Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Similar documents
REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

LaPlace Transform in Circuit Analysis

Transfer function and the Laplace transformation

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

2. The Laplace Transform

Elementary Differential Equations and Boundary Value Problems

Chapter 12 Introduction To The Laplace Transform

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Chapter 6. Laplace Transforms

Why Laplace transforms?

CONTROL SYSTEMS. Chapter 10 : State Space Response

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Chapter 9 - The Laplace Transform

Laplace Transforms recap for ccts

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Heat flow in composite rods an old problem reconsidered

EECE 301 Signals & Systems Prof. Mark Fowler

Relation between Fourier Series and Transform

CONTROL SYSTEMS. Chapter 3 Mathematical Modelling of Physical Systems-Laplace Transforms. Prof.Dr. Fatih Mehmet Botsalı

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

6.8 Laplace Transform: General Formulas

13.1 Circuit Elements in the s Domain Circuit Analysis in the s Domain The Transfer Function and Natural Response 13.

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

Chapter 9 The Laplace Transform

CSE 245: Computer Aided Circuit Simulation and Verification

EXERCISE - 01 CHECK YOUR GRASP

18.03SC Unit 3 Practice Exam and Solutions

ECE Connections: What do Roots of Unity have to do with OP-AMPs? Louis Scharf, Colorado State University PART 1: Why Complex?

Chapter 6. Laplace Transforms

Poisson process Markov process

EE202 Circuit Theory II

Instrumentation & Process Control

Chapter 7: Inverse-Response Systems

Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform

Exponential Sawtooth

Lecture 4: Laplace Transforms

APPLICATION OF FINITE INTEGRAL TRANSFORMATION METHOD TO THE SOLUTION OF MIXED PROBLEMS FOR PARABOLIC EQUATIONS WITH A CONTROL

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Final Exam : Solutions

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions

3.4 Repeated Roots; Reduction of Order

CHAPTER. Forced Equations and Systems { } ( ) ( ) 8.1 The Laplace Transform and Its Inverse. Transforms from the Definition.

Revisiting what you have learned in Advanced Mathematical Analysis

Math 266, Practice Midterm Exam 2

s-domain Circuit Analysis

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

Wave Equation (2 Week)

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Veer Surendra Sai University of Technology, Burla. S u b j e c t : S i g n a l s a n d S y s t e m s - I S u b j e c t c o d e : B E E

Midterm exam 2, April 7, 2009 (solutions)

Nikesh Bajaj. Fourier Analysis and Synthesis Tool. Guess.? Question??? History. Fourier Series. Fourier. Nikesh Bajaj

Frequency Response. We now know how to analyze and design ccts via s- domain methods which yield dynamical information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Chap.3 Laplace Transform

can be viewed as a generalized product, and one for which the product of f and g. That is, does

More on ODEs by Laplace Transforms October 30, 2017

AN ANALYTICAL METHOD OF SOLUTION FOR SYSTEMS OF BOOLEAN EQUATIONS

Double Slits in Space and Time

H is equal to the surface current J S

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

THE LAPLACE TRANSFORM

Lecture 26: Leapers and Creepers

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Let. x y. denote a bivariate time series with zero mean.

Serial : 4LS1_A_EC_Signal & Systems_230918

Ma/CS 6a Class 15: Flows and Bipartite Graphs

where: u: input y: output x: state vector A, B, C, D are const matrices

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

EE Control Systems LECTURE 2

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

2.22 Process Gains, Time Lags, Reaction Curves

EECE.3620 Signal and System I

6.003 Homework #8 Solutions

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

Design and Analysis of Algorithms (Autumn 2017)

Institute of Actuaries of India

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Chapter 2 The Derivative Business Calculus 99

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1

(1) Then we could wave our hands over this and it would become:

CHAPTER 3 SIGNALS & SYSTEMS. z -transform in the z -plane will be (A) 1 (B) 1 (D) (C) . The unilateral Laplace transform of tf() (A) s (B) + + (D) (C)

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

EECE 301 Signals & Systems Prof. Mark Fowler

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Laplace Transform and its Relation to Fourier Transform

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

Transcription:

Inrucor Soluion for Aignmn Chapr : Tim Domain Anali of LTIC Sm Problm i a 8 x x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m i i 8, which ha roo a ± j Th zro-inpu rpon i givn b zi A co B in for, wih A an B bing conan To calcula hir valu, w ubiu h iniial coniion an in h abov quaion Th ruling imulanou quaion ar b A A B ha ha h oluion, A an B Th zro-inpu rpon i hrfor givn b zi Bcau of h zro iniial coniion, h zro-inpu rpon i alo zro Zro-a rpon of h m: To calcula h zro-a rpon of h m, h iniial coniion ar aum o b zro Hnc, h zro a rpon z can b calcula b olving h iffrnial quaion 8 x x wih iniial coniion, an, an inpu x xpu Th homognou oluion of m i ha h am form a h zro-inpu rpon an i givn b h z C co C in for, wih C an C bing conan Th paricular oluion for inpu x xpu i of h form p z K u Subiuing h paricular oluion in h iffrnial quaion for m i an olving h ruling quaion giv K /8 Th zro-a rpon of h m i, hrfor, givn b z C co C in u 8

Soluion o Aignmn To compu h valu of conan C an C, w u h iniial coniion, an aum for h zro-a rpon Subiuing h iniial coniion in z la o h following imulanou quaion c C C C 8 wih oluion C /8 an C /8 Th zro-a oluion i givn b z co in u 8 Ovrall rpon of h m: Th ovrall rpon of h m i obain b umming up h zro-inpu an zro-a rpon, an i givn b co in u 8 Sa a rpon of h m: Th a a rpon of h m i obain b appling h limi,, o an i givn b lim co in u 8 iii a x wih x! " co in # $ u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m iii i, which ha roo a, Th zro-inpu rpon i givn b zi A for, wih A an B bing conan To calcula hir valu, w ubiu h iniial coniion an in h abov quaion Th ruling imulanou quaion ar A B A ha ha a oluion, A an B Th zro-inpu rpon i hrfor givn b B b zi u Zro-a rpon of h m: To calcula h zro-a rpon of h m, h iniial coniion ar aum o b zro Hnc, h zro a rpon z can b calcula b olving h iffrnial quaion x wih iniial coniion, an, an inpu x [co in]u Th homognou oluion of m iii ha h am form a h zro-inpu rpon an i givn b h z C C

Soluion for, wih C an C bing conan Th paricular oluion for inpu x [co in]u i of h form z p K co K in K co K in Subiuing h paricular oluion in h iffrnial quaion for m iii an olving h ruling quaion giv K co K in K co K in K in K co K in K co K co K in K co K in co in Collcing h cofficin of h coin an in rm, w g K K K co K K K in K K K co K K K in which giv K, K 5, K 6, an K 8 Th zro-a rpon of h m i c C C 5in 6co 8in u z To compu h valu of conan C an C, w u h iniial coniion, an Subiuing h iniial coniion in z la o h following imulanou quaion C C C 6 5 8 wih oluion C 6 an C Th zro-a oluion i givn b 6 5in 6co 8in u z Ovrall rpon of h m: Th ovrall rpon of h m i obain b umming up h zro-inpu an zro-a rpon, an i givn b or, u 6 5in 6co 8in u or, 6 9 5in 6co 8in u Sa a rpon of h m: Th a a rpon of h m i obain b appling h limi,, o an i givn b 9 5in 6co 8in u lim 6 or, 5in 6co 8in u v a x wih x u,, an Zro-inpu rpon of h m: Th characriic quaion of h LTIC m v i, which ha roo a ±j, ±j Th zro-inpu rpon i givn b zi j j j j A B C D,

Soluion o Aignmn for, wih A an B bing conan To calcula hir valu, w ubiu h iniial coniion in h abov quaion Th ruling imulanou quaion ar A ja A ja B jb B C jc C jc D jd D ha ha a oluion, A j5 Β 5, C j5 an D 5 Th zro-inpu rpon i b which ruc o zi j j j j j5 5 j5 5 u, zi 5in 5 co u Zro-a rpon of h m: To calcula h zro-a rpon of h m, h iniial coniion ar aum o b zro Hnc, h zro a rpon z can b calcula b olving h iffrnial quaion x wih all iniial coniion o an inpu x u Th homognou oluion of m v ha h am form a i zro-inpu rpon an i givn b h z j j j C C C C whr C i ar conan Th paricular oluion for inpu x u i of h form p z Ku Subiuing h paricular oluion in h iffrnial quaion for m v an olving h ruling quaion giv K, or, K Th zro-a rpon of h m i givn b j j j j j z C C C C, for To compu h valu of conan C i, w u zro iniial coniion Subiuing h iniial coniion in z la o h following imulanou quaion A ja A ja B jb B C jc C jc D jd D wih oluion C, C j5, C, an C j5 Th zro-a oluion i givn b c which ruc o z j j j j j5 j5 u, zi co in u Ovrall rpon of h m: Th ovrall rpon of h m i obain b umming up h zro-inpu an zro-a rpon, an i givn b

Soluion 5 or, 5in 5 co u co in u or, 5in co in 5 co u Sa a rpon of h m: Th a a rpon of h m i obain b appling h limi,, o an i givn b Problm 5 i co in 5 co u lim 5in Th oupu i givn b Rcall ha Thrfor, h oupu i givn b u u u u u u if if > if u r if < Th aformnion convoluion can alo b compu graphicall iii Th oupu i givn b [ u u u ] [ u u ] Uing h propri of h convoluion ingral, h oupu i xpr a [ u u ] [ u u ] [ u u ] [ u u ] [ u u ] [ u u ] Ba on h rul of par i, i, u * u r, h ovrall oupu i givn b r r r r r r vi Coniring h wo ca < an paral Ca I < : 5 5 5 which ruc o 5 5 5 5 8 or, 5 5 5 Ca II : 5 5 5

6 Soluion o Aignmn which ruc o 5 5 5 5 5 5 or, 5 5 Hnc, h ovrall xprion for i givn b Problm 6 5 5 < iii Uing h graphical approach, h convoluion of x wih w i hown in Fig S6, whr w conir ix iffrn ca for iffrn valu of Ca I < : Sinc hr i no ovrlap, Ca II < : Ca III < : w x x a Wavform for z b Wavform for x c Wavform for x w x w x w x Ovrlap bw w an x for < Ovrlap bw w an x for < f Ovrlap bw w an x for < w x w x w x g Ovrlap bw w an x for < h Ovrlap bw w an x for < i Ovrlap bw w an x for >

Soluion 6 x*w - - -6 - iii j Convoluion oupu Fig S6: Convoluion of x wih w in Problm 6iii Ca IV < : Ca V < : Ca VI > : Sinc hr i no ovrlap, 9 5 Combining all h ca, h rul of h convoluion x w i givn b Th oupu i plo in Fig S6j 5 9 < < < < lwhr vii Uing h graphical approach, h convoluion of v wih z i hown in Fig 6, whr w conir ix iffrn ca for iffrn valu of v z z a Wavform for v b Wavform for z c Wavform for z

8 Soluion o Aignmn v z v z v z Ovrlap bw v an z for < Ovrlap bw v an z for < f Ovrlap bw v an z for < v z v z v z g Ovrlap bw v an z for < h Ovrlap bw v an z for < i Ovrlap bw v an z for > v*z - - - - - j Convoluion oupu Fig S6: Convoluion of v wih z in Problm 6vii Ca I < : Sinc hr i no ovrlap, Ca II < : [ ] [ ] [ ]

Soluion 9 Ca III < < : [ ] [ ] [ ] [ ] Ca IV < < : [ ] [ ] [ ] [ ] Ca V < : [ ] [ ] [ ] Ca VI > : Sinc hr i no ovrlap, Combining all h ca, h rul of h convoluion v z i givn b < < < < lwhr Th oupu i hown in Fig S6j a h n of h oluion of hi problm ix Uing h graphical approach, h convoluion of v wih w i hown in Fig 69, whr w conir ix iffrn ca for iffrn valu of

Soluion o Aignmn v w w a Wavform for v b Wavform for w c Wavform for w v w v w v w Ovrlap bw v an w for < Ovrlap bw v an w for < f Ovrlap bw v an w for < v w v w v w g Ovrlap bw v an w for < h Ovrlap bw v an w for < i Ovrlap bw v an w for > 9 w*w 5 - - j Convoluion oupu 9 Fig S69: Convoluion of v wih w in Problm 6ix Sinc w, hrfor, h xprion for w i w Ca I < : Sinc hr i no ovrlap, 9 if < if >

Soluion Ca II < : 5 9 Ca III < < : [ ] [ ] [ ] [ ] [ ] [ ] 9 Ca IV < < : [ ] [ ] [ ] [ ] [ ] [ ] 9 Ca V < : 5 9 Ca VI > : Sinc hr i no ovrlap, 9 Combining all h ca, h rul of h convoluion 9 w v i givn b

Soluion o Aignmn 9 Th oupu i 9 hown in Fig S69j 5 5 < < < < lwhr Problm iii Sm h i NOT mmorl inc h for Sm h i caual inc h for < Sm h i BIBO abl inc 5 5 5 in in in h π u π π 5 5 5 5 5 < vii Sm h i NOT mmorl inc h for Sm h i caual inc h for < Sm h i NOT BIBO abl inc h co5 Conir h boun inpu ignal co5 If hi ignal i appli o h m, h oupu can b calcula a: x h co5 5 co5 u co55 co5 Th oupu a i givn b, co { fini valu co 5 co5 co 5 co I i obrv ha h oupu bcom unboun a vn if h inpu i alwa boun Thi prov ha h m i no BIBO abl viii Sm h8 i NOT mmorl inc h8 for Sm h8 i NOT caual inc h8 for < Sm h8 i BIBO abl inc

Soluion ln95 ln95 h8 95 95 ln95 [ ] 9 < ln95 ln95

Soluion o Aignmn Soluion o Problm of Chapr 6 Laplac Tranform Problm 6 b B finiion X x Ingral I ruc o I I [ ] provi R{ } > ROC R :R{ } < II whil ingral II ruc o II [ ] provi R{ } > ROC R :R{ } > Th Laplac ranform i hrfor givn b 6 X I II wih ROC : R R I R or R : < R{} < 9 B finiion X x co9 u co9 Th abov xprion ruc o [ co9 9 in9 ] X co9 9 or, X 9 9 [ ] provi R{ } > R{ } > f W riv h Laplac ranform for wo ca: an Ca I: B finiion 5 X x

Soluion 5 Ca II: B finiion X x Ingral I i givn b I I whil Ingral II i givn b II Th Laplac ranform i hrfor givn b X ROC: Enir -plan II No ha h ca can alo b riv from h ohr rul b appling h limi,, an h L Hopial rul Problm 6 b Uing parial fracion xpanion an aociaing h ROC o iniviual rm, giv X 56 A B ROC:R{}< ROC:R{}< whr conan A, an B wr compu in par a a A, an B Taking h invr ranform of X, giv x u No ha h am raional fracion for X giv iffrn im omain rprnaion if h aocia ROC i chang X 56 A B C ROC:R{}< ROC:R{}< ROC:R{}< f whr conan A, B, an C wr compu in par c a A, B 6, an C Taking h invr ranform of X, giv x 6 u Uing parial fracion xpanion an aociaing h ROC o iniviual rm, giv

6 Soluion o Aignmn X whr B C an D A B C R{ } > R{ } > R{ } > [ ] [ ] [ ] [ ] [ ] [ ] To valua A, xpan X a D R{ } > A B C D an compar h cofficin of W g A C D which ha a oluion A 5/ Th Laplac ranform ma b xpr a X 5 R{ } > R{ } > R{ } > R{ } > Taking h invr ranform of X, giv g x 5 u u u u Uing parial fracion xpanion an aociaing h ROC o iniviual rm, giv X whr C 6 D E A B C 6 ROC:R{ } < ROC:R{ } < [ ] [ ] 6 6 To valua A, B, an C xpan X a ROC:R{ } < ROC:R{ } < A 6 B 6 C 6 D E an compar h cofficin of,,, an W g A D A B D E A B C D E A 6B D E cofficin of cofficin of, or, cofficin of cofficin of A A D B D E A B D E A 6B D E which ha a oluion of A 6, B 6, D 6, an E 8 Taking h invr ranform of X, giv

Soluion x 6 u 6 u 6 Problm 6 a Calculaing h Laplac ranform of boh i, w g u 6co u 5in u " Y % " % $ ' # $ &' $ Y ' Y # $ &' which ruc o Y or, Y Calculaing h invr Laplac ranform, w g u u Calculaing h Laplac ranform of boh i, w g " % " % $ Y ' # $ &' $ Y ' # $ &' Y, which ruc o Y, or, A B C D E Y, whr A [ ] [ ] Equaing numraor of Y on boh i an ing A, w g B C D E B C B D C E Comparing h cofficin of polnomial of iffrn orr w g Cofficin of : B B Cofficin of : C Cofficin of : B D D D Cofficin of : C E E Th parial fracion xpanion of Y i givn b Y Th invr ranform i hrfor givn b [ ] co 5in u whr w hav u h following ranform pair

8 Soluion o Aignmn which i prov in Problm 6b Problm 6 Soluion: a L ω in ω u ω Th Laplac ranform of h inpu an oupu ignal ar givn b an Y X Diviing Y wih X, h ranfr funcion i givn b Y X H Th impul rpon i obain b aking h parial fracion xpanion of H a follow H Taking h invr Laplac ranform, h impul rpon i givn b h δ u u In orr o calcula h inpu-oupu rlaionhip in h form of a iffrnial quaion, w rprn h ranfr funcion a Y X H Cro mulipling, w g Y X which can b rprn a Y 8Y X X X Taking h invr Laplac ranform an auming zro iniial coniion, h iffrnial quaion rprning h m i givn b c x x 8 x Th Laplac ranform of h inpu an oupu ignal ar givn b an Y X Diviing Y wih X, h ranfr funcion i givn b Y X H Th impul rpon i obain b aking h invr Laplac ranform Th impul rpon i givn b h u [ u ] In orr o calcula h inpu-oupu rlaionhip in h form of a iffrnial quaion, w rprn h ranfr funcion a

Soluion 9 H Y X Cro mulipling, w g Y Y X X 8X Taking h invr Laplac ranform, h inpu-oupu rlaionhip of h m i givn b x x 8x No ha hr i no ovrlap bwn h ROC of h wo rm xpu an xpu, hrfor, h Laplac ranform for o no xi Problm 65 j j a H c Two zro a j, j Two pol a, Bcau boh pol ar in h lf han i of h -plan, h m i alwa BIBO abl H / 9 8 6 On zro a / Two pol a, 6 Bcau boh pol ar in h lf i of h -plan, h m i alwa BIBO abl H Th m o no hav an zro On pol a Thr i onl on pol, which i loca on h imaginar axi Thrfor, h m i a marginall abl m