WSGP 19. Dror Bar-Natan From astrology to topology via Feynman diagrams and Lie algebras

Similar documents
A REAPPEARENCE OF WHEELS

THE ÅRHUS INTEGRAL OF RATIONAL HOMOLOGY 3-SPHERES III: THE RELATION WITH THE LE-MURAKAMI-OHTSUKI INVARIANT

The Goodwillie-Weiss Tower and Knot Theory - Past and Present

2 DROR BAR-NATAN and 1 surgeries are opposites A total twist is a composition of many little ones The two ways of building an

An extension of the LMO functor

An extension of the LMO functor and Milnor invariants

FINITE TYPE INVARIANTS

Knot Invariants and Chern-Simons Theory

INTRODUCTION TO VASSILIEV KNOT INVARIANTS

arxiv:q-alg/ v1 26 Aug 1997

THANG T. Q. LE. Curriculum Vitae. date: 01/2007. School of Mathematics Office: (1-404) Georgia Institute of Technology Fax: (1-404)

Vassiliev Invariants, Chord Diagrams, and Jacobi Diagrams

An introduction to calculus of functors

Knots, von Neumann Signatures, and Grope Cobordism

SIMPLE WHITNEY TOWERS, HALF-GROPES AND THE ARF INVARIANT OF A KNOT. Rob Schneiderman

Configuration Space Integrals and Universal Vassiliev Invariants over Closed Surfaces

WSGP 18. Gerald Fischer A representation of the coalgebra of derivations for smooth spaces

Polynomials in knot theory. Rama Mishra. January 10, 2012

PSEUDO DIAGRAMS OF KNOTS, LINKS AND SPATIAL GRAPHS

Jacobi Identities in Low-dimensional Topology

Knots and Physics. Louis H. Kauffman

Mathematica Slovaca. Ján Jakubík On the α-completeness of pseudo MV-algebras. Terms of use: Persistent URL:

Scalar curvature and the Thurston norm

Configuration space integrals and the topology of knot and link spaces

WSGP 11. Peter D. Zvengrowski 3-manifolds and relativistic kinks. Terms of use:

Advancement to Candidacy. Patterns in the Coefficients of the Colored Jones Polynomial. Katie Walsh Advisor: Justin Roberts

AN EXPLICIT FAMILY OF EXOTIC CASSON HANDLES

FINITE TYPE INVARIANTS OF INTEGRAL HOMOLOGY 3-SPHERES: A SURVEY

Gauss Diagram Invariants for Knots and Links

A surgery formula for the 2-loop piece of the LMO invariant of a pair

Oxford 13 March Surgery on manifolds: the early days, Or: What excited me in the 1960s. C.T.C.Wall

arxiv:math/ v1 [math.ra] 13 Feb 2004

arxiv: v1 [math.gt] 23 Apr 2014

Hyperbolic Knots and the Volume Conjecture II: Khov. II: Khovanov Homology

arxiv:math/ v1 [math.gt] 16 Aug 2000

SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY

arxiv: v2 [math.gt] 15 Mar 2017

Seifert forms and concordance

DENSITY SPECTRA FOR KNOTS. In celebration of Józef Przytycki s 60th birthday

Homological representation formula of some quantum sl 2 invariants

Chord and Gauß diagrams in the Theory of Knots

HIGHER HOLONOMY OF FORMAL HOMOLOGY CONNECTIONS AND BRAID COBORDISMS

38. APPLICATIONS 105. Today we harvest consequences of Poincaré duality. We ll use the form

On orderability of fibred knot groups

0. Introduction 1 0. INTRODUCTION

MAXIMAL NILPOTENT QUOTIENTS OF 3-MANIFOLD GROUPS. Peter Teichner

arxiv:q-alg/ v2 5 Feb 2000

Quantum Groups. Jesse Frohlich. September 18, 2018

Surface invariants of finite type

WSGP 23. Lenka Lakomá; Marek Jukl The decomposition of tensor spaces with almost complex structure

Alexander polynomial, finite type invariants and volume of hyperbolic knots

Figure 1 The term mutant was coined by Conway, and refers to the following general construction.

Mirror Reflections on Braids and the Higher Homotopy Groups of the 2-sphere

Evgeniy V. Martyushev RESEARCH STATEMENT

E. DROR, W. G. DWYER AND D. M. KAN

Surface invariants of finite type

One of the fundamental problems in differential geometry is to find metrics of constant curvature

arxiv: v1 [math.gt] 25 Feb 2017

Geometric structures of 3-manifolds and quantum invariants

Introduction Curves Surfaces Curves on surfaces. Curves and surfaces. Ragni Piene Centre of Mathematics for Applications, University of Oslo, Norway

Math 440 Project Assignment

DISTINGUISHING EMBEDDED CURVES IN RATIONAL COMPLEX SURFACES

RIMS-1897 On multiframings of 3-manifolds By Tatsuro SHIMIZU December 2018 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan

Problems on invariants of knots and 3-manifolds

Division Algebras and Parallelizable Spheres, Part II

WSAA 14. A. K. Kwaśniewski Algebraic properties of the 3-state vector Potts model. Terms of use:

J-holomorphic curves in symplectic geometry

Power sums and Homfly skein theory

Morse Theory and Applications to Equivariant Topology

The symplectic structure on moduli space (in memory of Andreas Floer)

SURGERY EQUIVALENCE AND FINITE TYPE INVARIANTS FOR HOMOLOGY 3-SPHERES L. FUNAR Abstract. One considers two equivalence relations on 3-manifolds relate

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

Knot Homology from Refined Chern-Simons Theory

Mutant knots and intersection graphs

Delta link homotopy for two component links, III

Universal secondary characteristic homomorphism of pairs of regular Lie algebroids B A

CHARACTERISTIC CLASSES

Categorifying quantum knot invariants

Matrix-tree theorems and the Alexander-Conway polynomial

A NOTE ON QUANTUM 3-MANIFOLD INVARIANTS AND HYPERBOLIC VOLUME

CONSTRUCTING PIECEWISE LINEAR 2-KNOT COMPLEMENTS

Cubic complexes and finite type invariants

Integrable Spin Systems From Four Dimensions

Mathematica Bohemica

Intersection theory on moduli spaces of curves via hyperbolic geometry

Czechoslovak Mathematical Journal

Bordism and the Pontryagin-Thom Theorem

WSGP 21. Adam Harris A survey of boundary value problems for bundles over complex spaces

arxiv: v1 [math.dg] 30 Jul 2016

Riemann surfaces. Paul Hacking and Giancarlo Urzua 1/28/10

Knots and Physics. Lifang Xia. Dec 12, 2012

Is the Universe Uniquely Determined by Invariance Under Quantisation?

Scharlemann s manifold is standard

Curriculum Vitae. Department of Mathematics, UC Berkeley 970 Evans Hall, Berkeley, CA

FACTORING POSITIVE BRAIDS VIA BRANCHED MANIFOLDS

HOMEWORK FOR SPRING 2014 ALGEBRAIC TOPOLOGY

Publication. * are expository articles.

p-divisible Groups and the Chromatic Filtration

Archivum Mathematicum

Complex Bordism and Cobordism Applications

Transcription:

WSGP 19 Dror Bar-Natan From astrology to topology via Feynman diagrams and Lie algebras In: Jan Slovák and Martin Čadek (eds.): Proceedings of the 19th Winter School "Geometry and Physics". Circolo Matematico di Palermo, Palermo, 2000. Rendiconti del Circolo Matematico di Palermo, Serie II, Supplemento No. 63. pp. [11]--16. Persistent URL: http://dml.cz/dmlcz/702140 Terms of use: Circolo Matematico di Palermo, 2000 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO Serie II, Suppl. 63 (2000) pp. П-16 FROM ASTROLOGY TO TOPOLOGY VIA FEYNMAN DIAGRAMS AND LIE ALGEBRAS DROR BAR-NATAN 1. FIRST LECTURE We started by viewing some pictures of Stonehenge, as well as a picture from an advertisement campaign of Andersen Consulting, a company totally unrelated to my Arhus friend J0rgen Ellegaard Andersen: Are your stars in optimal alignment? Brief notes for lectures given in Srni, January 1999.

12 D. BAR-NATAN These stellar images motivated us to study stellar coincidences. We therefore picked a knot, given as a specific embedding of S 1 in R 3, and counted (with signs) the number of "Stonehenge-inspired chopstick towers" that can be built upon it; namely, the number of delicate arrangements of chopsticks whose ends are lying on the knot or are supporting each other in trivalent corners joining three chopsticks each, so that each chopstick is pointing at a different pre chosen point in heaven that has a high mythical meaning. One example of such "Stonehenge-inspired chopstick tower" is below: The planet Vulcan J^ K л a chopstick a knot These "chopstick counts" can be all incorporated together to produce a single "generating function", by setting Z : K н+ Z(K) = J^ -L < D, K > s D, 2 c c\ U where < D,K >s denotes the "Stonehenge pairing" of a diagram D (that is made of c chopsticks) with a given knot embedding K; that is, the (signed) number of ways a chopstick tower whose underlying combinatorics is D can be placed upon the specific embedding K. The whole sum Z(K) should be interpreted as living in the vector space of infinite formal linear combinations of possible diagrams D. We then argued that when the target space of Z(K) is divided by appropriate relations (the AS, IHX, and STU relations), and Z(K) is modified in a minor way to These notes are available electronically at http://www.ma.huji.ac.il/"'drorbn/talks/srni-9901/ notes.html. The images on this paper were copied from http://www.stonehenge.org.uk/, http://witcombe. sbc.edu/earthmysteries/emstonehenge.html and http://www.ac.com/.

FROM ASTROLOGY TO TOPOLOGY VIA FEYNMAN DIAGRAMS AND LIE ALGEBRAS 13 correct for problems related to framings of K, then the new Z(K) is an invariant of knots valued in some space A of "diagrams modulo relations". The idea of our argument was to deform K while carefully tracing what happens to a chopstick tower built upon it. Generically, such towers simply move along with the knot, while continuously deforming. Such continuous deformations do not alter the combinatorics underlying the tower, and hence Z(K) does not change. But occasionally a catastrophe occurs, and a whole tower completely disappears or is newly created. We studied the times when such catastrophes occur, and found that towers always appear or disappear in pairs with opposite sign (with Z(K) remaining fixed) or in groups of three which are IHX- or STU-related. Hence in the quotient space by IHX and STU, the space A ) we see that Z(K) remains invariant. Literature guide: Z(K) was first defined (using different terminology) by Dylan Thurston in his Harvard undergraduate thesis [Th]. His thesis was a continuation and completion of the work started by Bott and Taubes in [BT] (see also [Bo]). The more standard language in which Z(K) is described is the language of de-rham forms on compactified configuration spaces; this is the language used in most of [Th], in [BT] and [Bo], and in the later article by Altschuler and Freidel [AF]. (The two languages amount to two ways of computing the degree of a map; one by counting inverse images of a generic point, and one by integrating the pull back of a top form). We note that significant further progress along these lines was made by Yang [Ya] and by Poirier [Pol, Po2]. After discussing Z(K) ) we moved on to talk about finite type invariants of knots and links. The idea was to define "a derivative" of a knot invariant V to be a difference of its values on two neighboring knots (knots that differ in only one crossing), and then to define higher order derivatives as iterated differences. Once derivatives are around, one can talk about "polynomials" - invariants whose high derivatives vanish. In the case of knots, such invariants are called "finite type invariants" or "Vassiliev invariants". Literature guide: Vassiliev invariants were first defined by Goussarov [Gol, Go2] and Vassiliev [Val, Va2]. A definition in the spirit of the above paragraph and much further information can be found in [B-N4], and an even closer relationship between Vassiliev invariants and polynomials is in [B-N6]. Many classical knot and link invariants are Vassiliev invariants; see [Gol, B-N2, BL, B-N4, Bi, B-N5], An extensive bibliography of Vassiliev invariants is available at http://www.ma.huj i.ac.il/~drorbn/vasbib/vasbib.html. 2. SECOND LECTURE We started by completing the discussion of finite type invariants of knots along the lines of [B-N4], introducing chord diagrams, weight systems and the 4T relation, the STU relation (which is equivalent to the 4T relation), and the notion of "a universal Vassiliev invariant" (of which Z(K) is an example). We then went on trying to sooth the skeptics into quiet submission by showing how the mystic construction of Z(K) is a direct descendent of the Chern-Simons quantum field theory (whose relation to knot theory was first discovered by Witten [Wi]). We started by recalling perturbation theory and Feynman diagrams. This is of course a classical subject, and there is much written about it in many places. Two specific

14 D. BAR-NATAN places that use notation that! like (naturally) are [B-Nl] and [Al, Appendix]. The latter source uses the same notation as in the lecture. Anyway, we then went and briefly mentioned the specific way Chern-Simons theory relates to knot theory via Feynman diagrams. More details are in [B-Nl] and in [BS, Section 3]. It can be shown that the integrals that arise in this way from Feynman diagrams are the same as the Bott-Taubes configuration space integrals [BT], and that those are the same as our construction of Z(K) (see [Th]). 3. THIRD LECTURE This lecture was devoted to the Arhus integral of Bar-Natan, Garoufalidis, Rozansky, and Thurston an alternative construction of the LMO invariant of 3-manifolds, in the case of rational homology spheres. The basic idea was to adopt a "monkey view of algebra". We argued that from a monkey's perspective, A can be viewed as if it is the universal enveloping algebra of some Lie algebra g, and therefore by the Poincare-Birkhoff-Witt it should be isomorphic to some space B of uni-trivalent diagrams modulo the AS and IHX relations, which is the monkey's version of the symmetric algebra S(g) of g. Now people can think of S(g) as the algebra of polynomials over g* } and hence monkeys are entitled to consider B as some space of "functions". When the values of Z(K) are considered as "functions" in this way, it turns out that the Kirby slide move (the main move that makes the theory of 3-manifolds a quotient of the theory of links) acts on these "functions" essentially by shear transformations. Therefore if one could compute the "integral" of Z(K), it would be a 3-manifold invariant. We compute such "integrals" in completely combinatorial terms using a formal analog of Feynman diagrams, and call the result "the Arhus integral" of a rational homology sphere. Literature guide: The "monkey's view of algebra" is not an official name. Nevertheless, the "monkey PBW" theorem is stated and proven in [B-N4, Section 5] (using a different language, of course), and the monkey's view of spaces of functions is in [A2, Section 2], The above philosophy is presented in detail (alas, again under a different guise) in [Al], while the proofs that everything works even outside of the African jungles is in [A2]. Finally, the proof that the resulting invariant is equal to the LMO invariant of [LMO] is in [A3]. [A] In the Danish alphabet, A comes after Z. [AF] REFERENCES D. Altschuler and L. Freidel, Vassiliev knot invariants and Chern-Simons perturbation theory to all orders, to appear in Comm. Math. Phys. See also http://xxx.lanl.gov/abs/q-alg/ 9603010. [B-Nl] D. Bar-Natan, Perturbative Chern-Simons theory, Jour, of Knot Theory and its Ramifications 4-4 (1995) 503-548. See also http://www.ma.huji.ac.i1/~drorbn/l0p.html#pcs. [B-N2] D. Bar-Natan, Weights of Feynman diagrams and the Vassiliev knot invariants, Princeton University preprint, February 1991. See also http://www.ma.huji.ac.il/~drorbn/l0p. html#weights. [B-N3] D. Bar-Natan, Perturbative Aspects of the Chern-Simons Topological Quantum Field Theory, Ph. D. thesis, Princeton University, June 1991. See also http://www.ma.huji.ac.il/ ~drorbn/lop.html#thesis.

FROM ASTROLOGY TO TOPOLOGY VIA FEYNMAN DIAGRAMS AND LIE ALGEBRAS 15 [B-N4] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423-472. See also http://www.ma.huj i.ac.il/~drorbn/papers/onvassiliev/. [B-N5] D. Bar-Natan, Vassiliev homotopy string link invariants, Jour, of Knot Theory and its Ramifications 4 (1995) 13-32. See also http://www.ma.huji.ac.i1/~drorbn/l0p.html#homotopy. [B-N6] D. Bar-Natan, Polynomial invariants are polynomial, Math. Res. Lett. 2 (1995) 239-246. See also http: //www. ma. huj i. ac. il/~drorbn/l0p. html#polynomial. [BS] D. Bar-Natan and A. Stoimenow, The fundamental theorem of Vassiliev invariants, in Proc of the Arhus Conf. Geometry and physics, (J. E. Andersen, J. Dupont, H. Pedersen, and A. Swann, eds.), lecture notes in pure and applied mathematics 184 (1997) 101-134, Marcel Dekker, New-York. See also http://www.ma.huji.ac.i1/~drorbn/l0p.html#fundamental and http://xxx.lanl.gov/abs/q-alg/9702009. [Bi] J. S. Birman, New points of view in knot theory, Bull. Amer. Math. Soc 28 (1993) 253-287. [BL] [Bo] J. S. Birman and X-S. Lin, Knot polynomials and Vassiliev's invariants, Invent. Math. Ill (1993) 225-270. R. Bott, Configuration spaces and imbedding problems, in Proc of the Arhus Conf. Geometry and physics, (J. E. Andersen, J. Dupont, H. Pedersen, and A. Swann, eds.), lecture notes in pure and applied mathematics 184 (1997) 135-140, Marcel Dekker, New-York. [BT] R. Bott and C Taubes, On the self-linking of knots, Jour. Math. Phys. 35 (1994). [Gol] [Go2] M. Goussarov, A new form of the Conway-Jones polynomial of oriented links, in Topology of manifolds and varieties (0. Viro, editor), Amer. Math. Soc, Providence 1994, 167-172. M. Goussarov, On n-equivalence of knots and invariants of finite degree, in Topology of manifolds and varieties (O. Viro, editor), Amer. Math. Soc, Providence 1994, 173-192. [LMO] T. Q. T. Le, J. Murakami and T. Ohtsuki, On a universal quantum invariant of 3- manifolds, Topology 37-3 (1998) 539-574. See also http://www.math.buffalo.edu/~letu/ and http://xxx.lanl.gov/abs/q-alg/9512002. [Pol] [Po2] [Th] [Val] [Va2] S. Poirier, Rationality results for the configuration space integral of knots, Universite de Grenoble I preprint, December 1998. See also http://xxx.lanl.gov/abs/math/9901028. S. Poirier, The limit configuration space integral for tangles and the Kontsevich integral, Universite de Grenoble I preprint, February 1999. See also http://xxx.lanl.gov/abs/math/ 9902058. D. Thurston, Integral expressions for the Vassiliev knot invariants, Harvard University senior thesis, April 1995. See also http://xxx.lanl.gov/abs/math/9901110. V. A. Vassiliev, Cohomology of knot spaces, in Theory of Singularities and its Applications (Providence) (V. I. Arnold, ed.), Amer. Math. Soc, Providence, 1990. V. A. Vassiliev, Complements of discriminants of smooth maps: topology and applications, Trans, of Math. Mono. 98, Amer. Math. Soc, Providence, 1992. [Wi] E. Witten, Quantum field theory and the Jo[Bnes polynomial, Commun. Math. Phys. 121 (1989) 351-399. [Ya] [Al] S.-W. Yang, Feynman integral, knot invariant and degree theory of maps, National Taiwan University preprint, September 1997. See also http://xxx.lanl.gov/abs/q-alg/9709029. D. Bar-Natan, S. Garoufalidis, L. Rozansky and D. P. Thurston, The Arhus integral of rational homology 3-spheres I: A highly non trivial flat connection on Sisup^3i/supi, Selecta Math., to appear. See also http://www.ma.huji.ac.i1/~drorbn/l0p.html#aarhusi and http://xxx.lanl.gov/abs/q-alg/9706004.

16 D. BAR-NATAN [Á2] D. Bar-Natan, S. Garoufalidis, L. Rozansky and D. P. Thurston, The Árhus integral of rational homology 3-spheres II: Invariance and universality, Selecta Math., to appear. See also http://www.ma.huji.ac.i1/~drorbn/l0p.html#aarhusii and http://xxx.lanl.gov/abs/math/9801049. [A3] D. Bar-Natan, S. Garoufalidis, L. Rozansky and D. P. Thurston, The Árhus integral of rational homology 3-spheres III: The relation with the Le-Murakami-Ohtsuki invariant, preprint. See http://www.ma.huji.ac.i1/~drorbn/l0p.html#aarhusiii and http://xxx.lanl.gov/abs/math/9808013. INSTITUTE OF MATHEMATICS THE HEBREW UNIVERSITY GIV'AT-RAM, JERUSALEM 91904, ISRAEL E-mail: DRORBN@MATH.HUJI.ACIL