Group interactions of dissipative solitons in a laser cavity: the case of 2+1

Similar documents
Dissipative soliton interactions inside a fiber laser cavity

Bound-soliton fiber laser

Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser

Optical bullets and rockets in nonlinear dissipative systems and their transformations and interactions.

Vector dark domain wall solitons in a fiber ring laser

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Vector dark domain wall solitons in a fiber ring laser

Bound states of gain-guided solitons in a passively modelocked

Light bullets and dynamic pattern formation in nonlinear dissipative systems

Dark Soliton Fiber Laser

Self-started unidirectional operation of a fiber ring soliton. laser without an isolator

Supplementary Figure 1: The simulated feedback-defined evolution of the intra-cavity

Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers

Roadmap to ultra-short record high-energy pulses out of laser oscillators

arxiv: v1 [physics.optics] 26 Mar 2010

Solitons. Nonlinear pulses and beams

Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion

Feedback-controlled Raman dissipative solitons in a fiber laser

Stable soliton pairs in optical transmission lines and fiber lasers

Stable One-Dimensional Dissipative Solitons in Complex Cubic-Quintic Ginzburg Landau Equation

Dissipative soliton molecules with independently evolving or flipping phases in mode-locked fiber lasers

Optical bullets and double bullet complexes in dissipative systems

Large energy mode locking of an erbium-doped fiber. laser with atomic layer graphene

DISTRIBUTION A: Distribution approved for public release.

Efficient Approach for 3D Stationary Optical Solitons in Dissipative Systems

Spectral dynamics of modulation instability described using Akhmediev breather theory

Bifurcations from stationary to pulsating solitons in the cubic quintic complex Ginzburg Landau equation

Supplementary Information. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons.

Group velocity locked vector dissipative solitons in a high repetition rate fiber laser

Soliton complexes in dissipative systems: Vibrating, shaking, and mixed soliton pairs

Dark Pulse Emission of a Fiber Laser

Regimes of Passive Mode-Locking of Fiber Lasers

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror

Strongly asymmetric soliton explosions

Optical Peregrine soliton generation in standard telecommunications fiber

Geometrical description of the onset of multipulsing in mode-locked laser cavities

Moving fronts for complex Ginzburg-Landau equation with Raman term

Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach

Creeping solitons of the complex Ginzburg Landau equation with a low-dimensional dynamical system model

CW-pumped polarization-maintaining Brillouin fiber ring laser: II. Active mode-locking by phase modulation

Nonlinear dynamics of mode-locking optical fiber ring lasers

Induced solitons formed by cross polarization coupling. in a birefringent cavity fiber laser

Optimal dispersion precompensation by pulse chirping

A short tutorial on optical rogue waves

Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates/fibers and their application to mode-locked fiber lasers

Dispersion and how to control it

Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor

Graphene mode-locked Cr:ZnS chirped-pulse oscillator

Statistical light-mode dynamics of multipulse passive mode locking

Pulse-spacing manipulation in a passively mode-locked multipulse fiber laser

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

Group-velocity-locked vector soliton molecules in a birefringence-enhanced fiber laser

Modulation Instability of Optical Waves in the Cubic-Quintic Complex Ginzburg-Landau Equation with Fourth-Order Dispersion and Gain Terms

Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation

Dynamics of Pulsating, Erupting, and Creeping Solitons in the Cubic- Quintic Complex Ginzburg-Landau Equation under the Modulated Field

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Multipulse Operation and Limits of the Kerr-Lens Mode-Locking Stability

Nonlinear pulse shaping and polarization dynamics in mode-locked fiber lasers

Dissipative solitons with a Lagrangian approach

Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion

Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses

Nonlinear Transmission of a NOLM with a Variable Wave Retarder inside the Loop

Strongly enhanced negative dispersion from thermal lensing or other focusing effects in femtosecond laser cavities

Highly Nonlinear Fibers and Their Applications

GRAPHENE BASED SOLITON MODE-LOCKED ERBIUM DOPED FIBER LASER FOR SUPERCONTINUUM GENERATION

Dissipative soliton resonances

Impact of Dispersion Fluctuations on 40-Gb/s Dispersion-Managed Lightwave Systems

Nonlinear effects and pulse propagation in PCFs

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

An Efficient Method to Simulate the Pulse Propagation and Switching Effects of a Fiber Bragg Grating

Contents Three Sources and Three Component Parts of the Concept of Dissipative Solitons Solitons in Viscous Flows

Coherent Raman imaging with fibers: From sources to endoscopes

Vector solitons with locked and precessing states of polarization

Deterministic chaos in an ytterbium-doped mode-locked fiber laser

Spatiotemporal coupling in dispersive nonlinear planar waveguides

AFIBER Bragg grating is well known to exhibit strong

Unveiling soliton booting dynamics in ultrafast fiber lasers

OPTICAL BISTABILITY AND UPCONVERSION PROCESSES IN ERBIUM DOPED MICROSPHERES

Self-organized Propagation of Spatiotemporal Dissipative Solitons in Saturating Nonlinear Media

γ irradiation induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibers

STUDY OF FUNDAMENTAL AND HIGHER ORDER SOLITON PROPAGATION IN OPTICAL LIGHT WAVE SYSTEMS

INFLUENCE OF EVEN ORDER DISPERSION ON SOLITON TRANSMISSION QUALITY WITH COHERENT INTERFERENCE

Noise Correlations in Dual Frequency VECSEL

Nonlinear effects in optical fibers - v1. Miguel A. Muriel UPM-ETSIT-MUIT-CFOP

Analytical design of densely dispersion-managed optical fiber transmission systems with Gaussian and raised cosine return-to-zero Ansätze

B 2 P 2, which implies that g B should be

SOLITON DYNAMICS IN PASSIVELY MODE-LOCKED FIBER LASERS ZHAO LUMING 2006

Nonlinearity management: a route to high-energy soliton fiber lasers

Enhanced nonlinear spectral compression in fibre by external sinusoidal phase modulation

Control of Multiple Solitons in Mode Locked Figure-of-Eight Micro Structured Fiber Lasers to Improve Soliton Stability

Femtosecond pulse generation from a Topological Insulator. mode-locked fiber laser

Spectral Fraunhofer regime: time-to-frequency conversion by the action of a single time lens on an optical pulse

Wavelength Spacing Tunable, Multiwavelength Q-Switched Mode-Locked Laser Based on Graphene-Oxide-Deposited Tapered Fiber

Developing spatiotemporal solitons in step-index. multimode fibers

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

Soliton Molecules. Fedor Mitschke Universität Rostock, Institut für Physik. Benasque, October

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

OPTICAL AMPLIFICATION AND RESHAPING BASED ON ROGUE WAVE IN THE FEMTOSECOND REGIME

Mode-locking pulse dynamics in a fiber laser with a saturable Bragg reflector

Transcription:

Group interactions of dissipative solitons in a laser cavity: the case of +1 Philippe Grelu and Nail Akhmediev * Laboratoire de Physique de l Université de Bourgogne, Unité Mixte de Recherche 507 du Centre National de Recherche Scientifique, B.P. 7870, 1078 Dijon, France Philippe.Grelu@u-bourgogne.fr *Permanent address: Optical Science Centre, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 000, Australia nna1@rsphy1.anu.edu.au Abstract: What can be the outcome of the interaction between a dissipative soliton pair and a soliton singlet? We report an experimental observation of elastic collisions as well as inelastic formation of triplet soliton states in a fiber laser setup. These observations are supported with the numerical simulations based on the dispersion (parameter) managed cubic-quintic Ginzburg-Landau equation model. 00 Optical Society of America OCIS codes: (060.5530) Pulse propagation and solitons; (10.3510) Fiber lasers. References and links 1. N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, Stable soliton pairs in optical transmission lines and fiber lasers, J. Opt. Soc. Am. B 15, 515-53 (1998).. Ph. Grelu, F. Belhache, F. Gutty and J. M. Soto-Crespo, Phase-locked soliton pairs in a stretched-pulse fiber laser, Opt. Lett. 7, 966-968 (00). 3. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser, Opt. Lett. 18, 1080-108 (1993).. Ph. Grelu, J. Béal and J. M. Soto-Crespo, Soliton pairs in a fiber laser: from anomalous to normal average dispersion regime, Opt. Express, 11, N 8, 38-3 (003), http://www.opticsexpress.org/abstract.cfm?uri=opex-11-18-38. 5. A. B. Grudinin, D. J. Richardson and D. N. Payne Energy quantisation in figure eight fibre laser, Electron. Lett. 8, 67-68 (199). 1. Introduction In integrable systems, such as the one modeled by the nonlinear Schrödinger equation, two bright temporal solitons having different amplitudes and velocities can undergo elastic collision, but they cannot form a stable bound state of two solitons. In contrast, in the case of dissipative solitons, it was found theoretically that stable asymmetric soliton pairs can be formed, when we model the system by the complex cubic-quintic Ginzburg-Landau equation (CCQGLE) [1]. These stable soliton pairs were later observed experimentally in a fiber ring laser []. The key feature of asymmetric soliton pairs (with their phases in quadrature) is their group velocity that is different from the group velocity of a single soliton. Hence, when the soliton pair (doublet) and a soliton singlet exist simultaneously in the cavity, they must collide at some stage. In the present work, we studied such interactions in a dissipative system such as a fiber laser. In Section, we report the experimental observation of endlessly repeated collisions between the pair and a single soliton. By tuning cavity losses, we were also able to observe the formation of a stable triplet soliton state. Section 3 gives the description of our numerical simulations, which use the CCQGLE, as well as the concept of dispersion (parameter) management. These reproduce the behavior observed in the experiment. After discussing the simulations, we finally conclude in Section. (C) 00 OSA 1 July 00 / Vol. 1, No. 1 / OPTICS EXPRESS 318

. Dissipative solitons in interaction: experimental observation The mode-locked laser (see Fig. 1), which emits around 1.5-µm, is a dispersion-managed fiber ring laser [3, ]. The gain is provided by a 1.9-m long, 100-ppm erbium-doped fiber (EDF) that is pumped at 980 nm and features normal chromatic dispersion [D = -0 (ps/nm)/km]. The path-averaged cavity dispersion is adjusted with the use of an appropriate length of a SMF-8 fiber that has anomalous dispersion [D = +16.5 (ps/nm)/km]. A 50-cm long open air section is used to insert polarization components. Due to the nonlinear polarization evolution that takes place along with propagation in the fibers, the transmission through the polarizer P1 is intensity dependent, and an appropriate adjustment of the preceding wave plates triggers the mode-locked laser operation. A second polarizer P, preceded by a half-wave plate, provides a convenient variable output coupler. In the present work, the output coupling is set to around 0%. The laser also features a 10%-output fiber coupler, where a small length of dispersion compensating fiber (DCF) is spliced to the SMF-8 fiber output in order to compress the chirped pulses. Pulsed laser operation is analyzed by a homemade optical autocorrelator and by an optical spectrum analyzer (MS 9710B). Output intensity is also monitored on a 500- MHz digital phosphor oscilloscope. In the present work, the path-averaged dispersion is in the normal regime and close to zero [D - (ps/nm)/km]. In this regime, dissipative solitons acquire much larger energy and frequency chirping than in the anomalous regime [3]. In most cases, this allows observing fewer solitons at a relatively large pumping power. Soliton pairs and triplets are rather easily formed while adjusting the wave plates in the open-air section []. Pumping power is around 350 mw, and a single soliton has intracavity energy of around 0.5 nj after the EDF (note that the soliton energy is not precisely quantized with respect to pumping power). 10%-coupler Pump LDs WDM-IS DCF SMF 8 λ/ λ/ P1 λ/ P λ/ λ/ EDF Compressed Output Mode Locker Variable Output Coupler Fig. 1. Fiber ring laser experimental setup. WDM-IS: polarization-insensitive coupler isolator. Operating with three dissipative solitons in the cavity, we adjust ( ±5 ) the orientation of the half-wave plate preceding P, which is equivalent to changing the amount of linear losses in the cavity ( ±0.8 db), and observe the following. For a small range of orientations, the oscilloscope traces feature two peaks per cavity round trip. The larger one is twice the other one in amplitude and appears stably on the screen, since its level is used for trace synchronization. The second one moves endlessly with a constant relative velocity (at this scale of observation). This is illustrated by Fig. (a) and the video recording which is linked to it. The largest peak, as we shall see more clearly below, is identified as a doublet or soliton pair, whereas the second peak is identified as a singlet soliton. As the singlet moves as in Video 1, one round trip difference with the doublet, which represents 5.3 meters of fiber length, is traveled in 0.6 seconds, which means the group velocity difference between the doublet and singlet is 8.3 m/s. This difference is less than 10-7 of each soliton group velocity! We should also stress that the relative motion can be stable for hours once obtained. Although (C) 00 OSA 1 July 00 / Vol. 1, No. 1 / OPTICS EXPRESS 3185

the existence of relative motions between pulses in fiber lasers was already mentioned [5], we believe the present letter is the first to report and analyze the case of a simple repeated motion. Fig.. (a) Collisions : the QuickTime video file (175 Kb) presents live recording of the oscilloscope trace featuring a doublet and a moving singlet soliton. (b) Collisions and triplets : the QuickTime video file (197 Kb) presents formation and decomposition of stable triplet soliton, when cavity losses are slightly changed back and forth. Note that the small sub peaks of amplitude around or less than one division are electronic artifacts due to imperfect impedance matching. Varying slightly the output coupling, a stable triplet soliton state can be formed as a result of the interaction between the doublet and singlet states. This triplet corresponds to the oscilloscope trace in Fig. (b). In the video which is link to Fig. (b), we adjust back and forth the output coupling, to show how we can form or decompose repeatedly the triplet state. Although the triplet state is highly stable once obtained, varying back the output coupling results in the decomposition of the triplet into doublet and singlet solitons and, quite remarkably, the same cycle can be repeated again. The transition +1->3, although with some hysteresis, is reversible, as illustrated in Video. The appearance of singlet, doublet and triplet soliton states in the cavity finds more justification when considering optical autocorrelation traces and optical spectra. Figure 3(a) represents the autocorrelation traces recorded at the variable output coupler. The blue curve is taken when the soliton pair and the soliton singlet are moving with different group velocities, as in Fig. (a). We can see that the amplitude of the central peak is three times larger than the amplitude of side peaks. This is compatible with the fact that the soliton pair or doublet is made of two equal pulses that have the same amplitude as the third moving pulse. The red curve is taken when the triplet is formed, as in Fig. (b). This is the autocorrelation function of three identical, equally separated pulses. The same analysis is confirmed by recording the autocorrelation function at a different location, namely after the erbium doped fiber, at the 10%-output of the fiber coupler. It is displayed on Fig. 3(b). Dispersion compensation allows clearer identification of pulses that form either a doublet or a triplet state. The separation between the bound pulses is 1. ps, and does not practically change during the round trip, whereas individual pulse width varies significantly due to the important frequency chirping effect. (C) 00 OSA 1 July 00 / Vol. 1, No. 1 / OPTICS EXPRESS 3186

Fig. 3. Autocorrelation traces taken from (a) the variable output coupler and (b) the 10% coupler. In blue: doublet and singlet in endlessly relative motion. In red: when the triplet soliton state is formed. The spectrum in Fig. is recorded at the variable output coupler, in the regime, when the soliton doublet and singlet states move endlessly relative to each other. We can see clearly that this spectrum consists of two contributions. The first one is the soliton pair spectrum, with an interfringe separation of 6.5 nm that corresponds exactly to the soliton pair separation of 1. ps. The second contribution is the baseline of the spectral fringes, represented in dotted line. The latter corresponds to the spectrum of a singlet. Namely, the integral of the recorded spectrum (in blue line) is three times the integral below the dotted line with high accuracy. Fig.. Recorded optical spectrum (in blue line) and its baseline (in magenta dotted line), for doublet and singlet solitons in endlessly relative motion. We can clearly see from Fig. that the contribution corresponding to the spectrum of the soliton pair is asymmetric. The presence of this asymmetry provides an explanation for the group velocity difference between the pair and the singlet solitons state. 3. Numerical simulations Our numerical simulations are based on the CCQGLE model: D iψ z + ψtt + ψ ψ + νψ ψ = iδψ + iεψ ψ + iβψtt + iµψ ψ, (1), δ, ε, β, ν, where the parameters D µ represent chromatic dispersion, linear losses, nonlinear gain, spectral filtering, saturation of nonlinear index and saturation of nonlinear gain, (C) 00 OSA 1 July 00 / Vol. 1, No. 1 / OPTICS EXPRESS 3187

R sin φ 8 6 0 respectively. All the parameters are piece-wise periodic functions of z. The model and the variation of parameters are sketched in Fig. 5. The model does not copy exactly the laser cavity but has the elements that are essential for the existence of the observed phenomenon. Dispersion has opposite signs in the two sections of the map as it does in the laser cavity. Average normal dispersion that is close to zero is one of the requirements for modeling the collisions. One round trip D = 0.6 ε = 0.7 µ = - 0.0 µ = - 0.0 ν = - 0.01 ν = - 0.01 β = 0.3 β = 0.6 ε = 0.3 δ = - 0. δ = - 0.1 D = - 0.61 0 Dispersion map Fig. 5. Dispersion map and values of parameters used in the simulation Simulations show that two solitons can form stable asymmetric soliton pairs similar to those in the continuous model of Eq. (1) [1]. Due to the periodic width variations solitons interact at larger separations than in the case of the continuous model. Figure 6 shows that the distance R between the soliton centers in the pair is around 6 dimensionless units and the phase difference is ±π/. Due to their asymmetry, the soliton pairs have group velocity that differs from the group velocity of singlet solitons. The plus or minus sign of the phase difference defines the direction of motion of the pair relative to the single pulse. The two fixed points in the interaction plane are stable foci and thus the soliton pairs are stable. z Interaction plane for two pulses - - -6-8 - 8-6 - - 0 6 8 R cos Fig. 6. Formation of stable soliton pairs in the interaction plane. R represents the separation between the two solitons, whereas φ is their relative phase. Two nearby solitons will merge into a coupled state and propagate indefinitely until the pair is disturbed by a collision with a single pulse. The collision is a strong perturbation that destroys the coupling but a new bound state is formed after the interaction. The collision φ (C) 00 OSA 1 July 00 / Vol. 1, No. 1 / OPTICS EXPRESS 3188

Roundtrips between the soliton pair and the soliton singlet is shown in Fig. 7. This scenario of collision might seem to correlate with the laws of classical mechanics when two particles of the same mass moving in one dimension collide with the third one resulting in the motion of the third particle along with one of the incident ones. However, the dissipative system is ruled by different laws. Firstly, the binding energy of solitons is nonzero. Secondly, the difference in velocities of the pair and the singlet is fixed and must be the same before and after collision. These two reasons result in the elastic collisions of dissipative solitons shown in Fig. 7. As in the experiment, each collision happens in the scale of hundreds of roundtrips. When periodic boundary conditions are used, the same type of collision is repeated many times indefinitely in time. Soliton triplets exist on the same basis as pairs. They move with the same velocity provided the phase difference between the outermost solitons is twice π/, i.e., π. When the phase difference between the outermost solitons is zero, i.e., π/-π/, the soliton triplet has zero velocity. The change of some parameters in the dispersion map can result in either of these states being excited after the collision. Amplitude 600 5600 800 000 300 00 1600 800 0 0 5 10 15 0 5 30 35 0 time, t Fig. 7. Elastic collision of a pair of coupled dissipative solitons with a soliton singlet.. Conclusion We have studied both experimentally and numerically group collisions of dissipative solitons. We have found that two solitons can be coupled into a stable pair that has group velocity different from the velocity of a single soliton. Collision of the pair with a single soliton destroys the bound state but another pair is formed that moves away with the same velocity leaving one of the solitons of the previously moving pair in rest. Depending on the number of solitons in the cavity and cavity parameters, more complicated interactions are also possible. Acknowledgments The work of NA is supported by Université de Bourgogne and the Australian Research Council. (C) 00 OSA 1 July 00 / Vol. 1, No. 1 / OPTICS EXPRESS 3189