TETRANACCI MATRIX VIA PASCAL S MATRIX

Similar documents
Formula for Lucas Like Sequence of Fourth Step and Fifth Step

On Some Identities of k-fibonacci Sequences Modulo Ring Z 6 and Z 10

The k-fibonacci matrix and the Pascal matrix

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI?

Fibonacci and Lucas numbers via the determinants of tridiagonal matrix

SOME RESULTS ON q-analogue OF THE BERNOULLI, EULER AND FIBONACCI MATRICES

On identities with multinomial coefficients for Fibonacci-Narayana sequence

Two Identities Involving Generalized Fibonacci Numbers

Eigenvalues and Eigenvectors

22m:033 Notes: 3.1 Introduction to Determinants

Math 3191 Applied Linear Algebra

On the Pell Polynomials

Math 240 Calculus III

Eigenvalues and Eigenvectors

F. T. HOWARD AND CURTIS COOPER

1. Introduction Definition 1.1. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n } is defined as

PAijpam.eu ON THE BOUNDS FOR THE NORMS OF R-CIRCULANT MATRICES WITH THE JACOBSTHAL AND JACOBSTHAL LUCAS NUMBERS Ş. Uygun 1, S.

CS 246 Review of Linear Algebra 01/17/19

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Math/CS 466/666: Homework Solutions for Chapter 3

Mathematics 13: Lecture 10

Lecture Notes in Linear Algebra

Fibonacci Number of the Tadpole Graph

THE DEVELOPMENT OF NAPOLEON S THEOREM ON QUADRILATERAL WITH CONGRUENCE AND TRIGONOMETRY

Jordan normal form notes (version date: 11/21/07)

The generalized order-k Fibonacci Pell sequence by matrix methods

Matrices: 2.1 Operations with Matrices

Research Article The Adjacency Matrix of One Type of Directed Graph and the Jacobsthal Numbers and Their Determinantal Representation

1 Determinants. 1.1 Determinant

I = i 0,

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

MA2501 Numerical Methods Spring 2015

Elementary maths for GMT

A Note on the Determinant of Five-Diagonal Matrices with Fibonacci Numbers

MCR3U Unit 7 Lesson Notes

Permanents and Determinants of Tridiagonal Matrices with (s, t)-pell Numbers

= main diagonal, in the order in which their corresponding eigenvectors appear as columns of E.

Determinants of Partition Matrices

Pascal Eigenspaces and Invariant Sequences of the First or Second Kind

Lecture 8: Determinants I

On Gaussian Pell Polynomials and Their Some Properties

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015

A NOTE ON MULTIPLICATIVE TRIPLE FIBONACCI SEQUENCES Satish Kumar, Hari Kishan and Deepak Gupta

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices

On The Circulant Matrices with Ducci Sequences and Fibonacci Numbers

MTH5112 Linear Algebra I MTH5212 Applied Linear Algebra (2017/2018)

n n matrices The system of m linear equations in n variables x 1, x 2,..., x n can be written as a matrix equation by Ax = b, or in full

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Linear Algebra Practice Problems

Diagonalization. Hung-yi Lee

Background on Linear Algebra - Lecture 2

Chapter 4 - MATRIX ALGEBRA. ... a 2j... a 2n. a i1 a i2... a ij... a in

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

EQUATIONS WHOSE ROOTS ARE T I E nth POWERS OF T I E ROOTS OF A GIVEN CUBIC EQUATION

1 Introduction. 2 Determining what the J i blocks look like. December 6, 2006

and let s calculate the image of some vectors under the transformation T.

II. Determinant Functions

ELA

k-jacobsthal and k-jacobsthal Lucas Matrix Sequences

Components and change of basis

ACI-matrices all of whose completions have the same rank

arxiv: v1 [math.nt] 6 Apr 2018

Applications of Riordan matrix functions to Bernoulli and Euler polynomials

Invertible Matrices over Idempotent Semirings

CLASSIFICATION OF TREES EACH OF WHOSE ASSOCIATED ACYCLIC MATRICES WITH DISTINCT DIAGONAL ENTRIES HAS DISTINCT EIGENVALUES

Section 1.6. M N = [a ij b ij ], (1.6.2)

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Generalized Fibonacci Numbers and Blackwell s Renewal Theorem

Computing the Determinant and Inverse of the Complex Fibonacci Hermitian Toeplitz Matrix

Discrete Applied Mathematics

Lecture 7. Econ August 18

Linear Algebra Review. Vectors

MATH 1210 Assignment 4 Solutions 16R-T1

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages:

Here are some additional properties of the determinant function.

Some new properties of Fibonacci n-step

EXPLICIT INVERSE OF THE PASCAL MATRIX PLUS ONE

Eigenvalues and Eigenvectors

Lecture Notes Introduction to Cluster Algebra

Matrix Multiplication

Linear Algebra Practice Final

Matrices and Determinants

Yi Wang Department of Applied Mathematics, Dalian University of Technology, Dalian , China (Submitted June 2002)

Fundamentals of Engineering Analysis (650163)

MATRICES. a m,1 a m,n A =

Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes.

Introduction. Vectors and Matrices. Vectors [1] Vectors [2]

UNIT DETERMINANTS IN GENERALIZED PASCAL TRIANGLES

arxiv: v2 [math.co] 8 Oct 2015

Determinants of 2 2 Matrices

COMPLEX FACTORIZATION BY CHEBYSEV POLYNOMIALS

This operation is - associative A + (B + C) = (A + B) + C; - commutative A + B = B + A; - has a neutral element O + A = A, here O is the null matrix

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular

Some Reviews on Ranks of Upper Triangular Block Matrices over a Skew Field

Some Determinantal Identities Involving Pell Polynomials

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

Linear Algebra. James Je Heon Kim

The Matrix-Tree Theorem

STRUCTURE AND DECOMPOSITIONS OF THE LINEAR SPAN OF GENERALIZED STOCHASTIC MATRICES

Basic Concepts in Linear Algebra

Transcription:

Bulletin of Mathematics ISSN Printed: 2087-5126; Online: 2355-8202 Vol. 09, No. 01 (2017), pp. 1 7. https://talenta.usu.ac.id TETRANACCI MATRIX VIA PASCAL S MATRIX Mirfaturiqa, Sri Gemawati and M. D. H. Gamal Abstract. The Pascal s matrix expressed by P n is the n n lower triangular matrix whose entry is a number on the Pascal s triangle. Then, the tetranacci matrix is expressed by M n with each entry is a tetranacci number. In this article, we discuss About the relationship of the Pascal s matrix and the tetranacci matrix. Then from the relationship of this two matrices we obtain a new matrix, i.e. the E n matrix so that the Pascal s matrix can be expressed as P n = M ne n. 1. INTRODUCTION Pascal s triangle is a geometry rule that contains a binomial coefficient arrangement that looks like a triangle. Many articles discuss the properties of Pascal s triangle, the relationship between the triangles Pascal and the Fibonacci number, the Pascal s matrix, and the Pascal s matrix relationship with the Fibonacci matrix. Varnadore [7] discusses the relationship of the Pascal s triangle with the Fibonacci number, he obtains that the sum of every number of Pascal s triangles diagonally produces Fibonacci numbers. Pascal s triangle can be expressed as a square matrix with each entry being a number on Pascal s triangle so that this matrix is called Pascal s matrix. Brawer and Pirovino [1] provide a form of matrix representation of the Pascal s triangle and discuss the algebraic form of the Pascal s matrix. Then, Received 24-04-2017, Accepted 20-07-2017. 2010 Mathematics Subject Classification: 11B39, 11Hxx Key words and Phrases: Tetranacci sequence, Tetranacci matrix, Pascal s matrix. 1

Mirfaturiqa, Sri Gemawati & M. D. H.Gamal Tetranacci matrix via pascal s matrix 2 Call and Veleman [2] define the n n Pascal s matrix as the lower triangular Pascal s matrix. Similar to Pascal s triangle, the Fibonacci number can also be expressed as a square matrix. Lee et al. [4] define the Fibonacci matrix then from the definition of the Fibonacci matrix obtained the factorization form of the Fibonacci matrix and the eigenvalues of the Fibonacci symmetric matrix. Lee et al. [5] and Zhang and Wang [8] discuss the relationship of Pascal matrices with the Fibonacci matrix and obtain the different results. The same idea on the Pascal s triangle and the Fibonacci number, the tribonacci number can also be expressed as a matrix. Sabeth et al. [6] define a matrix of the tribonacci expressed by T n and discusses the relationship of Pascal s matrix and the tribonacci matrix. They derive two new matrices R n and A n, using the two matrices so that the P n Pascal s matrix can be expressed by P n = T n R n and P n = A n T n. In this article, discusses the relationship between the Pascal s matrix and the tetranacci matrix. In addition, the matrix of tetranacci and a new matrix E n are defined to obtain the relationship of Pascal matrix and the tetranacci matrix. 2. PASCAL S MATRIX AND TETRANACCI MATRIX In this section, a definition of Pascal s matrix and tetranacci matrix are given. Pascal s triangle can be express into a square matrix of Pascal matrices.the Pascal s matrix is defines as follows [1, 2]. Definition 1.1 For every natural number n, P n is the n n Pascal s matrix with entries P n = [p i,j ] for every i, j = 1, 2, 3,, n, where p i,j = {( i1 j1), if i j, 0, otherwise. (1) In similar way as the Fibonacci numbers and tribonacci numbers, tetranacci numbers can also be represented in the form of a square matrix. Then, with a similar idea to definition of the Fibonacci matrix in Lee et al. [5], the n n tetranacci matrix is defined as follows. Definition 1.2 For every natural number n, M n is the n n matrix tetranacci with each entries the M n = [m i,j ], i, j = 1, 2, 3,, n, where { M ij+3, if i j, m i,j = (2) 0, otherwise.

Mirfaturiqa, Sri Gemawati & M. D. H.Gamal Tetranacci matrix via pascal s matrix 3 From the definition 1.2, the matrix M n matrix is the lower triangular matrix with the main diagonal is 1 and the determinant value of the M n tetranacci matrix is the result of the multiplication of the diagonal entries so as to obtain det(m n ) = 1. Since det (M n ) 0 so the M n matrix tetranacci has an inverse. From the calculation results obtain invers matrix tertanacci M 6 as following. M 1 6 = 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1. (3) Based on the observations from equation (3), it can be conclude that for every entry of the inverse matrix the M 6 apply i.e. each column entry m i,j pattern is 1, -1, -1, -1 and -1. This is true for the n n tetranacci matrix, the column entry m i,j pattern will not change. Thus, the general form of the inverse tetranacci matrix is n n, For every natural number [ ] n inverse matrix of the tetranacci matrix defined with entries M 1 n = m i,j for every i, j = 1, 2, 3,, n, where 1, if i = j, m i,j = 1, if i 4 j i 1, (4) 0, otherwise. 3. TETRANACCI MATRIX VIS PASCAL S MATRIX In a similar idea as in [5, 6], we define the matrix E n and we have the relations between the Pascal s matrix and the tetranacci matrix as follows. Definition 1.3 For every natural number n, E n is the n n matrix with entries E n = [e i,j ] for every i, j = 1, 2, 3,, n, where ( ) ( ) ( ) ( ) ( ) i 1 i 2 i 3 i 4 i 5 e i,j =. (5) From the definition 1.3, we see that e 1,1 = 1, e 1,2 = 0, j 2; e 2,1 = 0, e 2,2 = 1, e 2,j = 0, j 3; e 3,1 = 1, e 3,2 = e 3,3 = 1, e 3,j = 0, j 4; e 4,1 = 2, e 4,2 = 0, e 4,3 = 2, e 4,4 = 1, e 4,j = 0, j 5; e i,1 = 3, j 5 and i, j 2, e i,j = e i1,j1 + e i1,j. Using the definition of P n as in (1.1), M n as in (1.2) and E n as in (1.3), we can derive the following theorem.

Mirfaturiqa, Sri Gemawati & M. D. H.Gamal Tetranacci matrix via pascal s matrix 4 Theorem 1.1 Given an E n matrix, so for every natural number n with the P n Pascal s matrix defined by equation (1) and the M n tetranacci matrix defined in equation (2), it can be express is that P n = M n E n. Proof. For every natural number n, M n matrix tetranacci is an invertible matrix. It will be proven that M 1 n P n = E n. (6) Then, note that the left-hand side in the equation (6), if i = 1 and j 2, then m i,j = m 1,j = 0. So, i, j = 1, we have m i,k p k,j = m 1,k p k,1 = 1 = e 1,1. If i = 1 and j 2, then m 1,j = 0 dan p 1,j = 0. So, i = 1 and j 2, we have m i,k p k,j = m 1,k p k,1 = 0 = e 1,j. So, from equation (4) and (1), i 4 and j 2, we have m i,k p k,j = m i,ip i,j + m i,i1p i1,j + m i,i2p i2,j + m i,i3p i3,j + m i,i4p i4,j, = = ( ) i 1 ( i 1 = e i,j. ( ) ( (i 1) 1 (i 2) 1 ( ) (i 4) 1, ) ( ) ( ) i 2 i 3 ) ( ) i 4 ( ) (i 3) 1 ( ) i 5, Therefore, we have M 1 n P n = E n, the proof is completed. So, for every natural number n and we defined the matrix E n and the matrix M n we have P n = M n E n.

Mirfaturiqa, Sri Gemawati & M. D. H.Gamal Tetranacci matrix via pascal s matrix 5 From the theorem 1.1, we have that combinatorial identity involving the tetranacci numbers as follows. For every 1 k n and n j, we have that ( ) n 1 = k=j [( ) k 1 M nk+3 ( ) k 2 ( ) k 3 ( ) k 4 Note that for the entry of p n,j in the matrix P n = M n E n has the form ( )] i 5. (7) p n,j = m n,k e k,j = M nk+3 e k,j. (8) So that from the equation (8), then the equation (7) the following holds. In particular, if for j = 1, with attention to each entry of the first column of the matrix E n and for p n,j = p n,1, we have p n,1 = M nk+3 e k,1, k=j = M n+2 e 1,1 + M n+1 e 2,1 + M n e 3,1 + M n1 e 4,1 + (M n2 + + M 3 ) = M n+2 M n 2M n1 3(M n2 + + M 3 ). If for j = 2, with attention to each entry of the second column of the matrix E n and for p n,j = p n,2, we have e k,1, k=5 p n,2 = M nk+3 e k,2, k=2 = M n+1 e 2,2 + M n e 3,2 + M n1 e 4,2 + (M n2 + + M 3 ) e k,2, = M n+1 + M n + (M n2 + + M 3 )(e k1,j1 + e k1,j ), k 5. So, the proof follows. From the definition of E n as in (5), we have that matrix E n is an invertible matrix. The general form for each entry of the inverse matrix E n k=5

Mirfaturiqa, Sri Gemawati & M. D. H.Gamal Tetranacci matrix via pascal s matrix 6 as follows. For every natural number [ ] n, En 1 is the n n inverse matrix of E n defined with entries En 1 = e i,j for every i, j = 1, 2, 3,, n, where e i,j = i ( ) i 1 (1) i+k E kj+3. (9) k 1 k=j From the equation (9), we see that i = j, e i,j = 1 dan j 2, e i,j = e i1,j1 + e i1,j. Using the definition of P n as in 1.1, M n as in 1.2 and En 1 as in (9), we can derive the following theorem. Theorem 1.2 Given an En 1 matrix, so for every natural number n with the Pascal P n matrix defined by equation (1) and the M n tetranacci matrix defined in equation (2), it can be express is that M n = P n En 1. Proof. It is enough to prove that Pn 1 M n = En 1, in similar way as in theorem 1.1. 4. CONCLUDING REMARKS In this paper the authors discuss only the relationship between the lower triangular tetranacci matrix and the Pascal matrix. Then from the relationship of two matrices we obtain the formula for a new matrix i.e. the matrix E n. In addition, using the new matrix obtain the factorization of the relationship between the tetranacci matrix and the Pascal matrix. Therefore, further discussing could be focused on the upper triangular tetranacci matrix, symmetric tetranacci matrix, and n-nacci matrix. REFERENCES 1. R. Brawer and M. Pirovino, The linear algebra of the Pascal matrix, Linear Algebra and Its Applications, 174 (1992), 13 23. 2. G. S. Call and D. J. Velleman, Pascal matrices, The American Mathematical Monthly, 100 (1993), 372 376. 3. T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley Interscience, New York, (2001). 4. G. Y. Lee, J. S. Kim and S. G. Lee, Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices, Fibonacci Quarterly, 40 (2002), 203 211.

Mirfaturiqa, Sri Gemawati & M. D. H.Gamal Tetranacci matrix via pascal s matrix 7 5. G. Y. Lee, J. S. Kim and S. H. Cho, Some combinatorial identities via Fibonacci numbers, Discrete Applied Mathematics, 130(2003), 527 534. 6. N. Sabeth, S. Gemawati and H. Saleh, A factorization of the tribonacci matrix and the Pascal matrix, Applied Mathematical Sciences, 11 (2017), 489 497. 7. J. Varnadore, Pascal s triangle and Fibonacci numbers, The Mathematics Theacher, 84 (1991), 314 316. 8. Z. Zhang and X. Wang, A factorization of the symmetric Pascal matrix involving the Fibonacci matrix, Discrete Applied Mathematics, 155 (2007), 2371 2376. Mirfaturiqa: Graduate Student, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Riau, Bina Widya Campus, Pekanbaru 28293, Indonesia. E-mail: turiqamirfa@gmail.com Sri Gemawati: Senior Lecturer, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Riau, Bina Widya Campus, Pekanbaru 28293, Indonesia. E-mail: gemawati.sri@gmail.com M. D. H. Gamal: Associate Professor, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University of Riau, Bina Widya Campus, Pekanbaru 28293, Indonesia. E-mail: mdhgamal@unri.ac.id