Supernovae in stellar clusters as CR pevatrons. Collaborators: D.C.Ellison, P.E.Gladilin, S.M. Osipov

Similar documents
Constraints on cosmic-ray origin from gamma-ray observations of supernova remnants

Diffusive shock acceleration with regular electric fields

CRs THE THREE OF CR ISSUE! B amplifica2on mechanisms. Diffusion Mechanisms. Sources. Theory vs data. Oversimplifica8on of the Nature

Cosmic Ray acceleration at radio supernovae: perspectives for the Cerenkov Telescope Array

The role of ionization in the shock acceleration theory

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

Radio Observations of TeV and GeV emitting Supernova Remnants

Accelera'on of cosmic rays and gamma ray emission from supernova remnants in the Galaxy

Sources: acceleration and composition. Luke Drury Dublin Institute for Advanced Studies

The FIR-Radio Correlation & Implications for GLAST Observations of Starburst Galaxies Eliot Quataert (UC Berkeley)

² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical

Cosmic Pevatrons in the Galaxy

Cosmic Ray Astronomy. Qingling Ni

Recent Observations of Supernova Remnants

Supernova Remnants and GLAST

Radio, γ-ray, and Neutrino Emission from Star- Forming Galaxies

Particle Acceleration at Supernova Remnants and Supernovae

Study of the very high energy gamma-ray diffuse emission in the central 200 pc of our galaxy with H.E.S.S.

Sources of GeV Photons and the Fermi Results

Remnants and Pulsar Wind

High-Energy Plasma Astrophysics and Next Generation Gamma-Ray Observatory Cherenkov Telescope Array

Revue sur le rayonnement cosmique

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier

Fermi: Highlights of GeV Gamma-ray Astronomy

Gamma ray emission from supernova remnant/molecular cloud associations

Strong collisionless shocks are important sources of TeV particles. Evidence for TeV ions is less direct but very strong.

X-ray Hotspot Flares and Implications for Cosmic Ray Acceleration and magnetic field amplification in Supernova Remnants

Exploring the Ends of the Rainbow: Cosmic Rays in Star-Forming Galaxies

Astronomy 422! Lecture 7: The Milky Way Galaxy III!

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Cosmic Accelerators. 2. Pulsars, Black Holes and Shock Waves. Roger Blandford KIPAC Stanford

Fermi-LAT and WMAP observations of the SNR Puppis A

Cosmic Rays, Photons and Neutrinos

Aharonian Felix. I Scientific Work. II Conferences and educational activities

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

Seeing the moon shadow in CRs

Particle Acceleration in the Universe

Extended X-ray object ejected from the PSR B /LS 2883 binary

MASSIVE STARS IN COLLIDING WIND SYSTEMS: THE HIGH-ENERGY GAMMA-RAY PERSPECTIVE

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

Cosmic ray escape from supernova remnants

Potential Neutrino Signals from Galactic γ-ray Sources

The 2 Icecube PeV events [A. ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran / 23

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

TeV Astrophysics in the extp era

High energy radiation from molecular clouds (illuminated by a supernova remnant

On the physics of colliding stellar-pulsar winds

On (shock. shock) acceleration. Martin Lemoine. Institut d Astrophysique d. CNRS, Université Pierre & Marie Curie

contents 1) Superbubbles a particular environment for acceleration 2) Multiple acceleration by shocks regular acceleration (Fermi 1)

PACIFIC 2014, Moorea, French Polynesia, Sep Efficient CR Acceleration and High-energy Emission at Supernova Remnants

Galactic Accelerators : PWNe, SNRs and SBs

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J

Supernova Remnants and Cosmic. Rays

GAMMA-RAYS FROM MASSIVE BINARIES

Cosmic Ray Electrons and GC Observations with H.E.S.S.

A pulsar wind nebula associated with PSR J as the powering source of TeV J

Cooling Limits for the

Gamma rays from star- forming regions. Jürgen Knödlseder (IRAP, Toulouse) 1

Possible high energy phenomena related to the stellar capture by the galactic supermassive black holes. K S Cheng University of Hong Kong China

Discovery of TeV Gamma-ray Emission Towards Supernova Remnant SNR G Last Updated Tuesday, 30 July :01

Cosmic-ray Acceleration and Current-Driven Instabilities

Intense Star Formation in Nearby Merger Galaxies

High-Energy Neutrinos from Supernovae: New Prospects for the Next Galactic Supernova

CTB 37A & CTB 37B - The fake twins SNRs

Particle Acceleration by Reconnection and VHE emission Around Black Holes and Relativistic Jets

CO Observations of the Galactic Disk Toshikazu Onishi (Nagoya University)

Pulsar Wind Nebulae: A Multiwavelength Perspective

Acceleration Mechanisms Part I

Dark Matter in the Universe

Diffusive shock acceleration: a first order Fermi process. jan.-fév NPAC, rayons cosmiques E. Parizot (APC)

The quest for PeVatrons with the ASTRI/CTA mini-array

Blazars as the Astrophysical Counterparts of the IceCube Neutrinos

Supernova remnants: X-ray observations with XMM-Newton

High energy neutrino signals from NS-NS mergers

Production of Secondary Cosmic Rays in Supernova Remnants

Cosmic Ray Transport (in the Galaxy) Luke Drury. Dublin Institute for Advanced Studies Institiúid Ard-Léinn Bhaile Átha Cliath

Upper limits on gamma-ray emission from Supernovae serendipitously observed with H.E.S.S.

Antimatter from Supernova Remnants

The Physics & Astrophysics of Cosmic Rays

The AGN Jet Model of the Fermi Bubbles

Radio AGN feedback on galaxy scales: What can Athena show us?

Exploring the powering source of the TeV X-ray binary LS 5039

Subir Sarkar

Cosmic Rays in Galaxy Clusters: Simulations and Perspectives

Cosmic Ray Electrons with CTA. R.D. Parsons

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

Cosmic ray electrons from here and there (the Galactic scale)

Galaxy Simulators Star Formation for Dummies ^

Cosmic ray feedback in hydrodynamical simulations. simulations of galaxy and structure formation

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Nonthermal Emission in Starburst Galaxies

T. J. Brandt. CRISM: 27 Jun On behalf of the Fermi- LAT Collabora:on IRAP/Université Paul Saba:er.

Questions 1pc = 3 ly = km

Pulsars ASTR2110 Sarazin. Crab Pulsar in X-rays

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

A few issues in CSM interaction signals (and on mass loss estimates) Keiichi Maeda

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

This class: Life cycle of high mass stars Supernovae Neutron stars, pulsars, pulsar wind nebulae, magnetars Quark-nova stars Gamma-ray bursts (GRBs)

Ultra High Energy Cosmic Rays I

Transcription:

Supernovae in stellar clusters as CR pevatrons Collaborators: D.C.Ellison, P.E.Gladilin, S.M. Osipov

Gamma Ray Spectral Energy Distribu6on: Starburst galaxies Ackermann + 12 A&ARv v.22, p.54, 2014 S.Ohm, CRePhy, v.17, p. 585, 2016

Gamma Ray Spectral Energy Distribu6on: Starburst galaxies Ackermann + 12 A&ARv v.22, p.54, 2014 S.Ohm, CRePhy, v.17, p. 585, 2016

Madau & Dickinson, ARAA 2014 SFR from FUV+IR

Core-collapse - SN rate Madau & Dickinson, ARAA 2014

M82 Starbursts (T.Thompson 2007) IRAS 19297-0406 M51 NOAO NGC 253 Arp 220

Nearest Merger The Antennae WFPC2, with CO overlay (Whitmore et al. 1999; Wilson et al. 2000) VLA 5 GHz image (Neff & Ulvestad 2000) 5 mjy 30,000 O7-equivalent stars

Magnetic Fields in starbursts from radio observations If a fraction ~1% of 10 51 ergs per SN goes to CR electrons, and they cool rapidly, the observed trend is reproduced. Thompson et al. (2006)

What are the HECR sources in starforming / starburst regions?

SNR in Molecular Clouds M.Ackermann 2013 Pion-Decay Signatures see: Tavani + 2010, Uchiyama+ 2010, Giuliani+ 2011, Ackermann+ 2013, Cardillo+ 2014

Observed gamma- ray spectra of SNRs S. Funk 2015 What are the sources of PeV regime CRs?

PeV CRs are likely accelerated in the Galaxy

How to get PeV energy CRs? Rare SNe with a special CSM type IIn? Rare magnetar-driven SNe? SNR- Stellar/Custer Wind collision?

From a general constraint on the CR accelera6on rate the luminosity of NR MHD flow should exceed: L tot > 6 10 40 Z 2 β 1 sh Θ2 E 18 erg s 1 for a SN in SSC (age 400 yrs) L kin 10 41 erg s 1 cf F.Aharonian, M.Lemoine, E.Waxman

PeV proton accelera6on in young SNe

CR proton acceleration by radio SNe and trans-relativistic SNRs V. Tatischeff:Radioemissionandnonlineardiffusive shock acceleration in SN 1993J [p/(m p c)] 4 f(p) [(m p c) 3 /n u ] 10-2 10-4 10-6 10-8 10-10 a) b) c) p η inj = 10-4 p η inj = 3 10-4 p η inj = 10-5 e η inj = 10-5 e η inj = 1.1 10-5 e η inj = 1.8 10-5 10 5 10 10 10 15 10 17 10 5 10 10 10 15 10 17 10 5 10 10 10 15 10 17 Kinetic energy (ev) Kinetic energy (ev) Kinetic energy (ev) V.Tatischeff 2009 S.Chakraborti, A.Ray, A.Soderberg, A.Loeb, P.Chandra 2011

CR proton acceleration by SNe type IIn with dense pre- SN wind CR proton acceleration in trans-relativistic SNe Ibc SNe Ibc occur mostly in gasrich star-forming spirals CR proton acceleration by Type IIn SNe V. Zirakashvili & V. Ptuskin 2015 CR proton acceleration by trans-relativistic SNe β/γ ~ 1 Ellison, Warren, AB ApJ v.776, 46, 2013

PeV proton accelera6on by SNe in young compact stellar clusters & starbursts

SNR - cluster wind accelerator MNRAS V. 429, 2755, 2013

Stellar wind shock ( thin shell approximation) Wilkin 1996 Colliding shock flow geometry used

SNR-stellar wind accelerator Non-linear kinetic model Transport equation for CR distribution function MNRAS V. 429, 2755, 2013

SNR-stellar wind accelerator cf Malkov 97; Amato & Blasi 05; Caprioli + 11 MNRAS V. 429, 2755, 2013

SNR-stellar wind accelerator MNRAS V. 429, 2755, 2013

SNR-stellar wind accelerator AB+ MNRAS V. 429, 2755, 2013

Par6cle accelera6on between approaching shocks is the most efficient version of Fermi I accelera6on

Par6cle accelera6on in colliding shocks is the most plausible scenario for SNe in young compact stellar clusters & starbursts

Acceleration time in the test particle approximation for Bohm diffusion τ a cr g(p) u s u w. Acceleration time is about 500 yrs for 10-40 PeV τ a 2 10 10 E PeV (η b n) 0.5 u 2 s3 u 1 w3 (s) Magnetic field amplification by CR current driven instabilities: Bell s and LW ApJ v.789, 137, 2014

MAGNETAR-POWERED SUPERNOVAE IN TWO DIMENSIONS. SUPERLUMINOUS SUPERNOVAE Chen, Woosley & Sukhbold 2016

SNe in COMPACT CLUSTER of YOUNG MASSIVE STARS

A Galactic Super Star Cluster Distance: 5kpc Mass: 10 5 M sun Core radius: 0.6 pc Extent: ~6 pc across 2MASS Atlas Image from M.Muno Core density:~10 6 pc -3 Age: 4 +/- 1 Myr Supernova rate: 1 every 10,000 years

Chandra Observations WR/O star binaries, plus unresolved pre- MS stars Two exposures: 2005 May, 18 ks 2005 June, 38 ks M.Muno + 2006 This is a pulsar - magnetar!

Westerlund 1 Muno+ 05 Clark+ 05

H.E.S.S. image of Westerlund I MNRAS V. 453, p. 113, 2015

Gamma Rays and Neutrinos gamma- rays and high- energy neutrinos : gamma rays we also get γ s from electrons (NB, inverse Compton)

Gamma-rays from a Pevatron AARv v.22, p.54, 2014 MNRAS V. 453, p. 113, 2015

Gamma-rays from a Pevatron MNRAS V. 453, p. 113, 2015

Neutrinos from a Pevatron MNRAS V. 453, p. 113, 2015

Secondary pairs synchrotron X-ray counterpart to the Pevatron A cloud nearby: SRG perspective? Fermi SRG? MNRAS V. 453, p. 113, 2015

All Sky Map IceCube 4 years

IceCube events in the vicinity of Wd I MNRAS V. 453, p. 113, 2015 A.B. + 2015

H.E.S.S. J1808-204 power-law photon index of 2.3 ± 0.2stat ± 0.3sys Lvhe ~ 1.6 10^(34)[D/8.7 kpc]^2 erg/s Extended very high-energy gamma-ray source towards the luminous blue variable candidate LBV 1806 20, massive stellar cluster Cl* 1806 20, and magnetar SGR 1806 20 of estimated age about 650 years. H.E.S.S. collaboration arxiv 1606.05404 2016

Yeung + 2016 3FGL J1809

H.E.S.S. J1808-204

another component rel. shock? H.E.S.S. J1808-204 model

Poten6al IceCube events from galac6c IceCube events in the vicinity of Wd I SNe in young star clusters A.B. + 2015 Wd I = 339 32 57.6; b = -00 24 15.0 (black filled circle) SGR1806 20 MNRAS V. 453, p. SGR1806 113, 2015 l=09 58 42.0; b=-00 14 33.3 (black open circle) l20

Thanks for your attention! ac765 Acknowledge support from RSF grant 16-12-10225

U(x),P cr (x),p w (x),p g (x), E (x) 1.2 1.0 0.8 0.6 0.4 u(x) 10 3 P g (x) P cr (x) 10P w (x) E(x) 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 x/x 0

Monte Carlo modeling of DSA Magne6c Field Amplifica6on

ρ Conserva6on laws in MC modeling ( xux ) ( ) = ρ0u0 - mass ( xu ) 2 ( x) P( x) P( x) P( x) ρ + + + =Φ ρ 3 ( xu ) ( x) 2 ( ) = ( ) g th Fth x u x γ γ g th cr w P0 ( ) ( ) ( ) Energy flux background plasma + F x + F x + F x + Q =Φ th cr w esc E0 P ( x) 1 - momentum - energy Energy flux and turbulent pressure 3 W x k Fw ( x, k) = u( x) W( x, k) Pw ( x, k ) = 2 2 Magne6c Fluctua6on Spectral Evolu6on (, ) Π ( xk, ) ( ) (, ) F x k P x k w x ( xkw, ) ( x, k) L( xk, ) w + = u x + Γ x x (, ) ( ) df cr dx ( x) ( ) dfw x dpw x = u( x) + Γ( xkw, ) ( xkd, ) k L dx dx ( k) cr ( ) v ( x) = u x + scat dp dx Energy flux components ( x) th ( ) ( ) ( ) df x dp x dx th = u x + ( k ) dx L ( x) dpcr vscat ( x) = Γ( x, k ) W ( x, k) dk dx

Bulk velocity and magne6c field profiles r g 0 = mcu p eb 0 0 3 км n0 = 0.3 см ; u0 = 5000 ; B0 = 3 мкгс с AB +., ApJ, 789:137, 2014.

Magne6c turbulence spectra ApJ, 789:137, 2014. 3 км n0 = 0.3 см ; u0 = 5000 ; B0 = 3 мкгс с

, ApJ, 789:137, 2014. Fluctuabng magnebc field and magnebc pressure scalings Beff n u θ,2 0 0 2 B eff,2 3 u0 n0 θ : 1.5

CR spectra scalings Maximal momentum of accelerated CRs p n u L δ max 0 0 FEB δ : 0.25 ApJ, 789:137, 2014.

Sca_ering center velocity vs Alfven speed 3 км n0 = 0.3 см ; u0 = 5000 ; B0 = 3 мкгс с ApJ, 789:137, 2014.

IceCube neutrinos galac6c la6tude profile > 100 TeV Evidence for the Galactic contribution to the IceCube astrophysical neutrino flux Neronov & Semikoz Astroparticle Physics, Volume 75, p. 60-63, 2016