Probability models for multiway data

Similar documents
Hierarchical models for multiway data

Mean and covariance models for relational arrays

Latent Factor Models for Relational Data

Hierarchical multilinear models for multiway data

Latent SVD Models for Relational Data

Do Policy-Related Shocks Affect Real Exchange Rates? An Empirical Analysis Using Sign Restrictions and a Penalty-Function Approach

Separable covariance arrays via the Tucker product - Final

A Prior Distribution of Bayesian Nonparametrics Incorporating Multiple Distances

2017 Source of Foreign Income Earned By Fund

From Argentina to Zimbabwe: Where Should I Sell my Widgets?

Export Destinations and Input Prices. Appendix A

READY TO SCRAP: HOW MANY VESSELS AT DEMOLITION VALUE?

Online Appendix of the paper " How does sovereign bond market integration relate to fundamentals and CDS spreads?"

ˆ GDP t = GDP t SCAN t (1) t stat : (3.71) (5.53) (3.27) AdjustedR 2 : 0.652

How Well Are Recessions and Recoveries Forecast? Prakash Loungani, Herman Stekler and Natalia Tamirisa

Chapter 9.D Services Trade Data

04 June Dim A W V Total. Total Laser Met

Multilinear tensor regression for longitudinal relational data

Dyadic data analysis with amen

Appendix B: Detailed tables showing overall figures by country and measure

Separable covariance arrays via the Tucker product, with applications to multivariate relational data

Parity Reversion of Absolute Purchasing Power Parity Zhi-bai ZHANG 1,a,* and Zhi-cun BIAN 2,b

Economic growth and currency crisis: A real exchange rate entropic approach

Canadian Imports of Honey

Equivariant and scale-free Tucker decomposition models

DISTILLED SPIRITS - EXPORTS BY VALUE DECEMBER 2017

Shortfalls of Panel Unit Root Testing. Jack Strauss Saint Louis University. And. Taner Yigit Bilkent University. Abstract

DISTILLED SPIRITS - IMPORTS BY VALUE DECEMBER 2017

Measuring Export Competitiveness

Trends in Human Development Index of European Union

Nigerian Capital Importation QUARTER THREE 2016

How to display data badly

DISTILLED SPIRITS - IMPORTS BY VOLUME DECEMBER 2017

Higher order patterns via factor models

Cyclone Click to go to the page. Cyclone

Gravity Analysis of Regional Economic Interdependence: In case of Japan

The International-Trade Network: Gravity Equations and Topological Properties

Calories, Obesity and Health in OECD Countries

Sustainability of balancing item of balance of payment for OECD countries: evidence from Fourier Unit Root Tests

Corporate Governance, and the Returns on Investment

Quick Guide QUICK GUIDE. Activity 1: Determine the Reaction Rate in the Presence or Absence of an Enzyme

International Student Enrollment Fall 2018 By CIP Code, Country of Citizenship, and Education Level Harpur College of Arts and Sciences

Evaluating sensitivity of parameters of interest to measurement invariance using the EPC-interest

Interval-Based Composite Indicators

DESKTOP STUDY ON GLOBAL IMPORTS OF HANDMADE CARPETS & FLOOR COVERINGS AT A GLANCE

The Information Content of Capacity Utilisation Rates for Output Gap Estimates

Forecast and Control of Epidemics in a Globalized World

Bilateral Labour Agreements, 2004

A. Cuñat 1 R. Zymek 2

Governments that have requested pre-export notifications pursuant to article 12, paragraph 10 (a), of the 1988 Convention

Multivariate Analysis

2008 Men's 20 European Championship / Qualification

USDA Dairy Import License Circular for 2018

North-South Gap Mapping Assignment Country Classification / Statistical Analysis

Chapter 6 Scatterplots, Association and Correlation

Decomposing a three-way dataset of TV-ratings when this is impossible. Alwin Stegeman

TIMSS 2011 The TIMSS 2011 Teacher Career Satisfaction Scale, Fourth Grade

TIMSS 2011 The TIMSS 2011 Instruction to Engage Students in Learning Scale, Fourth Grade

Keysight Technologies Instrumented Indentation Testing with the Keysight Nano Indenter G200. Application Note

BSH Description. 2. Features. 3. Applications. 4. Pinning information. N-channel enhancement mode field-effect transistor

Mathematics. Pre-Leaving Certificate Examination, Paper 2 Higher Level Time: 2 hours, 30 minutes. 300 marks L.20 NAME SCHOOL TEACHER

IEEE Transactions on Image Processing EiC Report

The trade dispute between the US and China Who wins? Who loses?

ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT

USDA Dairy Import License Circular for 2018

International Investment Positions and Exchange Rate Dynamics: A Dynamic Panel Analysis

Modeling networks: regression with additive and multiplicative effects

International Standardization for Measurement and Characterization of Nanomaterials

c Copyright 2013 Alexander Volfovsky

2006 Supplemental Tax Information for JennisonDryden and Strategic Partners Funds

Supply, Demand and Monetary Policy Shocks in a Multi-Country New Keynesian model

USDA Dairy Import License Circular for 2018 Commodity/

Descriptive Statistics

ICC Rev August 2010 Original: English. Agreement. International Coffee Council 105 th Session September 2010 London, England

International and regional network status

SCHOOL OF MATHEMATICS AND STATISTICS

CONTINENT WISE ANALYSIS OF ZOOLOGICAL SCIENCE PERIODICALS: A SCIENTOMETRIC STUDY

Space-time modelling of air pollution with array methods

Latent Factor Models for Relational Data

Global Data Catalog initiative Christophe Charpentier ArcGIS Content Product Manager

Lecture 2: Intermediate macroeconomics, autumn Lars Calmfors

Inferring Latent Preferences from Network Data

Using Web Maps to Measure the Development of Global Scale Cognitive Maps

The Changing Nature of Gender Selection into Employment: Europe over the Great Recession

Simulation of Gross Domestic Product in International Trade Networks: Linear Gravity Transportation Model

Chapter 10 Simulation of Gross Domestic Product in International Trade Networks: Linear Gravity Transportation Model

Trade costs in bilateral trade flows: Heterogeneity and zeroes in structural gravity models

PIRLS 2011 The PIRLS 2011 Students Motivated to Read Scale

TIMSS 2011 The TIMSS 2011 School Discipline and Safety Scale, Fourth Grade

ECON Introductory Econometrics. Lecture 13: Internal and external validity

23rd Women's World Championship 2017

Clustering and blockmodeling

[ OSTRO PASS-THROUGH SAMPLE PREPARATION PRODUCT ] The Simpler Way to Cleaner Samples

A Perfect Specialization Model for Gravity Equation in Bilateral Trade based on Production Structure

Growth: Facts and Theories

TIGER: Tracking Indexes for the Global Economic Recovery By Eswar Prasad and Karim Foda

Product Data. Brüel & Kjær B. Sound Intensity Calibrator Type 3541

The following subsections contain the draws omitted from the main text and more details on the. Let Y n reflect the quasi-difference of the

ia PU BLi s g C o M Pa K T Wa i n CD-1576

AN1755 APPLICATION NOTE

Transcription:

Probability models for multiway data Peter Hoff Statistics, Biostatistics and the CSSS University of Washington

Outline Introduction and examples Hierarchical models for multiway factors Deep interactions International conflict Separable covariance

Array-valued data y i,j,k = jth measurement on ith subject under condition k (psychometrics) type-k relationship between i and j (relational data/network) sample mean of variable i for group j in state k (cross-classified data) y 123 y 124 y 125 y 122 y 121

Array-valued data y i,j,k = jth measurement on ith subject under condition k (psychometrics) type-k relationship between i and j (relational data/network) sample mean of variable i for group j in state k (cross-classified data) y 123 y 124 y 125 y 122 y 121

Array-valued data y i,j,k = jth measurement on ith subject under condition k (psychometrics) type-k relationship between i and j (relational data/network) sample mean of variable i for group j in state k (cross-classified data) y 123 y 124 y 125 y 122 y 121

Longitudinal network example Cold war cooperation and conflict USA ROK 66 countries 8 years (1950,1955,..., 1980, 1985) y i,j,t =relation between i, j in year t also have data on gdp polity UKG AUL NEW PHI THI TUR CAN JOR EGY TAW IND BUL HUN RUM SPN LEB FRN USR A 66 66 8 data array GFR NOR ITA NTH SAU HON BRA COL DEN NEP SAF ETH ARG VEN BEL OMA COS ALB HAI DOMSAL IRE AFG PAN LBRSWD GUA CHL SRI POR PER GDR CZE INS CUB NIC AUS ECU IRQ GRC IRN YUG MYA ISR PRK CHN

Deep interaction example words 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 1 2 3 4 1 2 3 4 male female 0 1 2 3 tv 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 1 2 3 4 deg 1 2 3 4 age male female sex 0 1 2 3 child {y i : x i = x} iid multivariate normal(µx, Σ) n = 1116 survey participants 4 4 2 4 = 128 levels of x {µ x } a 4 4 2 4 2 array > 1/2 levels have 5 samples

Deep interaction example words 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 1 2 3 4 1 2 3 4 male female 0 1 2 3 tv 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 1 2 3 4 deg 1 2 3 4 age male female sex 0 1 2 3 child {y i : x i = x} iid multivariate normal(µx, Σ) n = 1116 survey participants 4 4 2 4 = 128 levels of x {µ x } a 4 4 2 4 2 array > 1/2 levels have 5 samples

Deep interaction example words 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 1 2 3 4 1 2 3 4 male female 0 1 2 3 tv 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 1 2 3 4 deg 1 2 3 4 age male female sex 0 1 2 3 child {y i : x i = x} iid multivariate normal(µx, Σ) n = 1116 survey participants 4 4 2 4 = 128 levels of x {µ x } a 4 4 2 4 2 array > 1/2 levels have 5 samples

Deep interaction example words 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 1 2 3 4 1 2 3 4 male female 0 1 2 3 tv 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 2 1 0 1 2 3 1 2 3 4 deg 1 2 3 4 age male female sex 0 1 2 3 child {y i : x i = x} iid multivariate normal(µx, Σ) n = 1116 survey participants 4 4 2 4 = 128 levels of x {µ x } a 4 4 2 4 2 array > 1/2 levels have 5 samples

Data models and Probability models Y = Θ + E Θ contains the main features we hope to recover, E is patternless. Data model: Θ represents main features of the data E represents residual features Goal is to compactly represent/summarize/describe the data Probability model: Θ represents a fixed process or population parameter E represents measurement error or sample-to-sample variation Goal is to estimate Θ and describe our estimation uncertainty

Data models and Probability models Y = Θ + E Θ contains the main features we hope to recover, E is patternless. Data model: Θ represents main features of the data E represents residual features Goal is to compactly represent/summarize/describe the data Probability model: Θ represents a fixed process or population parameter E represents measurement error or sample-to-sample variation Goal is to estimate Θ and describe our estimation uncertainty

Data models and Probability models Y = Θ + E Θ contains the main features we hope to recover, E is patternless. Data model: Θ represents main features of the data E represents residual features Goal is to compactly represent/summarize/describe the data Probability model: Θ represents a fixed process or population parameter E represents measurement error or sample-to-sample variation Goal is to estimate Θ and describe our estimation uncertainty

Reduced rank models Y = Θ + E Θ contains the main features we hope to recover, E is patternless. Matrix decomposition: If Θ is a rank-r matrix, then RX RX RX θ i,j = u i, v j = u i,r v j,r Θ = u r v T r = u r v r r=1 r=1 r=1 Array decomposition: If Θ is a rank-r array, then RX RX θ i,j,k = u i, v j, w k = u i,r v j,r w k,r Θ = u r v r w r r=1 r=1 (PARAFAC: Harshman[1970], Kruskal[1976,1977], Harshman and Lundy[1984], Kruskal[1989])

Reduced rank models Y = Θ + E Θ contains the main features we hope to recover, E is patternless. Matrix decomposition: If Θ is a rank-r matrix, then RX RX RX θ i,j = u i, v j = u i,r v j,r Θ = u r v T r = u r v r r=1 r=1 r=1 Array decomposition: If Θ is a rank-r array, then RX RX θ i,j,k = u i, v j, w k = u i,r v j,r w k,r Θ = u r v r w r r=1 r=1 (PARAFAC: Harshman[1970], Kruskal[1976,1977], Harshman and Lundy[1984], Kruskal[1989])

Some things to worry about 1. Computing the rank matrix: easy to do array: no known algorithm 2. Possible rank matrix: R max = min(m 1, m 2 ) array: max(m 1, m 2, m 3 ) R max min(m 1 m 2, m 1 m 3, m 2 m 3 ) 3. Probable rank matrix: almost all matrices have full rank. array: a nonzero fraction (w.r.t. Lebesgue measure) have less than full rank. 4. Least squares approximation matrix: SVD of Y provides the rank R least-squares approximation to Θ. array: iterative least squares methods, but solution may not exist (de Silva and Lim[2008] ) 5. Uniqueness matrix: The representation Θ = U, V = UV T is not unique. array: The representation Θ = U, V, W is essentially unique.

A model-based approach For a K-way array Y, u (k) 1,..., u(k) m k Y = Θ + E RX Θ = r=1 u (1) r u (K) r U (1),..., U (K) iid multivariate normal(µ k, Ψ k ), with {µ k, Ψ k, k = 1,..., K} to be estimated. Some motivation: shrinkage: Θ contains lots of parameters. hierarchical: covariance among columns of U (k) is identifiable. estimation: p(y U (1),..., U (K) ) multimodal, MCMC stochastic search adaptability: incorporate reduced rank arrays as a model component multilinear predictor in a GLM multilinear effects for regression parameters

A model-based approach For a K-way array Y, u (k) 1,..., u(k) m k Y = Θ + E RX Θ = r=1 u (1) r u (K) r U (1),..., U (K) iid multivariate normal(µ k, Ψ k ), with {µ k, Ψ k, k = 1,..., K} to be estimated. Some motivation: shrinkage: Θ contains lots of parameters. hierarchical: covariance among columns of U (k) is identifiable. estimation: p(y U (1),..., U (K) ) multimodal, MCMC stochastic search adaptability: incorporate reduced rank arrays as a model component multilinear predictor in a GLM multilinear effects for regression parameters

A model-based approach For a K-way array Y, u (k) 1,..., u(k) m k Y = Θ + E RX Θ = r=1 u (1) r u (K) r U (1),..., U (K) iid multivariate normal(µ k, Ψ k ), with {µ k, Ψ k, k = 1,..., K} to be estimated. Some motivation: shrinkage: Θ contains lots of parameters. hierarchical: covariance among columns of U (k) is identifiable. estimation: p(y U (1),..., U (K) ) multimodal, MCMC stochastic search adaptability: incorporate reduced rank arrays as a model component multilinear predictor in a GLM multilinear effects for regression parameters

A model-based approach For a K-way array Y, u (k) 1,..., u(k) m k Y = Θ + E RX Θ = r=1 u (1) r u (K) r U (1),..., U (K) iid multivariate normal(µ k, Ψ k ), with {µ k, Ψ k, k = 1,..., K} to be estimated. Some motivation: shrinkage: Θ contains lots of parameters. hierarchical: covariance among columns of U (k) is identifiable. estimation: p(y U (1),..., U (K) ) multimodal, MCMC stochastic search adaptability: incorporate reduced rank arrays as a model component multilinear predictor in a GLM multilinear effects for regression parameters

Simulation study K = 3, R = 4, (m 1, m 2, m 3) = (10, 8, 6) 1. Generate M, a random array of roughly full rank 2. Set Θ = ALS 4(M) 3. Set Y = Θ + E, {e i,j,k } iid normal(0, v(θ)/4). For each of 100 such simulated datasets, we obtain ˆΘ LS and ˆΘ HB. Questions: How well do ˆΘ LS and ˆΘ HB recover the truth Θ? represent Y?

Simulation study K = 3, R = 4, (m 1, m 2, m 3) = (10, 8, 6) 1. Generate M, a random array of roughly full rank 2. Set Θ = ALS 4(M) 3. Set Y = Θ + E, {e i,j,k } iid normal(0, v(θ)/4). For each of 100 such simulated datasets, we obtain ˆΘ LS and ˆΘ HB. Questions: How well do ˆΘ LS and ˆΘ HB recover the truth Θ? represent Y?

Simulation study: known rank 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 least squares MSE Bayesian MSE mode mean 0.12 0.14 0.16 0.18 0.20 0.12 0.14 0.16 0.18 0.20 least squares RSS Bayesian RSS

Simulation study: misspecified rank least squares hierarchical Bayes log RSS 2.5 1.5 0.5 2.5 1.5 0.5 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 log MSE 3 2 1 0 3 2 1 0 1 2 3 4 5 6 7 8 assumed rank 1 2 3 4 5 6 7 8 assumed rank

Simulation study: comments on rank selection A hierarchical model - try DIC: R true = 2 Pr(ˆR = r) = {0.10, 0.74, 0.07, 0.05, 0.02, 0.01, 0.01, 0.00} R true = 4 Pr(ˆR = r) = {0.08, 0.15, 0.27, 0.28, 0.06, 0.07, 0.04, 0.05} R true = 6 Pr(ˆR = r) = {0.07, 0.18, 0.19, 0.17, 0.10, 0.08, 0.09, 0.12} Keep in mind: A rank R < R true estimate might be better than the rank R true estimate.

Deep interaction example The 2008 General Social Survey includes data on the following six variables: y 1 (words): number of correct answers out of 10 on a vocabulary test; y 2 (tv): hours of television watched in a typical day; x 1 (deg) highest degree obtained: none, high school, Bachelor s, graduate; x 2 (age): 18-34, 35-47, 48-60, 61 and older; x 3 (sex): male or female; x 4 (child) number of children: 0, 1, 2, 3 or more. Nominal goal: Estimate E[y x] for each of the 128 possible x-vectors. 0 5 10 15 0 3 6 9 12 16 20 25 29 38 56 61 n(x)

Deep interaction example Sampling model: {y i : x i = x} iid multivariate normal(µ x, Σ) Mean model: µ x = α x + γ x {α x : x X } = A is of reduced rank {γ x : x X } This is a full model: µ x is unconstrained. iid multivariate normal(0, Ω) This is a hierarchical model: ˆµ x borrows information from other x-groups.

Deep interaction example u2 1.0 0.5 0.0 0.5 1.0 deg.1 tv deg.2 deg.4 deg.3sex.f age.1 age.2 words sex.m child.0 age.3 child.3 child.2 child.1 age.4 yx µx ^ 3 2 1 0 1 1.0 0.5 0.0 0.5 1.0 u 1 0 10 20 30 40 50 60 sample size

Longitudinal network example y i,j,t { 5, 4,..., +1, +2}, the level of military conflict/cooperation x i,j,t,1 = log gdp i + log gdp j, the sum of the log gdps of the two countries; x i,j,t,2 = (log gdp i ) (log gdp j ), the product of the log gdps; x i,j,t,3 = polity i polity j, where polity i { 1, 0, +1}; x i,j,t,4 = (polity i > 0) (polity j > 0). Model: y i,j,t = f (z i,j,t, c 5,..., c +2) = max{y : z i,j,t > c y } z i,j,t = β T x i,j,t + u T i Λ tu j + ɛ i,j,t Z = {z i,j,t β T x i,j,t } = UΛ tu T + E

Longitudinal network example u 2 USA UKG ROK AUL NEW PHI THI TUR CAN JOR EGY TAW IND BUL HUN RUM FRN SPN LEB HON COL ARG BEL BRA DEN GDR GFR SAF NEP ETH COS ALB DOM IRQ OMA VEN NOR ITA HAI SAL NTH AFGPAN LBR GUA IRE SWDCHL CZE SAU SRI INS POR CUB NIC PER AUS ECU IRN GRC YUG MYA ISR CHN PRK USR v 1 0.0 0.2 0.4 0.6 v 2 0.0 0.2 0.4 0.6 1950 1960 1970 1980 u 1 1950 1960 1970 1980

Longitudinal network example u 2 USA UKG ROK AUL NEW PHI THI TUR CAN JOR EGY TAW IND BUL HUN RUM FRN SPN LEB HON COL ARG BEL BRA DEN GDR GFR SAF NEP ETH COS ALB DOM IRQ OMA VEN NOR ITA HAI SAL NTH AFGPAN LBR GUA IRE SWDCHL CZE SAU SRI INS POR CUB NIC PER AUS ECU IRN GRC YUG MYA ISR CHN PRK USR v 1 0.0 0.2 0.4 0.6 v 2 0.0 0.2 0.4 0.6 1950 1960 1970 1980 u 1 1950 1960 1970 1980

Longitudinal network example u 2 USA UKG ROK AUL NEW PHI THI TUR CAN JOR EGY TAW IND BUL HUN RUM FRN SPN LEB HON COL ARG BEL BRA DEN GDR GFR SAF NEP ETH COS ALB DOM IRQ OMA VEN NOR ITA HAI SAL NTH AFGPAN LBR GUA IRE SWDCHL CZE SAU SRI INS POR CUB NIC PER AUS ECU IRN GRC YUG MYA ISR CHN PRK USR v 1 0.0 0.2 0.4 0.6 v 2 0.0 0.2 0.4 0.6 1950 1960 1970 1980 u 1 1950 1960 1970 1980

Longitudinal network example u 2 USA UKG ROK AUL NEW PHI THI TUR CAN JOR EGY TAW IND BUL HUN RUM FRN SPN LEB HON COL ARG BEL BRA DEN GDR GFR SAF NEP ETH COS ALB DOM IRQ OMA VEN NOR ITA HAI SAL NTH AFGPAN LBR GUA IRE SWDCHL CZE SAU SRI INS POR CUB NIC PER AUS ECU IRN GRC YUG MYA ISR CHN PRK USR v 1 0.0 0.2 0.4 0.6 v 2 0.0 0.2 0.4 0.6 1950 1960 1970 1980 u 1 1950 1960 1970 1980

Longitudinal network example u 2 USA UKG ROK AUL NEW PHI THI TUR CAN JOR EGY TAW IND BUL HUN RUM FRN SPN LEB HON COL ARG BEL BRA DEN GDR GFR SAF NEP ETH COS ALB DOM IRQ OMA VEN NOR ITA HAI SAL NTH AFGPAN LBR GUA IRE SWDCHL CZE SAU SRI INS POR CUB NIC PER AUS ECU IRN GRC YUG MYA ISR CHN PRK USR v 1 0.0 0.2 0.4 0.6 v 2 0.0 0.2 0.4 0.6 1950 1960 1970 1980 u 1 1950 1960 1970 1980

Longitudinal network example u 2 USA UKG ROK AUL NEW PHI THI TUR CAN JOR EGY TAW IND BUL HUN RUM FRN SPN LEB HON COL ARG BEL BRA DEN GDR GFR SAF NEP ETH COS ALB DOM IRQ OMA VEN NOR ITA HAI SAL NTH AFGPAN LBR GUA IRE SWDCHL CZE SAU SRI INS POR CUB NIC PER AUS ECU IRN GRC YUG MYA ISR CHN PRK USR v 1 0.0 0.2 0.4 0.6 v 2 0.0 0.2 0.4 0.6 1950 1960 1970 1980 u 1 1950 1960 1970 1980

Longitudinal network example u 2 USA UKG ROK AUL NEW PHI THI TUR CAN JOR EGY TAW IND BUL HUN RUM FRN SPN LEB HON COL ARG BEL BRA DEN GDR GFR SAF NEP ETH COS ALB DOM IRQ OMA VEN NOR ITA HAI SAL NTH AFGPAN LBR GUA IRE SWDCHL CZE SAU SRI INS POR CUB NIC PER AUS ECU IRN GRC YUG MYA ISR CHN PRK USR v 1 0.0 0.2 0.4 0.6 v 2 0.0 0.2 0.4 0.6 1950 1960 1970 1980 u 1 1950 1960 1970 1980

Longitudinal network example u 2 USA UKG ROK AUL NEW PHI THI TUR CAN JOR EGY TAW IND BUL HUN RUM FRN SPN LEB HON COL ARG BEL BRA DEN GDR GFR SAF NEP ETH COS ALB DOM IRQ OMA VEN NOR ITA HAI SAL NTH AFGPAN LBR GUA IRE SWDCHL CZE SAU SRI INS POR CUB NIC PER AUS ECU IRN GRC YUG MYA ISR CHN PRK USR v 1 0.0 0.2 0.4 0.6 v 2 0.0 0.2 0.4 0.6 1950 1960 1970 1980 u 1 1950 1960 1970 1980

Separable covariance via Tucker products Y = Θ + E Decompose Θ using the Tucker decomposition (Tucker 1964,1966): RX SX TX θ i,j,k = z r,s,ta i,r b j,r c k,r r=1 s=1 t=1 Θ = Z {A, B, C} Z is the R S T core array A, B, C are R m 1, S m 2, T m 3 matrices. R, S and T are the 1-rank, 2-rank and 3-rank of Θ is array-matrix multiplication (De Lathauwer et al., 2000)

Separable covariance via Tucker products Multivariate normal model: z = {z j : j = 1,..., m} Matrix normal model: Z = {z i,j } m 1,m 2 i=1,j=1 iid normal(0, 1) y = µ + Az multivariate normal(µ, Σ = AA T ) iid normal(0, 1) Y = M + AZB T matrix normal(m, Σ 1 = AA T, Σ 2 = BB T ) NOTE: AZB T = Z {A, B} Array normal model: Z = {z i,j,k } m 1,m 2,m 3 i=1,j=1,k=1 iid normal(0, 1) Y = M + Z {A, B, C} array normal(m, Σ 1 = AA T, Σ 2 = BB T, Σ 3 = CC T )

Separable covariance via Tucker products Multivariate normal model: z = {z j : j = 1,..., m} Matrix normal model: Z = {z i,j } m 1,m 2 i=1,j=1 iid normal(0, 1) y = µ + Az multivariate normal(µ, Σ = AA T ) iid normal(0, 1) Y = M + AZB T matrix normal(m, Σ 1 = AA T, Σ 2 = BB T ) NOTE: AZB T = Z {A, B} Array normal model: Z = {z i,j,k } m 1,m 2,m 3 i=1,j=1,k=1 iid normal(0, 1) Y = M + Z {A, B, C} array normal(m, Σ 1 = AA T, Σ 2 = BB T, Σ 3 = CC T )

Separable covariance via Tucker products Multivariate normal model: z = {z j : j = 1,..., m} Matrix normal model: Z = {z i,j } m 1,m 2 i=1,j=1 iid normal(0, 1) y = µ + Az multivariate normal(µ, Σ = AA T ) iid normal(0, 1) Y = M + AZB T matrix normal(m, Σ 1 = AA T, Σ 2 = BB T ) NOTE: AZB T = Z {A, B} Array normal model: Z = {z i,j,k } m 1,m 2,m 3 i=1,j=1,k=1 iid normal(0, 1) Y = M + Z {A, B, C} array normal(m, Σ 1 = AA T, Σ 2 = BB T, Σ 3 = CC T )

Separable covariance structure For the matrix normal model: Cov[Y] = Σ 1 Σ 2 Cov[vec(Y)] = Σ 2 Σ 1 E[YY T ] = Σ 1 tr(σ 2) E[Y T Y] = Σ 2 tr(σ 1) For the array normal model: Cov[Y] = Σ 1 Σ 2 Σ 3 Cov[vec(Y)] = Σ K Σ 1 E[Y (k) Y T (k)] = Σ k Y tr(σ j ) j k

International trade example Yearly change in log exports (2000 dollars) : Y = {y i,j,k,l } R 30 30 6 7 i {1,..., 30} indexes exporting nation j {1,..., 30} indexes importing nation k {1,..., 6} indexes commodity l {1,..., 10} indexes year Main effects ANOVA-type model: y i,j,k,l = µ + a i + b j + c k + d l + e i,j,k,l Let E = {e i,j,k,l } ANOVA error model: E array normal(0, I, I, I, σ 2 I) MANOVA error model: E array normal(0, I, I, Σ 3, I) array normal model: E array normal(0, Σ 1,..., Σ 4}

International trade example Yearly change in log exports (2000 dollars) : Y = {y i,j,k,l } R 30 30 6 7 i {1,..., 30} indexes exporting nation j {1,..., 30} indexes importing nation k {1,..., 6} indexes commodity l {1,..., 10} indexes year Main effects ANOVA-type model: y i,j,k,l = µ + a i + b j + c k + d l + e i,j,k,l Let E = {e i,j,k,l } ANOVA error model: E array normal(0, I, I, I, σ 2 I) MANOVA error model: E array normal(0, I, I, Σ 3, I) array normal model: E array normal(0, Σ 1,..., Σ 4}

International trade example Yearly change in log exports (2000 dollars) : Y = {y i,j,k,l } R 30 30 6 7 i {1,..., 30} indexes exporting nation j {1,..., 30} indexes importing nation k {1,..., 6} indexes commodity l {1,..., 10} indexes year Main effects ANOVA-type model: y i,j,k,l = µ + a i + b j + c k + d l + e i,j,k,l Let E = {e i,j,k,l } ANOVA error model: E array normal(0, I, I, I, σ 2 I) MANOVA error model: E array normal(0, I, I, Σ 3, I) array normal model: E array normal(0, Σ 1,..., Σ 4}

International trade example 0.4 0.2 0.0 0.2 0.4 AustriaIreland Denmark Finland Greece GermanyFrance United Kingdom Czech Rep. Spain Italy Sweden Netherlands Switzerland Turkey New Zealand USA Brazil Norway Mexico China, Canada Hong Australia Kong SAR Malaysia Singapore Japan Indonesia China Rep. of Korea Thailand 0.35 0.25 0.15 0.05 0.4 0.2 0.0 0.2 Germany Spain France Greece Austria Italy Denmark Ireland Sweden United Kingdom Switzerland FinlandNorway Canada Mexico Netherlands Australia USA Czech Rep. Turkey New Brazil Zealand China China, Hong Kong SAR Japan Singapore Indonesia Thailand Rep. Malaysia of Korea 0.3 0.2 0.1 0.0 1.0 0.5 0.0 0.5 Machinery and transport equipment Finshed goods Unfinished goods Chemicals Food and animals Crude materials 0.5 0.4 0.3 0.2

Discussion Scientific studies increasingly involve data with multiway array structure Often this structure is unrecognized Array structure may be present in the data or model Multiway data, latent data, or parameters Array decompositions can be incorporated into statistical models This can broaden the applicability of multiway methods

Discussion Scientific studies increasingly involve data with multiway array structure Often this structure is unrecognized Array structure may be present in the data or model Multiway data, latent data, or parameters Array decompositions can be incorporated into statistical models This can broaden the applicability of multiway methods

Discussion Scientific studies increasingly involve data with multiway array structure Often this structure is unrecognized Array structure may be present in the data or model Multiway data, latent data, or parameters Array decompositions can be incorporated into statistical models This can broaden the applicability of multiway methods