Black holes with AdS asymptotics and holographic RG flows

Similar documents
Termodynamics and Transport in Improved Holographic QCD

Exploring Holographic Approaches to QCD p.1

Thermalization in a confining gauge theory

This research has been co-financed by the European Union (European Social Fund, ESF) and Greek national funds through the Operational Program

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Themodynamics at strong coupling from Holographic QCD

towards a holographic approach to the QCD phase diagram

BPS Black holes in AdS and a magnetically induced quantum critical point. A. Gnecchi

Lifshitz Geometries in String and M-Theory

10 Interlude: Preview of the AdS/CFT correspondence

Holographic Geometries from Tensor Network States

Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures

Applications of AdS/CFT correspondence to cold atom physics

Holography and the cosmological constant

Holographic self-tuning of the cosmological constant

Entanglement entropy and the F theorem

Introduction to AdS/CFT

Holography and (Lorentzian) black holes

Half BPS solutions in type IIB and M-theory

Quark-gluon plasma from AdS/CFT Correspondence

A sky without qualities

Holography of compressible quantum states

On time dependent black hole solutions

Dynamics, phase transitions and holography

Non-relativistic holography

Spiky strings, light-like Wilson loops and a pp-wave anomaly

Holographic Entanglement Entropy for Surface Operators and Defects

The Trailing String in Confining Holographic Theories

Introduction to AdS/CFT

Chapter 3: Duality Toolbox

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS

Holographic Cosmology Beyond Inflation? Mark Trodden! University of Pennsylvania

WHY BLACK HOLES PHYSICS?

Autocorrelators in models with Lifshitz scaling

Glueballs at finite temperature from AdS/QCD

8.821 String Theory Fall 2008

Holographic self-tuning of the cosmological constant

Accelerating Cosmologies and Black Holes in the Dilatonic Einstein-Gauss-Bonnet (EGB) Theory

THE ROLE OF BLACK HOLES IN THE ADS/CFT CORRESPONDENCE

Heterotic Torsional Backgrounds, from Supergravity to CFT

Non-Perturbative Thermal QCD from AdS/QCD

Classification theorem for the static and asymptotically flat Einstein-Maxwell-dilaton spacetimes possessing a photon sphere

Spacetime and 4 vectors

arxiv: v2 [hep-th] 5 Jan 2017

Heavy Quark Diffusion in AdS/CFT

Holography with Shape Dynamics

Holographic Lattices

An Introduction to AdS/CFT Correspondence

Holographic relations at finite radius

A Holographic Description of Black Hole Singularities. Gary Horowitz UC Santa Barbara

8.821 String Theory Fall 2008

Black holes, Holography and Thermodynamics of Gauge Theories

Viscosity Correlators in Improved Holographic QCD

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

Holographic entanglement entropy beyond AdS/CFT

A Holographic Realization of Ferromagnets

A Holographic Model of the Kondo Effect (Part 1)

Symmetries, Horizons, and Black Hole Entropy. Steve Carlip U.C. Davis

A Supergravity Dual for 4d SCFT s Universal Sector

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT.

Towards solution of string theory in AdS3 x S 3

Holography for 3D Einstein gravity. with a conformal scalar field

Holographic renormalization and reconstruction of space-time. Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre

Lectures on gauge-gravity duality

Holographic entanglement entropy

arxiv:hep-th/ v2 24 Sep 1998

Physics 325: General Relativity Spring Final Review Problem Set

The Conformal Algebra

Interacting non-bps black holes

A Solvable Irrelevant

N=4 SYM in High Energy Collision and the Kalb-Ramond Odderon in AdS/CFT

Holographic Lattices

Hadrons in a holographic approach to finite temperature (and density) QCD

Braneworld in f(r) gravity and critical gravity

Bubbling Geometries for Half BPS Wilson Lines. Satoshi Yamaguchi (IHES) S. Yamaguchi, hep-th/ S. Yamaguchi, to appear

What happens at the horizon of an extreme black hole?

BMS current algebra and central extension

Seminar presented at the Workshop on Strongly Coupled QCD: The Confinement Problem Rio de Janeiro UERJ November 2011

Gauge / gravity duality in everyday life. Dan Kabat Lehman College / CUNY

Expanding plasmas from Anti de Sitter black holes

Bjorken flow from an AdS Schwarzschild black hole GEORGE SIOPSIS. Department of Physics and Astronomy The University of Tennessee

8.821/8.871 Holographic duality

Bondi-Sachs Formulation of General Relativity (GR) and the Vertices of the Null Cones

Complexity and Spacetime

Three-dimensional gravity. Max Bañados Pontificia Universidad Católica de Chile

AdS 6 /CFT 5 in Type IIB

Gauge/Gravity Duality: An introduction. Johanna Erdmenger. Max Planck Institut für Physik, München

Quantum phase transitions in condensed matter

Exact holography and entanglement entropy from one-point functions

Entanglement Entropy in Flat Holography

Brane-World Black Holes

Holography for Black Hole Microstates

How to build a holographic liquid crystal? Piotr Surówka Vrije Universiteit Brussel

Exact Solutions of the Einstein Equations

Superstring in the plane-wave background with RR-flux as a conformal field theory

Super Yang-Mills Theory in 10+2 dims. Another Step Toward M-theory

Out of equilibrium dynamics and Robinson-Trautman spacetimes. Kostas Skenderis

Confinement/Deconfinement Phase Transitions in Strongly Coupled Anisotropic Theories

`Anomalous dimensions for conserved currents from holographic dilatonic models to superconductivity. Gabriele La Nave. Thanks to: NSF, EFRC (DOE)

Classical AdS String Dynamics. In collaboration with Ines Aniceto, Kewang Jin

Transcription:

Black holes with AdS asymptotics and holographic RG flows Anastasia Golubtsova 1 based on work with Irina Aref eva (MI RAS, Moscow) and Giuseppe Policastro (ENS, Paris) arxiv:1803.06764 (1) BLTP JINR, Dubna Supersymmetry in Integrable Systems (SIS 18) August 13-16 1 / 37

Black holes with AdS asymptotics and holographic RG flows Anastasia Golubtsova 1 based on work with Irina Aref eva (MI RAS, Moscow) and Giuseppe Policastro (ENS, Paris) arxiv:1803.06764 (1) BLTP JINR, Dubna Supersymmetry in Integrable Systems (SIS 18) August 13-16 / 37

Outline 1 Introduction Holographic dictionary Exact holographic RG flows Set up How to integrate Vacuum solutions Non-vacuum solutions, black holes 3 RG equations at T = 0 4 RG-flow at finite T 5 Outlook 3 / 37

DW/CFT dualities Itzhaki et. al. 98, Boonstra et. al. 98;Skenderis 99 AdS DW, CFT QFT, AdS isometry group Poincaré isometry group of DW a restoration of the conformal symmetry only at UV and/or IR fixed points S = Mp d 1 d d x dr [ g R 1 ] ( φ) V (φ) + S Y H. The domain wall solution ds = e A(r) η ij dx i dx j + dr, φ = φ(r) The scale factor e A measures the field theory energy scale The scalar field e φ the running coupling λ The β-function β = dλ d log E = dφ da 4 / 37

Possibilities for the potential Improved holographic QCD Gursoy,Kiritsis 07, Gubser 08 For asymptotically AdS UV λ 0 V (λ) = V 0 + v 1 λ + v λ +... For confinement in the IR λ V (λ) λ Q (log λ) P The auxiliary scalar function W (φ) (aka superpotential) W (φ(u)) = (d 1) da dr, d 4(d 1) W + 1 ( φw ) = V. V (φ) from IHQCD model, Kiritsis et al 07 11 14 17 18 5 / 37

Possibilities for the potential Improved holographic QCD Gursoy,Kiritsis 07, Gubser 08 For asymptotically AdS UV λ 0 V (λ) = V 0 + v 1 λ + v λ +... For confinement in the IR λ V (λ) λ Q (log λ) P The auxiliary scalar function W (φ) (aka superpotential) W (φ(u)) = (d 1) da dr, d 4(d 1) W + 1 ( φw ) = V. V (φ) from IHQCD model, Kiritsis et al 07 11 14 17 18 :) allows to reproduce the behaviour of β-function :( no exact solutions for the model 5 / 37

Possibilities for the potential Improved holographic QCD Gursoy,Kiritsis 07, Gubser 08 For asymptotically AdS UV λ 0 V (λ) = V 0 + v 1 λ + v λ +... For confinement in the IR λ V (λ) λ Q (log λ) P The auxiliary scalar function W (φ) (aka superpotential) W (φ(u)) = (d 1) da dr, d 4(d 1) W + 1 ( φw ) = V. V (φ) from IHQCD model, Kiritsis et al 07 11 14 17 18 :) allows to reproduce the behaviour of β-function :( no exact solutions for the model Toy model V (φ) = e αφ :) has good behaviour in the IR-limit (can study conformal anomalies, apply to deconfined phase of QCD )Policastro 15 :( UV -fixed point is not the AdS 5 / 37

Possibilities for the potential Improved holographic QCD Gursoy,Kiritsis 07, Gubser 08 For asymptotically AdS UV λ 0 V (λ) = V 0 + v 1 λ + v λ +... For confinement in the IR λ V (λ) λ Q (log λ) P The auxiliary scalar function W (φ) (aka superpotential) W (φ(u)) = (d 1) da dr, d 4(d 1) W + 1 ( φw ) = V. V (φ) from IHQCD model, Kiritsis et al 07 11 14 17 18 :) allows to reproduce the behaviour of β-function :( no exact solutions for the model Toy model V (φ) = e αφ :) has good behaviour in the IR-limit (can study conformal anomalies, apply to deconfined phase of QCD )Policastro 15 :( UV -fixed point is not the AdS V = C i e kiφ, in particular, V (φ) = C 1 e k1φ + C e kφ? 5 / 37

RG flow at finite temperature Thermal gas solution ds = e A(r) η ij dx i dx j + dr, φ = φ(r). The black hole ds = e A(r) ( f(r)dt + δ ij dx i dx j) + dr f(r), Gubser s bound for singular solutions (000) V (φ h ) < 0, V (φ h ) V (φ UV ). f(r) = 1 C λ 4(1 X ) 3X. 6 / 37

Outline 1 Introduction Holographic dictionary Exact holographic RG flows Set up How to integrate Vacuum solutions Non-vacuum solutions, black holes 3 RG equations at T = 0 4 RG-flow at finite T 5 Outlook 7 / 37

Set up The action reads S = 1 κ d 4 x du ( g R 4 ) 3 ( φ) + V (φ) 1κ d 4 x γ, V (φ) = C 1 e k1φ + C e kφ, C i, k i, i = 1, are some constants. V 4-3 - -1 1 ϕ - -4 Figure: The behaviour of the potential V (φ) for C 1 < 0, C > 0. 8 / 37

The ansatz for the metric ds = e A(u) dt + e B(u) The gauge C = A + 3B. The sigma-model 3 dyi + e C(u) du, i=1 L = 1 G MN ẋ M ẋ N V, V = 1 x 1 = A, x = B, x 3 = φ, x = C. (G MN ) = 0 3 0 3 6 0 4 0 0 3 s=1 C s e (x1 +3x +k sx 3), d du., M, N = 1,, 3. 9 / 37

(G MN ) minisuperspace metric on the target space M L = 1 ẋ, ẋ + C 1 e V,x + C e W,x. V time-like, W - spacelike vectors on M (the basis is (e 1, e, e 3 )) ( V, V = 3 k1 16 ) (, W, W = 3 k 16 ), V, W = 3 9 9 ( k 1 k 16 9 LET V, W = 0 k 1 k = 16 9, k 1 = k, k = 16 9k, 0 < k < 4/3. The new basis e 1 = V V, e = W W, e i, e j = η ij, (η ij ) = diag ( 1, 1, 1). X i = η ii e i, x, x i = 3 SjX i j, e j = j=1 3 Sje i i. S i j components of general Lorentz transformations. 10 / 37 i=1 ).

Root systems 11 / 37

The A 1 A 1 -mechanical model Let V and W vectors to root vectors of su() su() Lie algebra L = 1 E 0 = 1 3 i,j=1 3 i,j=1 η ij Ẋ i Ẋ j + C 1 eη11 V,V η ij Ẋ i Ẋ j C 1 eη11 V,V 1/ X 1 + C 1/ X 1 C Liouville equations for sl()-toda chains (sl() = su()) 1/ X eη W,W, 1/ X eη W,W. Ẍ s = R s, R s C s e ηss Rs,Rs 1/ X s, s = 1,, Ẍ 3 = 0, with R 1, R 1 = V, V, R, R = W, W. Gavrilov, Ivashchuk, Melnikov 9407019 Lü, Pope,960707, 9604058 Lü, Yang, 1307.305 1 / 37

The solution to the A 1 A 1 - mechanical model The solution reads with F s(u u 0s) = X 1 = V, V 1/ ln (F 1 (u u 01 )), X = W, W 1/ ln (F (u u 0 )), X 3 = p 3 u + q 3, [ E s sinh Cs Cs E s sin Cs E s cosh ] (u u 0s), η ssc s > 0, η sse s > 0, ], η ssc s > 0, η sse s < 0, E s R s,r s [ E s R s,r s (u u 0s) R s,r s C s (u u 0s), η ssc s > 0, E s = 0, [ ] E s R s,r s (u u 0s), η ssc s < 0, η sse s > 0, u 0s, E s, E s, p 3, q 3 are constants of integration. Lorenz transformations S1 i V i = V, V, W i 1/ Si = W, W, 1/ αi = S3p i 3, β i = S3q i 3 13 / 37

The general solution ds = F 8 9k 9k 16 (16 9k 1 F ) φ = 9k 9k ln 9k F1 + ln 16 9k F 16 ( e α1u dt + e 3 α1u d y ) + F 3 9k 18k 16 16 9k 1 F du C s sinh [µs(u u0s)], if ηsscs > 0, ηsses > 0, E s C s sin [µs(u u0s)], if ηsscs > 0, ηsses < 0, E s F s(u u 0s) = Cs µs(u u0s), if ηsscs > 0, Es = 0, C s cosh [µs(u u0s)], if ηsscs < 0, ηsses > 0, E s s = 1,, µ 1 = 3E1 (k 16 ( ( ) ) ), µ = 3E 16 1 9 9 k 16 9. 14 / 37

Constraints E 1 + E + (α1 ) 3 = 0. 1 α 1 = 0 Vacuum solutions, Poincaré invariant, E 1 = E α 1 0 Non-vacuum ones, no Poincaré invariance E 1 E Conditions from the V (φ): C 1 < 0, C > 0, 0 < k < 4/3. Constants of integration u 0 < u 01 left: u < u 0 middle: u 0 < u < u 01 right: u > u 01 The degenerate case with u 01 = u 0 = u 0, left: u < u 0 right: u > u 0. 15 / 37

Behaviour of solutions u 01 u 0, α 1 = 0 ds = F F 1 = 8 9k 9k 16 (16 9k 1 F ) ( dt + dy 1 + dy + dy 3) + F 3 9k 18k 16 16 9k 1 F du, C 1 E 1 sinh(µ C 1 u u 01 ), F = E sinh(µ u u 0 ), E 1 = E, E 1 < 0, E > 0, µ = 4 3k µ 1. The dilaton and its potential φ = 9k 9k 16 log F F 1 ( ) 18k ( ) V = C 1 e kφ + C e 3φ/(9k) F 9k 3 16 F 9k 16 = C 1 + C. F 1 F 1 16 / 37

Boundaries for u 01 u 0 0 The left solution u < u 0 (conformally flat) u ds z ( /3 dt + dy1 + dy + dy3 + dz ), z e 3µ 1 u 4+3k, φ 9k 16 9k (µ µ 1 )u log z u u 0 ɛ ds z 18k ( 64 9k dt + dy1 + dy + dy3 + dz ), z 64 9k 4(16 9k ) (u u 0) 64 9k 4(16 9k ), φ 36k 64 9k log z +. The middle solution u 0 < u < u 01 (conformally flat ) u u 0 + ɛ the same as at u u 0 ɛ u u 01 ɛ ds 8 ( z 9k 4 dt + dy1 + dy + dy3 + dz ), φ 9k 4 9k log z, z 16 9k 9k 4 (u u 01) 4 9k 16 9k. The right solution u > u 01 (conformally flat ) u u 01 + ɛ the same as at u u 01 + ɛ u + ds z /3 ( dt + dy 1 + dy + dy 3 + dz ), φ log z 17 / 37

Boundaries: u 01 = u 0 = u 0, α 1 = 0 In the UV u u 0 we obtain the AdS-spacetime ds 1 z ( dt + dy 1 + dy + dy 3 + dz ), z 4u 1/4. The dilaton is constant in the UV 9k φ = 16 9k log 3k 4 + 9k (16 9k ) log C 1 C In the IR u + we obtain the conformally flat spacetime. ds z /3 ( dt + dy 1 + dy + dy 3 + dz ), z e 3µ 1 u 4+3k. The dilaton in the IR φ log z 18 / 37

ϕ 5 0 0 ϕ ϕ 0 4 6 8 10 1 14 u 15 10-5 10 5-8 -6-4 - u -5-10 A -10-0 0. 0.4 0.6 0.8 1.0 1.u B -10-15 -0-5 C Figure: Dilaton as a function of u: A) u < u 0, B) u 0 < u < u 01, C) the dilaton for u > u 01, u 01 = 1. For all u 01 = 1, u 0 = 0,E 1 = E = 1, C 1 = C = 1, k = 0.4, 1, 1.. ϕ -6-4 - 4 6 u -0.5-1.0-1.5 -.0 Figure: The behaviour of the dilaton (solid lines) and its asymptotics at infinity (dashed lines) for u 01 = u 0 = 0, C 1 = C = 1, E 1 = E = 1 and different values of k. From bottom to top k = 0.4, 1, 1.. 19 / 37

Non-vacuum solutions, black holes The metric ds = F 8 9k 9k 16 (16 9k 1 F ) The dilaton reads ( e α1u dt +e 3 α1 u 3 dyi )+F i=1 φ = 9k 9k 16 ln F 9k 1 + 9k 16 ln F, 3 9k 18k 16 16 9k 1 F C F 1 = 1 C sinh(µ1 E 1 u u 01 ), F = sinh(µ E u u 0 ), µ 1 = 3E1 16 9 k, µ = 3E 4 3k du. 16 9 k = 4 E µ 1. 3k E 1 E 1 + E + 3 (α1 ) = 0. 0 / 37

Dilaton at boundaries u 01 u 0, α 1 0 The left solution u < u 0 u φ u u u 0 ɛ φ u u0 ɛ 9k log 16 9k [ 9k (µ 16 9k µ 1) u + 1 log C E 1 [ C E 1 C 1 E µ ɛ sinh(µ 1 (u 01 u 0 )) C 1 E ] ] +. The middle solution u 0 < u < u 01 u u 0 + ɛ the same as for the left solution at u u 0 ɛ u u 01 ɛ [ ] φ u u01 ɛ 9k C log E 1 sinh(µ (u 01 u 0 )) 16 9k C 1 E µ 1. ɛ The right solution u > u 01 u u 01 + ɛ the same as for the middle solution at u ] u 01 + ɛ u + φ u 9k (µ µ 1) u + 1 log C E 1. 16 9k [ µ 1 = µ, E = 6k (α 1 ) 16 9k. µ 1 > µ C 1 E 1 / 37

Dilaton at boundaries u 01 = u 0, α 1 0 φ u ± φ u u0 9k [ 9k ± (µ µ 1 ) u + 1 16 log C E 1 C 1 E ] 9k [ 16 9k log ( µ µ 1 ) + 1 log C 1E C E 1 µ 1 = µ, E = 6k (α 1 ) 16 9k. µ 1 > µ. ] / 37

Black hole, solutions with u [u 01, + ) ds = C X (u)e κu 3 α1 u ( e 8 3 α1u dt + d y + X (u) 3 C 3 e 3κ+ 3 α1u du ) X (u) = (1 e µ1(u u01) ) 8 16 9k (1 e µ(u u0) ) 8 ( κ E + 6 (16 9k ) 3 (α1 ) + 3 4 k E ), ( 1 C 1 ) 8 ( 9k C 16 1 C ) E 1 e µ1u01 E e µu0 9k (16 9k ) 9k (16 9k ) The absence of conic singularity κ 3 α1 = 0, E = 6k (α 1 ) 16 9k, µ = µ 1 4 α 1 β = π 3C 3/ Null geodesics ds = 0, for the light moving in the radial direction t t 0 = u u 0 dūc 3/ ( ) 1 +.... u. 3 / 37

Black hole solution ( ds = C X e 8 3 α1u dt + d y ) + C 4 X (u) 4 e 8 3 α1u du, 9k (16 9k ), X = (1 e µ(u u01) ) 8 16 9k (1 e µ(u u0) ) ( 1 C 1 ) 8 ( 9k C 16 1 C ) E 1 e µu01 E e µu0 [ ] 9k φ = 9k 16 log E 1 C sinh(µ(u u 0 )) E C 1. sinh(µ(u u 01 )) and near horizon ( ) 9k lim φ u + = (16 9k ) log E C 1 E 1 C. The Hawking temperature 9k (16 9k ) T = 3π α 1 C 3/ 4 / 37.

Special case: u 01 = u 0 = u 0 ( ) ds = C 1 e µ(u u 0) 1 ( e µu dt + d y ) ( ) +C 4 1 e µ(u u 0) e µu du, µ = 4 3 α1, C = ( ( ) 4 ) 1/ C1 e µu0 E 1 The dilaton The curvature φ = 9k 16 ( C 9k (16 9k ) log C 1 E C E 1. R = 5µ C 4. E ) 9k 4(16 9k ). ( z = z ) h 1 e µu 1 4, C = z h, ds = 1 f(z)dt + d y + dz f(z) ( ) 4. z f = 1 z h The saturation of the Gubser s bound V (φ(u h )) = V UV. z ( ), 5 / 37

Outline 1 Introduction Holographic dictionary Exact holographic RG flows Set up How to integrate Vacuum solutions Non-vacuum solutions, black holes 3 RG equations at T = 0 4 RG-flow at finite T 5 Outlook 6 / 37

Holographic RG equations The solution in the domain wall coordinates ds = dw + e A(w) ( dt + η ij dx i dx j). φ(w), λ = e φ the running coupling. The β-function β(λ) = dλ QF T d log E = dλ da The β-function satisfies the holographic RG eqs. Kiritsis et al. 081.079 dx dφ = 4 ( 1 X ) ( 1 + 3 ) d log V, 3 8X dφ where X(φ) is related with the β-function The energy scale X(φ) = β(λ) 3λ A = e A 7 / 37

RG equations at T = 0 The domain wall coordinates dw = F The running coupling λ = e φ = 16 9k 16 1 F ( F F 1 9k 16 9k ) 9k 9k 16. du. The energy scale A = e A = F 4 9k 9k 16 1 F 4(16 9k ). The X-function X = 1 3 ( F F 1 ) 9k 16 9k λ A. 8 / 37

X X 50 E=0. E=0.5 E=1 E= f s 0.5 1.0 1.5.0ϕ -4-4 ϕ E=0.1 E=0.8-1 E=4 E=10 - -50-100 E=0.01 X A -3 X B E=0.15 E=0.35 1.0 1.0 E=0.6 0.8 0.5 0.6 0.4 -.5 -.0-1.5-1.0-0.5 ϕ -0.5 C 0. -3.5-3.0 -.5 -.0-1.5-1.0-0.5 ϕ -0. D Figure: The behaviour of the X-function with the dependence on the dilaton plotted using the solutions for A. A)left B) middle C)right D) u 01 = u 0 9 / 37

X X 1 0 P X c ϕ s ϕ 1 0 P ϕ -1-1 - - -3 X c1-3 -4-4 -5 - -1 0 1 X A -5 1.0 - -1 0 1 X B 1 0 ϕ 0.5-1 0.0 P ϕ - -3-0.5-4 - -1 0 1 C -1.0-0.8-0.6-0.4-0. 0.0 D Figure: All solutions X with potential fixed as C 1 = C = and k = 0.4 30 / 37

The behaviour of the running coupling λ on the energy scale λ.5 λ 5 λ 1.0 E=0.001, u 0 =0,u 01 =0.001.0 4 E=0.1, u 0 =0,u 01 =1 0.8 E=0.01, u 0 =0,u 01 =1 E=0.15, u 0 =0,u 01 =1 E=0.8, u 0 =0,u 01 =1 E=0.35, u 0 =0,u 01 =1 E=4, u 0 =0,u 01 =1 E=0.6, u 0 =0,u 01 =1 1.5 3 E=10, u 0 =0,u 01 =1 0.6 1.0 0.4 0.5 E=0.1, u 0 =0,u 01 =0.1 E=0.5, u 0 =0,u 01 =0.5 E=3, u 0 =0,u 01 =1 E=5, u 0 =0,u 01 =1 0.0 A 0.0 0.5 1.0 1.5.0.5 A 1 0 0 1 3 4 5 A B 0. 0.0 A 0.0 0.5 1.0 1.5.0.5 3.0 3.5 Figure: λ on the energy A on the dilaton plotted using the solutions for A and φ.a) the left branch with u 0 > u, B) the middle branch u 0 < u < u 01; C) the right branch u > u 01. For all plots k = 0.4, C 1 =, C =, different curves on the same plot corresponds to the different values of E 1 = E, labeled as E on the legends and different u 01 and u 01 also indicated on the legends. C 31 / 37

Outline 1 Introduction Holographic dictionary Exact holographic RG flows Set up How to integrate Vacuum solutions Non-vacuum solutions, black holes 3 RG equations at T = 0 4 RG-flow at finite T 5 Outlook 3 / 37

RG flow at finite temperature The black brane ds = e A(w) ( f(w)dt + δ ij dx i dx j) + dw f(w), Ex. The Chamblin-Reall solution f = 1 C λ 4(1 X ) 3X, λ = e φ. The Y -variable is defined through the function f g Y (φ) = 1, g = log f, 4 A dx = 4 ( 1 X + Y ) ( 1 + 3 dφ 3 8X dy = 4 ( 1 X + Y ) Y dφ 3 X. d log V dφ ), 33 / 37

The running coupling on the energy scale (u 01 0, u 0 0) λ 50 λ.0 λ.0 40 1.5 1.5 30 1.0 1.0 0 10 0.5 0.5 A 0 0.0 0.1 0. 0.3 0.4A 0 B 0 1 3 4 5 A 0.0 1 3 4 5 A 0.0 Figure: The dependence of λ on the energy scale A= e A at the left solution A), the middle solution B) and the right one C). α 1 = 0 (cyan), α 1 = 0.5 (blue), α 1 = 0.5 (green), α 1 = 0.8 (red), α 1 = 1 (brown). C 34 / 37

Outline 1 Introduction Holographic dictionary Exact holographic RG flows Set up How to integrate Vacuum solutions Non-vacuum solutions, black holes 3 RG equations at T = 0 4 RG-flow at finite T 5 Outlook 35 / 37

The bottom line Done Vacuum and non-vacuum holographic RG-flows were constructed Holographic running coupling mimic QCD Holographic RG flows can have AdS fixed points. A new solution with horizon was found Studies of the running coupling λ on the E scale not to deal with superpotential W 36 / 37

The bottom line Done Vacuum and non-vacuum holographic RG-flows were constructed Holographic running coupling mimic QCD Holographic RG flows can have AdS fixed points. A new solution with horizon was found Studies of the running coupling λ on the E scale not to deal with superpotential W? Careful studies of the behaviour λ = e φ on the energy scale at T 0 Analysis of confinement-deconfinement phase transition (Polchinski-Strassler model?). Holographic c-theorem? Full supergravity picture? 36 / 37

Thank you for attention! 37 / 37