Mean and covariance models for relational arrays

Similar documents
Hierarchical models for multiway data

Probability models for multiway data

Latent Factor Models for Relational Data

Latent SVD Models for Relational Data

Hierarchical multilinear models for multiway data

Separable covariance arrays via the Tucker product, with applications to multivariate relational data

Separable covariance arrays via the Tucker product - Final

Inferring Latent Preferences from Network Data

Equivariant and scale-free Tucker decomposition models

Lecture 10 Optimal Growth Endogenous Growth. Noah Williams

Multilinear tensor regression for longitudinal relational data

Agriculture, Transportation and the Timing of Urbanization

Dyadic data analysis with amen

The International-Trade Network: Gravity Equations and Topological Properties

Lecture Note 13 The Gains from International Trade: Empirical Evidence Using the Method of Instrumental Variables

Landlocked or Policy Locked?

Clustering and blockmodeling

Chapter 9.D Services Trade Data

Economic Growth: Lecture 1, Questions and Evidence

ECON 581. The Solow Growth Model, Continued. Instructor: Dmytro Hryshko

External Economies of Scale and Industrial Policy: A View from Trade

Landlocked or Policy Locked?

!" #$$% & ' ' () ) * ) )) ' + ( ) + ) +( ), - ). & " '" ) / ) ' ' (' + 0 ) ' " ' ) () ( ( ' ) ' 1)

Latent Factor Models for Relational Data

A. Cuñat 1 R. Zymek 2

International Investment Positions and Exchange Rate Dynamics: A Dynamic Panel Analysis

Lecture 9 Endogenous Growth Consumption and Savings. Noah Williams

INSTITUTIONS AND THE LONG-RUN IMPACT OF EARLY DEVELOPMENT

Higher order patterns via factor models

Econometrics I KS. Module 1: Bivariate Linear Regression. Alexander Ahammer. This version: March 12, 2018

Value added trade: A tale of two concepts

Online Appendix of the paper " How does sovereign bond market integration relate to fundamentals and CDS spreads?"

A re examination of the Columbian exchange: Agriculture and Economic Development in the Long Run

IDENTIFYING MULTILATERAL DEPENDENCIES IN THE WORLD TRADE NETWORK

For Adam Smith, the secret to the wealth of nations was related

Two Stage Modelling of Arms Trade: Applying Inferential Network Analysis on the Cold War Period

WP/18/117 Sharp Instrument: A Stab at Identifying the Causes of Economic Growth

ENDOGENOUS GROWTH. Carl-Johan Dalgaard Department of Economics University of Copenhagen

Comparative advantage in routine production

Random Effects Models for Network Data

SUPPLEMENTARY MATERIAL FOR:

SCHOOL OF MATHEMATICS AND STATISTICS

Computational statistics

International Evidence on Professional Interest Rate Forecasts: The Impact of Forecasting Ability. SNB Working Papers

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Nonparametric Bayes tensor factorizations for big data

Towards a Regression using Tensors

Network Analysis with Pajek

Research Article Diagnosing and Predicting the Earth s Health via Ecological Network Analysis

Foreign and Domestic Growth Drivers in Eastern Europe

MA 575 Linear Models: Cedric E. Ginestet, Boston University Mixed Effects Estimation, Residuals Diagnostics Week 11, Lecture 1

Using Web Maps to Measure the Development of Global Scale Cognitive Maps

Data Mining and Matrices

Decomposing a three-way dataset of TV-ratings when this is impossible. Alwin Stegeman

Scale Economies and the Structure of Trade and Industrial Policy

Forecasting GDP with global components. This time is different

Growth and Comparative Development - An Overview

(1) (2) (3) Baseline (replicated)

Computational Linear Algebra

arxiv: v1 [math.ra] 13 Jan 2009

Small Area Modeling of County Estimates for Corn and Soybean Yields in the US

Space-time modelling of air pollution with array methods

3. For a given dataset and linear model, what do you think is true about least squares estimates? Is Ŷ always unique? Yes. Is ˆβ always unique? No.

Bayes methods for categorical data. April 25, 2017

Quasi-likelihood Scan Statistics for Detection of

Peter Hoff Linear and multilinear models April 3, GLS for multivariate regression 5. 3 Covariance estimation for the GLM 8

Exploring the World of Growth and Development

MLES & Multivariate Normal Theory

A Fully Nonparametric Modeling Approach to. BNP Binary Regression

Economic growth and currency crisis: A real exchange rate entropic approach

The evolution of world trade from 1995 to 2014: A network approach

The Out of Africa Hypothesis of Comparative Development Reflected by Nighttime Light Intensity

Module 4: Bayesian Methods Lecture 5: Linear regression

Fitting Multidimensional Latent Variable Models using an Efficient Laplace Approximation

Latent Factor Regression Models for Grouped Outcomes

Regression Estimation - Least Squares and Maximum Likelihood. Dr. Frank Wood

arxiv: v1 [econ.em] 2 Jan 2019

Dany Bahar. Ricardo Hausmann. Cesar A. Hidalgo. Harvard Kennedy School. Harvard Kennedy School MIT. August 2013 RWP

Tutorial on Gaussian Processes and the Gaussian Process Latent Variable Model

Multilevel Analysis, with Extensions

Exploring the World of Growth and Development

Hierarchical modelling of performance indicators, with application to MRSA & teenage conception rates

Cursing the blessings? Natural resource abundance, institutions, and economic development

Hierarchical array priors for ANOVA decompositions

Maximum Likelihood Estimation

Is the consumption-income ratio stationary? Evidence from linear and nonlinear panel unit root tests for OECD and non-oecd countries

Efficient Bayesian Multivariate Surface Regression

Competition, Innovation and Growth with Limited Commitment

Lecture 14: Shrinkage

Curse or Blessing? Natural Resources and Human Development

Multivariate Normal & Wishart

Lecture 20 May 18, Empirical Bayes Interpretation [Efron & Morris 1973]

Cursing the blessings? Natural resource abundance, institutions, and economic growth

Efficient Bayesian Multivariate Surface Regression

Joint work with Nottingham colleagues Simon Preston and Michail Tsagris.

Biostatistics Advanced Methods in Biostatistics IV

Modeling Multi-Way Functional Data With Weak Separability

On the uniqueness of multilinear decomposition of N-way arrays

Vendor Payment Information for the University of Wyoming

Network Analysis Using a Local Structure Graph Model: Application to Alliance Formation

Transcription:

Mean and covariance models for relational arrays Peter Hoff Statistics, Biostatistics and the CSSS University of Washington

Outline Introduction and examples Models for multiway mean structure Models for separable covariance arrays

Array-valued data y i,j,k = jth measurement on ith subject under condition k (psychometrics) type-k relationship between i and j (relational data/network) relationship between i and j at time t (dynamic network) y 123 y 124 y 125 y 122 y 121

Array-valued data y i,j,k = jth measurement on ith subject under condition k (psychometrics) type-k relationship between i and j (relational data/network) relationship between i and j at time t (dynamic network) y 123 y 124 y 125 y 122 y 121

Array-valued data y i,j,k = jth measurement on ith subject under condition k (psychometrics) type-k relationship between i and j (relational data/network) relationship between i and j at time t (dynamic network) y 123 y 124 y 125 y 122 y 121

Dynamic network example Cold war cooperation and conflict 66 countries USA 8 years (1950,1955,..., 1980, 1985) y i,j,t =relation between i, j in year t also have data on gdp polity Y is a 66 66 8 data array UKG Model for the mean structure of the data: Y M + E Task: Estimate a low-rank M ROK AUL NEW PHI EGY TAW THI TUR IND BUL HUN RUM CAN JOR SPN LEB FRN HON BRA GDR COL DEN NEP GFR SAF ETH ARG VEN IRQ BEL OMA COS ALB HAI DOMSAL NOR ITA NTH IRE AFG PAN LBR CHL CZE SWD GUA SAU SRI INS CUB NIC POR PER AUS ECU IRN GRC YUG MYA USR ISR PRK CHN

Dynamic network example Cold war cooperation and conflict 66 countries USA 8 years (1950,1955,..., 1980, 1985) y i,j,t =relation between i, j in year t also have data on gdp polity Y is a 66 66 8 data array UKG Model for the mean structure of the data: Y M + E Task: Estimate a low-rank M ROK AUL NEW PHI EGY TAW THI TUR IND BUL HUN RUM CAN JOR SPN LEB FRN HON BRA GDR COL DEN NEP GFR SAF ETH ARG VEN IRQ BEL OMA COS ALB HAI DOMSAL NOR ITA NTH IRE AFG PAN LBR CHL CZE SWD GUA SAU SRI INS CUB NIC POR PER AUS ECU IRN GRC YUG MYA USR ISR PRK CHN

Dynamic network example Cold war cooperation and conflict 66 countries USA 8 years (1950,1955,..., 1980, 1985) y i,j,t =relation between i, j in year t also have data on gdp polity Y is a 66 66 8 data array UKG Model for the mean structure of the data: Y M + E Task: Estimate a low-rank M ROK AUL NEW PHI EGY TAW THI TUR IND BUL HUN RUM CAN JOR SPN LEB FRN HON BRA GDR COL DEN NEP GFR SAF ETH ARG VEN IRQ BEL OMA COS ALB HAI DOMSAL NOR ITA NTH IRE AFG PAN LBR CHL CZE SWD GUA SAU SRI INS CUB NIC POR PER AUS ECU IRN GRC YUG MYA USR ISR PRK CHN

Multivariate relational data example Yearly change in log exports (2000 dollars) : Y = {y i,j,k,l } R 30 30 6 10 i {1,..., 30} indexes exporting nation j {1,..., 30} indexes importing nation k {1,..., 6} indexes commodity l {1,..., 10} indexes year Replications over time: Y = {Y 1,..., Y 10} Y t = M + E t M R 30 30 6, constant over time; E t R 30 30 6, changing over time. How should the covariance among {E 1,..., E 10} be described?

Multivariate relational data example Yearly change in log exports (2000 dollars) : Y = {y i,j,k,l } R 30 30 6 10 i {1,..., 30} indexes exporting nation j {1,..., 30} indexes importing nation k {1,..., 6} indexes commodity l {1,..., 10} indexes year Replications over time: Y = {Y 1,..., Y 10} Y t = M + E t M R 30 30 6, constant over time; E t R 30 30 6, changing over time. How should the covariance among {E 1,..., E 10} be described?

Reduced rank models for mean structure Y = Θ + E Θ contains the main features we hope to recover, E is patternless. Matrix decomposition: If Θ is a rank-r matrix, then RX RX RX θ i,j = u i, v j = u i,r v j,r Θ = u r v T r = u r v r r=1 r=1 r=1 Array decomposition: If Θ is a rank-r array, then RX RX θ i,j,k = u i, v j, w k = u i,r v j,r w k,r Θ = u r v r w r r=1 r=1 (PARAFAC: Harshman[1970], Kruskal[1976,1977], Harshman and Lundy[1984], Kruskal[1989])

Reduced rank models for mean structure Y = Θ + E Θ contains the main features we hope to recover, E is patternless. Matrix decomposition: If Θ is a rank-r matrix, then RX RX RX θ i,j = u i, v j = u i,r v j,r Θ = u r v T r = u r v r r=1 r=1 r=1 Array decomposition: If Θ is a rank-r array, then RX RX θ i,j,k = u i, v j, w k = u i,r v j,r w k,r Θ = u r v r w r r=1 r=1 (PARAFAC: Harshman[1970], Kruskal[1976,1977], Harshman and Lundy[1984], Kruskal[1989])

A model-based approach For a K-way array Y, u (k) 1,..., u(k) m k Y = Θ + E RX Θ = r=1 u (1) r u (K) r U (1),..., U (K) iid multivariate normal(µ k, Ψ k ), with {µ k, Ψ k, k = 1,..., K} to be estimated. Some motivation: shrinkage: Θ contains lots of parameters. hierarchical: covariance among columns of U (k) is identifiable. estimation: p(y U (1),..., U (K) ) multimodal, MCMC stochastic search adaptability: incorporate reduced rank arrays as a model component multilinear predictor in a GLM multilinear effects for regression parameters

A model-based approach For a K-way array Y, u (k) 1,..., u(k) m k Y = Θ + E RX Θ = r=1 u (1) r u (K) r U (1),..., U (K) iid multivariate normal(µ k, Ψ k ), with {µ k, Ψ k, k = 1,..., K} to be estimated. Some motivation: shrinkage: Θ contains lots of parameters. hierarchical: covariance among columns of U (k) is identifiable. estimation: p(y U (1),..., U (K) ) multimodal, MCMC stochastic search adaptability: incorporate reduced rank arrays as a model component multilinear predictor in a GLM multilinear effects for regression parameters

A model-based approach For a K-way array Y, u (k) 1,..., u(k) m k Y = Θ + E RX Θ = r=1 u (1) r u (K) r U (1),..., U (K) iid multivariate normal(µ k, Ψ k ), with {µ k, Ψ k, k = 1,..., K} to be estimated. Some motivation: shrinkage: Θ contains lots of parameters. hierarchical: covariance among columns of U (k) is identifiable. estimation: p(y U (1),..., U (K) ) multimodal, MCMC stochastic search adaptability: incorporate reduced rank arrays as a model component multilinear predictor in a GLM multilinear effects for regression parameters

A model-based approach For a K-way array Y, u (k) 1,..., u(k) m k Y = Θ + E RX Θ = r=1 u (1) r u (K) r U (1),..., U (K) iid multivariate normal(µ k, Ψ k ), with {µ k, Ψ k, k = 1,..., K} to be estimated. Some motivation: shrinkage: Θ contains lots of parameters. hierarchical: covariance among columns of U (k) is identifiable. estimation: p(y U (1),..., U (K) ) multimodal, MCMC stochastic search adaptability: incorporate reduced rank arrays as a model component multilinear predictor in a GLM multilinear effects for regression parameters

Simulation study K = 3, R = 4, (m 1, m 2, m 3) = (10, 8, 6) 1. Generate M, a random array of roughly full rank 2. Set Θ = ALS 4(M) 3. Set Y = Θ + E, {e i,j,k } iid normal(0, v(θ)/4). For each of 100 such simulated datasets, we obtain ˆΘ LS and ˆΘ HB. Questions: How well do ˆΘ LS and ˆΘ HB recover the truth Θ? represent Y?

Simulation study K = 3, R = 4, (m 1, m 2, m 3) = (10, 8, 6) 1. Generate M, a random array of roughly full rank 2. Set Θ = ALS 4(M) 3. Set Y = Θ + E, {e i,j,k } iid normal(0, v(θ)/4). For each of 100 such simulated datasets, we obtain ˆΘ LS and ˆΘ HB. Questions: How well do ˆΘ LS and ˆΘ HB recover the truth Θ? represent Y?

Simulation study: known rank 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 least squares MSE Bayesian MSE mode mean 0.12 0.14 0.16 0.18 0.20 0.12 0.14 0.16 0.18 0.20 least squares RSS Bayesian RSS

Simulation study: misspecified rank least squares hierarchical Bayes log RSS 2.5 1.5 0.5 2.5 1.5 0.5 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 log MSE 3 2 1 0 3 2 1 0 1 2 3 4 5 6 7 8 assumed rank 1 2 3 4 5 6 7 8 assumed rank

Mean structure for dynamic networks {Y 1,..., Y T } = Y = M + E y 125 M = X u r v r w r y 124 What if each Y t is symmetric? y 123 M = X r u r u r w r, u r R n, w r R T y 122 y 121 (INDSCAL (Carroll and Chang, 1970)) Under this Model, M t = UΛ tu T M = {M 1,..., M T }, Λ t = diag(w 1,t,..., w R,t ).

Mean structure for dynamic networks {Y 1,..., Y T } = Y = M + E y 125 M = X u r v r w r y 124 What if each Y t is symmetric? y 123 M = X r u r u r w r, u r R n, w r R T y 122 y 121 (INDSCAL (Carroll and Chang, 1970)) Under this Model, M t = UΛ tu T M = {M 1,..., M T }, Λ t = diag(w 1,t,..., w R,t ).

Dynamic network example y i,j,t { 5, 4,..., +1, +2}, the level of military conflict/cooperation x i,j,t,1 = log gdp i + log gdp j, the sum of the log gdps of the two countries; x i,j,t,2 = (log gdp i ) (log gdp j ), the product of the log gdps; x i,j,t,3 = polity i polity j, where polity i { 1, 0, +1}; x i,j,t,4 = (polity i > 0) (polity j > 0). Model: y i,j,t = f (z i,j,t, c 5,..., c +2) = max{y : z i,j,t > c y } z i,j,t = β T x i,j,t + u T i Λ tu j + ɛ i,j,t Z = {z i,j,t β T x i,j,t } = UΛ tu T + E

Longitudinal network example u 2 USA UKG ROK AUL NEW PHI THI TUR CAN JOR EGY TAW IND BUL HUN RUM FRN SPN LEB HON COL ARG BEL BRA DEN GDR GFR SAF NEP ETH COS ALB DOM IRQ OMA VEN NOR ITA HAI SAL NTH AFGPAN LBR GUA IRE SWDCHL CZE SAU SRI INS POR CUB NIC PER AUS ECU IRN GRC YUG MYA ISR CHN PRK USR v 1 0.0 0.2 0.4 0.6 v 2 0.0 0.2 0.4 0.6 1950 1960 1970 1980 u 1 1950 1960 1970 1980

Longitudinal network example u 2 USA UKG ROK AUL NEW PHI THI TUR CAN JOR EGY TAW IND BUL HUN RUM FRN SPN LEB HON COL ARG BEL BRA DEN GDR GFR SAF NEP ETH COS ALB DOM IRQ OMA VEN NOR ITA HAI SAL NTH AFGPAN LBR GUA IRE SWDCHL CZE SAU SRI INS POR CUB NIC PER AUS ECU IRN GRC YUG MYA ISR CHN PRK USR v 1 0.0 0.2 0.4 0.6 v 2 0.0 0.2 0.4 0.6 1950 1960 1970 1980 u 1 1950 1960 1970 1980

Longitudinal network example u 2 USA UKG ROK AUL NEW PHI THI TUR CAN JOR EGY TAW IND BUL HUN RUM FRN SPN LEB HON COL ARG BEL BRA DEN GDR GFR SAF NEP ETH COS ALB DOM IRQ OMA VEN NOR ITA HAI SAL NTH AFGPAN LBR GUA IRE SWDCHL CZE SAU SRI INS POR CUB NIC PER AUS ECU IRN GRC YUG MYA ISR CHN PRK USR v 1 0.0 0.2 0.4 0.6 v 2 0.0 0.2 0.4 0.6 1950 1960 1970 1980 u 1 1950 1960 1970 1980

Longitudinal network example u 2 USA UKG ROK AUL NEW PHI THI TUR CAN JOR EGY TAW IND BUL HUN RUM FRN SPN LEB HON COL ARG BEL BRA DEN GDR GFR SAF NEP ETH COS ALB DOM IRQ OMA VEN NOR ITA HAI SAL NTH AFGPAN LBR GUA IRE SWDCHL CZE SAU SRI INS POR CUB NIC PER AUS ECU IRN GRC YUG MYA ISR CHN PRK USR v 1 0.0 0.2 0.4 0.6 v 2 0.0 0.2 0.4 0.6 1950 1960 1970 1980 u 1 1950 1960 1970 1980

Longitudinal network example u 2 USA UKG ROK AUL NEW PHI THI TUR CAN JOR EGY TAW IND BUL HUN RUM FRN SPN LEB HON COL ARG BEL BRA DEN GDR GFR SAF NEP ETH COS ALB DOM IRQ OMA VEN NOR ITA HAI SAL NTH AFGPAN LBR GUA IRE SWDCHL CZE SAU SRI INS POR CUB NIC PER AUS ECU IRN GRC YUG MYA ISR CHN PRK USR v 1 0.0 0.2 0.4 0.6 v 2 0.0 0.2 0.4 0.6 1950 1960 1970 1980 u 1 1950 1960 1970 1980

Longitudinal network example u 2 USA UKG ROK AUL NEW PHI THI TUR CAN JOR EGY TAW IND BUL HUN RUM FRN SPN LEB HON COL ARG BEL BRA DEN GDR GFR SAF NEP ETH COS ALB DOM IRQ OMA VEN NOR ITA HAI SAL NTH AFGPAN LBR GUA IRE SWDCHL CZE SAU SRI INS POR CUB NIC PER AUS ECU IRN GRC YUG MYA ISR CHN PRK USR v 1 0.0 0.2 0.4 0.6 v 2 0.0 0.2 0.4 0.6 1950 1960 1970 1980 u 1 1950 1960 1970 1980

Longitudinal network example u 2 USA UKG ROK AUL NEW PHI THI TUR CAN JOR EGY TAW IND BUL HUN RUM FRN SPN LEB HON COL ARG BEL BRA DEN GDR GFR SAF NEP ETH COS ALB DOM IRQ OMA VEN NOR ITA HAI SAL NTH AFGPAN LBR GUA IRE SWDCHL CZE SAU SRI INS POR CUB NIC PER AUS ECU IRN GRC YUG MYA ISR CHN PRK USR v 1 0.0 0.2 0.4 0.6 v 2 0.0 0.2 0.4 0.6 1950 1960 1970 1980 u 1 1950 1960 1970 1980

Longitudinal network example u 2 USA UKG ROK AUL NEW PHI THI TUR CAN JOR EGY TAW IND BUL HUN RUM FRN SPN LEB HON COL ARG BEL BRA DEN GDR GFR SAF NEP ETH COS ALB DOM IRQ OMA VEN NOR ITA HAI SAL NTH AFGPAN LBR GUA IRE SWDCHL CZE SAU SRI INS POR CUB NIC PER AUS ECU IRN GRC YUG MYA ISR CHN PRK USR v 1 0.0 0.2 0.4 0.6 v 2 0.0 0.2 0.4 0.6 1950 1960 1970 1980 u 1 1950 1960 1970 1980

Covariance structure of multiple relational arrays Yearly change in log exports (2000 dollars) : Y = {y i,j,k,l } R 30 30 6 10 i {1,..., 30} indexes exporting nation j {1,..., 30} indexes importing nation k {1,..., 6} indexes commodity l {1,..., 10} indexes year Replications over time: Y = {Y 1,..., Y 10} Y t = M + E t M R 30 30 6, constant over time; E t R 30 30 6, changing over time. How should the covariance among {E 1,..., E 10} be described?

Separable covariance via Tucker products Y = Θ + E Decompose Θ using the Tucker decomposition (Tucker 1964,1966): RX SX TX θ i,j,k = z r,s,ta i,r b j,r c k,r r=1 s=1 t=1 Θ = Z {A, B, C} Z is the R S T core array A, B, C are R m 1, S m 2, T m 3 matrices. R, S and T are the 1-rank, 2-rank and 3-rank of Θ is array-matrix multiplication (De Lathauwer et al., 2000)

Separable covariance via Tucker products Multivariate normal model: z = {z j : j = 1,..., m} Matrix normal model: Z = {z i,j } m 1,m 2 i=1,j=1 iid normal(0, 1) y = µ + Az multivariate normal(µ, Σ = AA T ) iid normal(0, 1) Y = M + AZB T matrix normal(m, Σ 1 = AA T, Σ 2 = BB T ) NOTE: AZB T = Z {A, B} Array normal model: Z = {z i,j,k } m 1,m 2,m 3 i=1,j=1,k=1 iid normal(0, 1) Y = M + Z {A, B, C} array normal(m, Σ 1 = AA T, Σ 2 = BB T, Σ 3 = CC T )

Separable covariance via Tucker products Multivariate normal model: z = {z j : j = 1,..., m} Matrix normal model: Z = {z i,j } m 1,m 2 i=1,j=1 iid normal(0, 1) y = µ + Az multivariate normal(µ, Σ = AA T ) iid normal(0, 1) Y = M + AZB T matrix normal(m, Σ 1 = AA T, Σ 2 = BB T ) NOTE: AZB T = Z {A, B} Array normal model: Z = {z i,j,k } m 1,m 2,m 3 i=1,j=1,k=1 iid normal(0, 1) Y = M + Z {A, B, C} array normal(m, Σ 1 = AA T, Σ 2 = BB T, Σ 3 = CC T )

Separable covariance via Tucker products Multivariate normal model: z = {z j : j = 1,..., m} Matrix normal model: Z = {z i,j } m 1,m 2 i=1,j=1 iid normal(0, 1) y = µ + Az multivariate normal(µ, Σ = AA T ) iid normal(0, 1) Y = M + AZB T matrix normal(m, Σ 1 = AA T, Σ 2 = BB T ) NOTE: AZB T = Z {A, B} Array normal model: Z = {z i,j,k } m 1,m 2,m 3 i=1,j=1,k=1 iid normal(0, 1) Y = M + Z {A, B, C} array normal(m, Σ 1 = AA T, Σ 2 = BB T, Σ 3 = CC T )

Separable covariance structure For the matrix normal model: Cov[Y] = Σ 1 Σ 2 Cov[vec(Y)] = Σ 2 Σ 1 E[YY T ] = Σ 1 tr(σ 2) E[Y T Y] = Σ 2 tr(σ 1) For the array normal model: Cov[Y] = Σ 1 Σ 2 Σ 3 Cov[vec(Y)] = Σ K Σ 1 E[Y (k) Y T (k)] = Σ k Y tr(σ j ) j k

International trade example Yearly change in log exports (2000 dollars) : Y = {y i,j,k,l } R 30 30 6 7 i {1,..., 30} indexes exporting nation j {1,..., 30} indexes importing nation k {1,..., 6} indexes commodity l {1,..., 10} indexes year Full cell means model: y i,j,k,l = µ i,j,k + e i,j,k,l Let E = {e i,j,k,l } iid error model: E array normal(0, I, I, I, σ 2 I) vector normal error model: E array normal(0, I, I, Σ 3, I) matrix normal error model: E array normal(0, I, I, Σ 3, Σ 4) array normal model: E array normal(0, Σ 1, Σ 2, Σ 3, Σ 4}

International trade example Yearly change in log exports (2000 dollars) : Y = {y i,j,k,l } R 30 30 6 7 i {1,..., 30} indexes exporting nation j {1,..., 30} indexes importing nation k {1,..., 6} indexes commodity l {1,..., 10} indexes year Full cell means model: y i,j,k,l = µ i,j,k + e i,j,k,l Let E = {e i,j,k,l } iid error model: E array normal(0, I, I, I, σ 2 I) vector normal error model: E array normal(0, I, I, Σ 3, I) matrix normal error model: E array normal(0, I, I, Σ 3, Σ 4) array normal model: E array normal(0, Σ 1, Σ 2, Σ 3, Σ 4}

International trade example Yearly change in log exports (2000 dollars) : Y = {y i,j,k,l } R 30 30 6 7 i {1,..., 30} indexes exporting nation j {1,..., 30} indexes importing nation k {1,..., 6} indexes commodity l {1,..., 10} indexes year Full cell means model: y i,j,k,l = µ i,j,k + e i,j,k,l Let E = {e i,j,k,l } iid error model: E array normal(0, I, I, I, σ 2 I) vector normal error model: E array normal(0, I, I, Σ 3, I) matrix normal error model: E array normal(0, I, I, Σ 3, Σ 4) array normal model: E array normal(0, Σ 1, Σ 2, Σ 3, Σ 4}

International trade example Yearly change in log exports (2000 dollars) : Y = {y i,j,k,l } R 30 30 6 7 i {1,..., 30} indexes exporting nation j {1,..., 30} indexes importing nation k {1,..., 6} indexes commodity l {1,..., 10} indexes year Full cell means model: y i,j,k,l = µ i,j,k + e i,j,k,l Let E = {e i,j,k,l } iid error model: E array normal(0, I, I, I, σ 2 I) vector normal error model: E array normal(0, I, I, Σ 3, I) matrix normal error model: E array normal(0, I, I, Σ 3, Σ 4) array normal model: E array normal(0, Σ 1, Σ 2, Σ 3, Σ 4}

International trade example Model comparison: reduced: array normal(0, I, I, Σ 3, Σ 4) full: array normal(0, Σ 1, Σ 2, Σ 3, Σ 4) density 0.0 0.2 0.4 0.6 0.8 1.0 1.2 density 0.0 0.5 1.0 1.5 density 0 2 4 6 8 10 12 14 0 5 10 15 t 1(Y) 0 2 4 6 8 10 t 2(Y) 0.0 0.2 0.4 0.6 0.8 t 3(Y)

International trade example 1 2 3 4 0.5 1.5 2.5 3.5 0.9 1.0 1.1 1.2 1.3 1.4 0 5 10 15 20 25 30 0 5 10 15 20 25 30 1 2 3 4 5 6 0.4 0.2 0.0 0.2 0.4 0.6 IDN MYS THA SINKOR CHN HKG MEX JPN BRATUR USA NZL AUS IRE CZE NLD ITA NOR GRC CAN SWI DEN SPN UKG FRNDEU SWE FINAUT 0.4 0.2 0.0 0.2 IRE GRC AUT SPN FRN DEN ITA SWE DEU FIN UKG MEX CANNLD NOR SWI AUS CZE USA BRA TUR NZL CHN HKG SIN JPN IDN THA MYS KOR 1.0 0.5 0.0 0.5 machinery mfg goods food textiles chemicals crude materials 0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.2 0.3 0.4 0.5

Discussion Scientific studies increasingly involve data with multiway array structure often this structure is unrecognized array structure may be present in data, latent data, or parameters Model-based versions of array decompositions offer several benefits applicability of multiway methods is broadened parameter estimates have reduced MSE Applicability to dynamic, multivariate relational data reduced-rank methods can capture mean structure array-matrix transformations can model covariance

Discussion Scientific studies increasingly involve data with multiway array structure often this structure is unrecognized array structure may be present in data, latent data, or parameters Model-based versions of array decompositions offer several benefits applicability of multiway methods is broadened parameter estimates have reduced MSE Applicability to dynamic, multivariate relational data reduced-rank methods can capture mean structure array-matrix transformations can model covariance

Discussion Scientific studies increasingly involve data with multiway array structure often this structure is unrecognized array structure may be present in data, latent data, or parameters Model-based versions of array decompositions offer several benefits applicability of multiway methods is broadened parameter estimates have reduced MSE Applicability to dynamic, multivariate relational data reduced-rank methods can capture mean structure array-matrix transformations can model covariance