic Excavator. Machine for Industrial Applications

NR ROTARY RING TABLE: FLEXIBLE IN EVERY RESPECT

Tutorial 1 - Drive fundamentals and DC motor characteristics

ElectroMechanical Cylinder LEMC

Rotary modules.

Servo Motor Selection Flow Chart

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial

The University of Melbourne Engineering Mechanics

Translational Motion Rotational Motion Equations Sheet

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS. SEMESTER 2 May 2013

Chapter 3: Fundamentals of Mechanics and Heat. 1/11/00 Electromechanical Dynamics 1


LINE TECH Linear Modules. Ready to built-in linear modules with drive

1. Replace the given system of forces acting on a body as shown in figure 1 by a single force and couple acting at the point A.

5. Plane Kinetics of Rigid Bodies

Our classic for extreme parallel offset: Standard S series. The Schmidt-Kupplung compensates variable parallel Symbiosis of performance, com-

SIZING AND SELECTION. According to DIN 740 part 2 SIZING

When a rigid body is in equilibrium, both the resultant force and the resultant couple must be zero.

Universal type Port size AS13 1F-M3. M3 x 0.5 M5 x 0.8 AS23 1F-01 AS23 1F-02 AS33 1F-02 AS33 1F-03 AS43 1F-04 R 1/8 R 1/4 R 1/4 R 3/8 R 1/2

Circular motion minutes. 62 marks. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor Page 1 of 22. Name: Class: Date: Time: Marks:

Single Phase Motors Technical Datasheets

Engineering Systems & Investigation. Dynamic Systems Fundamentals

A 954 B HD. Technical Description Hydraulic Excavator. Machine for Industrial Applications Operating weight 63,0 65,0 t Engine output 210 kw (286 HP)

Linear actuator Econom 2. Our intelligent model: Econom 2. Econom 2

Series MHY2/MHW Angular Gripper. Cam actuation style is now standardized! MHZ2 MHZJ2 MHQ MHL2 MHR MHK MHS MHC2 MHT2 MHY2 MHW2 MRHQ 2.

Levers. 558 A Textbook of Machine Design

Digital AC Motors MHD

ROTARY MOTION CONTROL

Q.1 a) any six of the following 6x2= 12. i) Define - ( Each term 01 mark)

Impact. m k. Natural Period of Vibration τ. Static load Gray area Impact load t > 3 τ. Absorbing energy. Carrying loads

Vane Type Rotary Actuators Series Variations

Identification system for short product names. Changes/amendments at a glance. 2 Bosch Rexroth AG OBB omega modules R ( )

Product Description. Further highlights. Outstanding features. 4 Bosch Rexroth Corporation Miniature Linear Modules R310A 2418 (2009.

The principle of the flywheel is found before the many centuries ago in spindle and the potter's wheel.

TIMING PULLEYS & BELTS Timing Belts and Pulleys

Laboratory Exercise M-2 Power measurements

CLUTCHES AND BRAKES. Square-jaw clutch

PHYSICS 111 ΕΧΑΜ 2 FΑΙΙ 2006

The perfect Torque Limiting Clutch for

APEX DYNAMICS, INC. Staianless

Siemens AG Rated Rated current 1FK7 Compact. I rated (15.4) 11.5 (25.4) (2.9) 3.3 (4.4)

SOLUTION 8 7. To hold lever: a+ M O = 0; F B (0.15) - 5 = 0; F B = N. Require = N N B = N 0.3. Lever,

Phys101 Second Major-173 Zero Version Coordinator: Dr. M. Al-Kuhaili Thursday, August 02, 2018 Page: 1. = 159 kw

All questions are of equal value. No marks are subtracted for wrong answers.

Exp All technology at operator s service. Suggested Orange peel. Straight boom m. Industrial straight stick 8.00 m RV 600 2,

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1

Mechatronics. MANE 4490 Fall 2002 Assignment # 1

NAME: Given Formulae: Law of Cosines: Law of Sines:

ROTARY CONTROLS. Rotary controls 1. GENERAL FEATURES 2. POSITION INDICATORS

Selection Calculations For Motorized Actuators

Motor Specifications and Ratings 200V MDMA

Ball Reverser. Ball Reverser Actuator. FLENNOR Power Transmission Products. Patented

Lesson 7: Thermal and Mechanical Element Math Models in Control Systems. 1 lesson7et438a.pptx. After this presentation you will be able to:

Practice 2nd test 123

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5

Teacher s notes 35 Conservation of angular momentum (1)

Problem Set x Classical Mechanics, Fall 2016 Massachusetts Institute of Technology. 1. Moment of Inertia: Disc and Washer

SLIDE GUIDE SGL TYPE SLIDE GUIDE BLOCK TYPES ACCURACY

Physics 218 Exam 3 Spring 2010, Sections

Technical Guide for Servo Motor Selection

(Please write your Roll No. immediately) Mid Term Examination. Regular (Feb 2017)

CHAPTER 17 FLEXIBLE MECHANICAL ELEMENTS LECTURE NOTES DR. HAFTIRMAN

Improvement in the Design & Manufacturing of Twin Worm Self Locking Technique and applications

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

Dry System (Twin and DR Type Bearings) Lubricated System (Twin Type Bearings) Lubricated System (DR Type Bearings)

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

A Ferris wheel in Japan has a radius of 50m and a mass of 1.2 x 10 6 kg. If a torque of 1 x 10 9 Nm is needed to turn the wheel when it starts at

R-Plus System Frontespizio_R_PlusSystem.indd 1 11/06/ :32:02

Rail Guide Modular Linear Actuators DSM

Type UB1 Load Cell. Option Stainless steel cable gland

Our policy is one of continued research and development. We therefore reserve the right to

PHYA5/2C. (JUN15PHYA52C01) WMP/Jun15/PHYA5/2C/E5. General Certificate of Education Advanced Level Examination June Section B PMT TOTAL


Rotation review packet. Name:

SEM-2016(03)-II MECHANICAL ENGINEERING. Paper -11. Please read each of the following instructions carefully before. attempting questions.

The NRC Lift/Transport system

Transcription:

SDN 45 Safety shock absorbers SDN are a low cost alternative to industrial shock absorbers appropriate to customers requirements. Typical applications: cranes, storage and retrieval unit for highbay warehouse, heavy machinery, etc. 0,9 4,5 m/s. Brake force max.: 80 kn (max. energy capacity). Spring force: 400 500 N. Temperature range: - 10 C to + 80 C. Front flange FLV Rear flange Foot mounting FB Dimensions: Technical data: Type A B C Energy capacity Allowed angular deviation [mm] Max. [knm/stroke] FLV + FB [ ] Weight [ ] [kg] SDN 45-50 50 270 207 175 3,6 5 4 13 SDN 45-100 100 370 257 225 7,2 5 4 15 SDN 45-150 150 470 307 275 10,8 5 4 17 SDN 45-200 200 570 357 325 14,4 5 4 19 SDN 45-250 250 670 407 375 18,0 4,5 3,5 21 SDN 45-300 300 785 472 440 21,6 4 3 23 SDN 45-350 350 885 522 490 25,2 3,5 2,5 25 SDN 45-400 400 1000 587 555 28,8 3 2 27 SDN 45-500 500 1215 702 670 36,0 2,5 1,5 31 SDN 45-600 600 1430 817 785 43,2 2 1 35 SDN 45-700 700 1645 932 900 50,4 1,5 0,5 39 27

SDN 60 Safety shock absorbers SDN are a low cost alternative to industrial shock absorbers appropriate to customers requirements. Typical applications: cranes, storage and retrieval unit for highbay warehouse, heavy machinery, etc. 0,5 4,5 m/s. Brake force max.: 160 kn (max. energy capacity). Spring force: 600 800 N. Temperature range: - 10 C to + 80 C. Front flange FLV Rear flange Foot mounting FB Dimensions: Technical data: Type A B C Energy capacity Allowed angular deviation [mm] Max. [knm/stroke] FLV + FB [ ] Weight [ ] [kg] SDN 60-100 100 390 270 235 14 5 4 23 SDN 60-150 150 490 320 285 21 5 4 26 SDN 60-200 200 590 370 335 28 5 4 28 SDN 60-250 250 690 420 385 35 4,5 3,5 31 SDN 60-300 300 805 485 450 42 4 3 34 SDN 60-350 350 905 535 500 49 3,5 2,5 37 SDN 60-400 400 1020 600 565 56 3 2 40 SDN 60-500 500 1235 715 680 70 2,5 1,5 45 SDN 60-600 600 1450 830 795 84 2 1 51 SDN 60-700 700 1665 945 910 98 1,5 0,5 57 SDN 60-800 800 1880 1060 1025 112 1 0 63 28

SDN 75 Safety shock absorbers SDN are a low cost alternative to industrial shock absorbers appropriate to customers requirements. Typical applications: cranes, storage and retrieval unit for highbay warehouse, heavy machinery, etc. 0,5 4,5 m/s. Brake force max.: 210 kn (max. energy capacity). Spring force: 1000 1300 N. Temperature range: - 10 C to + 80 C. Front flange FLV Rear flange Foot mounting FB Dimensions: Technical data: Type A B C Energy capacity Allowed angular deviation [mm] Max. [knm/stroke] FLV + FB [ ] Weight [ ] [kg] SDN 75-100 100 405 285 240 18 5 4 30 SDN 75-150 150 505 335 290 27 5 4 33 SDN 75-200 200 605 385 340 36 5 4 36 SDN 75-250 250 705 435 390 45 4,5 3,5 39 SDN 75-300 300 805 485 440 54 4 3 42 SDN 75-350 350 925 555 510 63 3,5 2,5 45 SDN 75-400 400 1025 605 560 72 3 2 48 SDN 75-500 500 1245 725 680 90 2,5 1,5 56 SDN 75-600 600 1445 825 780 108 2 1 63 SDN 75-700 700 1665 945 900 126 1,5 0,5 70 SDN 75-800 800 1865 1045 1000 144 1 0 76 SDN 75-1000 1000 2285 1265 1220 180 1,5 0,5 90 SDN 75-1200 1200 2705 1485 1440 216 1 0 104 29

Capacity charts: The following parameters will be needed in the energy absorption calculation: 1. m [kg] 2. v [m/s] 3. Propelling force F [N] 4. C [1/h] The load range is calculated with those parameters. Pre-determine a stroke length and verify the calculation. 1. Total energy/stroke 2. Total energy/hour 3. Effective mass E T E TC m e [Nm] [Nm/h] [kg] Case 1: without propelling force m = 50 kg v = 1,5 m/s C = 100 1/h E K/E T = ½ m v 2 = ½ 50 kg (1,5 m/s) 2 = 56 Nm E TC = E T C = 56 Nm 100 1/h = 5600 Nm/h m e = 2 E T / v 2 = 2 56 Nm / (1,5 m/s) 2 = 50 kg SES 11 x 25 B selected Case 2: with propelling force m = 100 kg v = 1,5 m/s F D = 1000 N C = 200 1/h s = 0,025 m Propelling force E K = ½ m v 2 = ½ 100 kg (1,5 m/s) 2 = 112,5 Nm E W = F D s = 1000 N 0,025 m = 25 Nm E T = E K + E W = 112,5 Nm + 25 Nm = 137,5 Nm E TC = E T C = 137,5 Nm 200 1/h = 27500 Nm/h m e = 2 E T / v 2 = 2 137,5 Nm / (1,5 m/s) 2 = 122 kg SES 1.1 M x 1 B selected Case 3: on driven rollers m = 900 kg v = 1,0 m/s C = 200 1/h s = 0,05 m µ = 0,3 Coefficient of friction steel/steel E K = ½ m v 2 = ½ 900 kg (1,0 m/s) 2 = 450 Nm E W = m µ g s = 900 kg 0,3 9,81 m/s 2 0,05 m = 132 Nm E T = E K + E W = 450 Nm + 137,5 Nm = 582 Nm E TC = E T C = 582 Nm 200 1/h = 116400 Nm/h m e = 2 E T / v 2 = 2 582 Nm / (1,0 m/s) 2 = 1164 kg STD 2.0 M x 2 selected 32

Case 4: with motor drive m = 3000 kg v = 1,4 m/s HM = 2,5 P = 3 kw C = 1/h s = 0,125 m Arresting torque factor for motors Drive power E K = ½ m v 2 = ½ 3000 kg (1,4 m/s) 2 = 2940 Nm E W = 1000 P s HM / v = 1000 3 kw 0,125 m 2,5 / 1,4 m/s = 670 Nm E T = E K + E W = 2940 Nm + 670 Nm = 3610 Nm E TC = E T C = 3610 Nm 1 1/h = 3610 Nm/h m e = 2 E T / v 2 = 2 3610 Nm / (1,4 m/s) 2 = 3684 kg STD 3.0 M x 5 selected Case 5: Free falling mass m = 50 kg h = 0,5 m C = 300 1/h s = 0,05 m Height of fall v = 2 g h = 2 9,81 m/s 2 0,5 m = 3,1 m/s E K = m g h = 50 kg 9,81 m/s 2 0,5 m = 245 Nm E W = m g s = 50 kg 9,81 m/s 2 0,05 m = 24,5 Nm E T = E K + E W = 245 Nm + 24,5 Nm = 269,5 Nm E TC = E T C = 269,5 Nm 300 1/h = 80850 Nm/h m e = 2 E T / v 2 = 2 269,5 Nm / (3,1 m/s) 2 = 55 kg STD 1.5 M x 2 selected Case 6: Rotating mass/rotary table with driving torque J = 60 kgm 2 ω = 1,2 1/s r = 0,5 m M = 200 Nm C = 1000 1/h s = 0,025 m Moment of inertia Angular velocity Radius (shock absorber) Driving torque v = ω r = 1,2 1/s 0,5 m = 0,6 m/s E K = ½ J ω 2 = ½ 60 kgm 2 (1,2 1/s) 2 = 43,2 Nm E W = M s / r = 200 Nm 0,025 m / 0,5 m = 10 Nm E T = E K + E W = 43,2 Nm + 10 Nm = 53,2 Nm E TC = E T C = 53,2 Nm 1000 1/h = 53200 Nm/h m e = 2 E T / v 2 = 2 53,2 Nm / (0,6 m/s) 2 = 296 kg STD 1.0 M selected 33

Case 7: Swivelling mass with driving torque m = 30 kg v m = 1,0 m/s r = 0,4 m R m = 0,6 m M = 40 Nm C = 1500/h s = 0,02 m Radius (shock absorber) Radius (mass) Driving torque E K = ½ m v 2 = ½ 30 kg (1,0 m/s) 2 = 15 Nm E W = M s / r = 40 Nm 0,02 m / 0,4 m/s = 2 Nm E T = E K + E W = 15 Nm + 2 Nm = 17 Nm E TC = E T C = 17 Nm 1500 1/h = 25500 Nm/h v = v m r / R m = 1,0 m/s 0,4 m / 0,6 m = 0,67 m/s m e = 2 E T / v 2 = 2 17 Nm / (0,67 m/s) 2 = 76 kg SES 10 x 20 A selected Case 8: Swivelling mass with driving force m = 3000 kg v m = 1,5 m/s r = 1,0 m R m = 1,3 m R F = 0,5 m F D = 4000 N C = 150/h S = 0,1 m Radius (shock absorber) Radius (mass) Radius (force) Driving force E K = ½ m v 2 = ½ 3000 kg (1,5 m/s) 2 = 3375 Nm E W = F D s R F / r = 4000 N 0,1 m 0,5 m/1,0 m= 200 Nm E T = E K + E W = 3375 Nm + 200 Nm = 3575 Nm E TC = E T C = 3575 Nm 150 1/h = 536,25 knm/h v = v m r / R m = 1,5 m/s 1,0 m/1,3 m = 1,15 m/s m e = 2 E T / v 2 = 2 3575 Nm / (1,15 m/s) 2 = 1352 kg STD 4.0 M x 4 selected Case 9: on incline m = 10 kg h = 0,2 m α = 20 C = 500 1/h s = 0,016 m Height Angle of inclination E K = m g h = 10 kg 9,81 m/s 2 0,2 m = 19,62 Nm E W = m g s sin α = 10 kg 9,81 m/s 2 0,016 m sin 20 = 0,54 Nm E T = E K + E W = 19,62 Nm + 0,54 Nm = 20,16 Nm E TC = E T C = 20,16 Nm 500 1/h = 53200 Nm/h v = 2 g h = 2 9,81 m/s 2 0,2 m = 1,98 m/s m e = 2 E T / v 2 = 2 20,16 Nm / (1,98 m/s) 2 = 10,3 kg SES 14 S selected 34

Additional sizing formulas and calculations: Effective mass m e [kg] Deceleration a [m/s 2 ] m e = 2 E T / v 2 a = 0,6 v 2 / s Brake force F B [N] Deceleration time t B [s] F B = 1,2 E T / s t B = 2,5 s / v The above formulas apply to correctly selected and adjusted shock absorbers. Please take more precautions than may be necessary to be on the safe side. Special versions are available on request: Description Application Shock absorber with swivelling fixing Clevis mounting Shock absorber with special characteristic line Very high impact velocity Very low impact velocity Shock absorber in stainless steel Hostile environment Outdoor application Shock absorber with alternative seals Hostile environment Deviating ambient temperatures Shock absorber with special stroke length Shock absorber with nickel plated outside parts Hostile environment Outdoor application Shock absorber with air/oil-tank High frequencies requiring an increased energy capacity/h Controlled return stroke of piston rod Shock absorber with special fastening thread Pre-determined fastening elements 35