KOTO実験による K中間子稀崩壊探索 南條 創 (京都大学)

Similar documents
質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass.

Illustrating SUSY breaking effects on various inflation models

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

Yutaka Shikano. Visualizing a Quantum State

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

京都 ATLAS meeting 田代. Friday, June 28, 13

The unification of gravity and electromagnetism.

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学

PoS(KAON09)023. Beam Hole Photon Veto For J-PARC K O TO experiment. Yosuke Maeda Kyoto University

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

Search for K + π + νν decay at NA62 experiment. Viacheslav Duk, University of Birmingham for the NA62 collaboration

CP violation in quark flavor physics

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

-the 1st lecture- Yoshitaka Fujita Osaka University. Snake of March 16-20, 2015

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合

ATLAS 実験における荷電ヒッグス粒子の探索

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

The new messengers from the universe The First Light of the high energy neutrino astronomy

R. Fantechi CERN and INFN Sezione di Pisa on behalf of the NA62 Collaboration

Status of KEK-E391a and Future Prospects on K L π 0 νν at KEK. GeiYoub Lim IPNS, KEK

研究会 ハイパー核物理の発展と今後の展望 2013年7月8日 和州閣(三重県志摩市)

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

J-PARC E16 電子対測定実験の物理と実験計画

What the IceCube UHE ν results tell about the origin of UHE Cosmic Rays

Safer Building and Urban Development ( 安全な建物づくり まちづくりづ ) Contents ( 内容 ) 1)Lessons from building damage by earthquake motions and/or tsunami ( 振動被害または

高エネルギーニュートリノ : 理論的な理解 の現状

Relation of machine learning and renormalization group in Ising model

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

Y. Okayasu for the Jlab E collaboration Department of Physics. Tohoku University

K + Physics at J-PARC

Rare Kaon Decays: Progress and Prospects. Douglas Bryman University of British Columbia

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

山口英斉博士の研究業績概要 山口博士は 原子核物理学の実験的研究を専門とし 主に宇宙核物理学分野において 以下に述べる研究業績をあげてきました

11/13 Diagonalization. Theorem: The set R of all real numbers is not enumerable. 12/13. 0.a k1 a k2 a k3... where a ij {0, 1,...

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

K L EVER. Status and objectives Physics Beyond Colliders CERN, 02 March Matthew Moulson INFN Frascati For the NA62-KLEVER project

Discussion on (Heavy) Flavor Physics

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

LHCb Discovery potential for New Physics

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015

電離によるエネルギー損失. β δ. Mean ioniza9on energy. 物質のZ/Aに比例 Z/A~1/2, β~1 1.5MeV/(g cm 2 ) 入射粒子の速度 (β) に依存粒子識別が可能低速では1/β 2. 高速ではβ 2 /(1- β 2 ) で上昇 1.

galaxy science with GLAO

Elementary Particles, Flavour Physics and all that...

Introduction to Multi-hazard Risk-based Early Warning System in Japan

SUSY Model Discrimination at an Early Stage of the LHC

Method for making high-quality thin sections of native sulfur

Observation of the rare B 0 s µ + µ decay

Flavor Physics beyond the SM. FCNC Processes in the SM

First light from. Gagan Mohanty

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

Lecture 11. Weak interactions

Recent results from rare decays

Frascati Physics Series Vol. XVI (2000), pp PHYSICS AND DETECTORS FOR DANE { Frascati, Nov , 1999 BNL E787 results on K +! + Takahiro S

UTokyo OCW. Copyright 2015, The University of Tokyo / UTokyo OCW The Global Focus on Knowledge Lecture Series Copyright 2015, Taro Toyoizumi

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

Jacopo Pinzino CERN HQL /05/2018

Future Belle II experiment at the KEK laboratory

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

Strange nuclear structures with high density formed by single/double K -- meson

NA62 & Kaon Experiments

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

Flavour physics in the LHC era

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

Particle Identification of the LHCb detector

NA62 status and prospects

新技術説明会 ラマン分光 必見! AFM- ラマンによるナノイメージの世界 株式会社堀場製作所

Reaction mechanism of fusion-fission process in superheavy mass region

din Linguistics 一 一 St1'uctur~s a proposals representagrammati squite incomplete. Although generate al

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

( 主査 ) 教授髙橋秀幸教授山口信次郎准教授佐藤修正

日本政府 ( 文部科学省 ) 奨学金留学生申請書

Early physics with the LHCb detector

Parity violation. no left-handed ν$ are produced

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

低温物質科学研究センター誌 : LTMセンター誌 (2013), 23: 22-26

1 Introduction. KOPIO charged-particle vetos. K - RARE Meeting (Frascati) May Purpose of CPV: veto Kl

2011/12/25

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

Modeling Numerical analysis

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo

Advanced 7 Bio-Inspired System

J-Parc E14. K L π 0 νν. Taku Yamanaka Osaka Univ. Jul. 6, 2007 J-Parc KEK

Fundamental Symmetries - 2

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

Transcription:

KOTO実験による K中間子稀崩壊探索 南條 創 (京都大学) 1

Contents Motivation KOTO Experiment Prospect 2

Motivation 3

New Physicsはあるのか 4

2008 : Kobayashi and Maskawa CP-violation was established. The size is not enough to explain matter dominant universe. New CP-violating particle is expected in higher energy scale. 2013 : Englert and Higgs Higgs was discovered but it is far from closing the book. New physics in high energy scale is expected to stabilize Higgs mass. SUSY, little Higgs, Compositeness, Extra Dimension,? Dark matter? 5

New Physicsは存在する 物質優勢宇宙 Dark Matter... どうやって探す 6

New Physics Search High Energy Frontier High Intensity Frontier High energy frontier direct production of heavy particle High intensity frontier indirect access, high energy reach 一瞬の高エネルギースケール 稀なプロセス Multi-process approach 多方面からフレーバ構造を明らかに 標準理論の抑制 GIM, CKM,Helicity...suppression 精密な理論予測 Correlation is important. CP-violation is another guide. explanation of matter dominant universe 7

Why Kaon? Blanke '13 Generally most powerful GIM suppression of u and c quarks Hierarchical structure of CKM for t quark Most suppressed in s d transition (λ5) b d (λ3), b s (λ2) u c t d s 例えBs/d μμがsm-likeであっても s dはnpでエンハンス可能 b 8

Bona '07 Ishidori '13 Energy Reach Flavor structure MFV Generic Tree/Strong couple 5 TeV 24000 TeV Loop αs 0.5 TeV 2400 TeV Loop αw 0.2 TeV 800 TeV Tree/Strong couple ~1 Loop αs ~0.1 Loop αw ~0.03 (Bona '07) Genericの場合 K sectorが最強 104 TeVまでのリーチ なぜまだ見えない Energy scale, Flavor構造 Minimal Flavor Violation likeな場合 Bと強い相関 (NPでもCKMの構造を保持,新しいCPV phaseもない) 9

NP > 1 TeV? (ATLAS,CMS) Non-MFV like? (LHCb,CMS) Buras'13 10

Rare decay Strong suppression from CKM Buras '15 Small theoretical uncertainty ~2% High energy scale Hadron matrix element from tree process Ke3/Kmu3 Sensitive to new physics beyond the SM CP-violating process Related to charged mode Grossman-Nir bound : Model-independent inequality w/ iso-spin rotation 11

Status 10-8 Direct limit 2.6x10-8 (KEK E391a) 10-9 Indirect limit 1.5x10-9 (Grossman-Nir) 10-10 New Physics? 10-11 SM sensitivity 2.4x10-11 12

SM extension w/ 4th generation ruled out Direct search EW precision test Higgs mass Otto '12 13

from ΔS=2とΔS=1のNPによる変化 同じnew phaseが支配 Z'/Z with Left / Right-handed coupling Littlest Higgs with T-parity 14

Input from ε'/ε Direct CPV from KL ππ Progress from lattice calculation Buras '15 SM expectation (Theory) Left and Right-handed coupling still can enhance Br(KL) MFV Left or Right-handed coupling 15

EW penguin contribute to e'/e in negative interference. Negative correlation btw Br(KL) Buras '15 16

Buras '15 Left- and right-handed coupling model can enhance Br(KL) 17

Buras '15 18

Littlest Higgs with T-Parity Blanke '15 Symmetry breaking scale 19

SUSY at 10-50 TeV Tanimoto, Yamamoto '15 10 TeV SUSY still large enhancement on Br(KL) Less correlation btw Br(KL) and ε 50TeV SUSY still have enhancement factor on Br(KL) 20

Weekly-coupled light Z' with Lμ Lτ coupling Fuyuto '14 Explain g-2 with Mz'<400MeV also relate to B Kμμ from E949 experiment KOTO already access here. 21

KOTO Experiment 22

0 KOTO : K at TOkai Extraction J-PARC Accelerator High power Statistics of rare process Slow extraction Event pile-up due to high rate J-PARC 33kW (June 2015) ~ World-highest class 3GeV 30GeV 400MeV 23

Fixed Target Experiment High intensity proton beam+ Primary target High intensity secondary products Beam line Transport particles of interest Reduce unwanted particles Long life to transport. Gold 15mm x 6mm x 66mm 30 GeV proton 24

Particles mass and life time Bottom Strange Collider (τ D,B,t) Tools for fixed target experiment with high intensity proton driver Lower mass Longer life time Kaon has bee a special tool for fixed target experiment Pion Neutrino source Muon source 25

Kaon Low mass (0.5 GeV) Long life time (15m) Good for fixed target Strangeness Flavor Changing Neutral Current s d transition Flavor changing neutral current (GIM) Strong CKM suppression KL π0νν (Br 3x10-11 in SM) Direct CP-violation 26

Beam line 金標的 + proton KL beam line 電磁石 (charged) 20m長尺 (short-lived) コリメータ (beam halo) 細くシャープな中性ビーム(KL, γ, neutron) Pencil Beam 33kW 6sec cycle 4x10 proton 13 立体角 7.8μsr ~40%lost by decay ~107 KL 27

2nd collimator (4.5+0.5m) Beam plug 1st collimator 4m-long Dipole magnet 28

Signal Reconstruction 2γ+nothing Calorimeter + Beam constraint pencil beam Veto detectors 6.1m 29

Detector ~2m Veto : γ/charged 10-4 10-6 reduction 30

History 100hours Detector upgrade 31

1st physics run in 2013 CKM2014 Sensitivity : 1.29x10-8 (Preliminary) ~ E391a sensitivity with only 100-hour run 1 event in the signal box 87 Number of observed data Well understood. 87 1 0.2±0.1 9 7.2±0.5 32

Main background source in E391a Halo neutron π0 at Upstream detector Downstream detector Largely reduced. E391a Final (5month) S.E.S : 1.11x10-8 KOTO 1st Physics run(4days) S.E.S : 1.29x10-8 87 87 1 0.2±0.1 9 7.2±0.5 33

Background source in KOTO 87 87 1 0.2±0.1 9 7.2±0.5 CC05 CC06 Beam pipe 1m 34

Run in April-June 2015 Physics run 5.3 times higher POT run in May 2013 Calibration and special runs Calibration, Special runs Physics run in 2015 33kW 29kW 26kW Physics 24kW 26kW X5.3 Integrated POT for May 2013 35

0 Check with 3π sample Calorimeter and KL properties consistent with the run in May 2013. More detailed calibration is on-going Study to suppress background Black :April-May 2015 Red :May 2013 Area normalized Area normalized 36

To suppress halo neutron Upstream beam window Kapton 125um 12.5um Reduce neutron scattering Re-alined collimator Reduce neutron scattering on the collimator inner surface Hadron interaction events 37

Collimator alignment with new beam profle monitor Lead(1.5mm) Mirror Phosphor plate Re-alined collimators 38

To understand hadron interaction events Scattered at the target Core neutron 10 mm thick Al Contribution by Chonbuk Univ. * Removed in physics run Took Al-target data 70 hours > 15 times higher statics than May 2013 Hadron interaction Gammas from π0 Reconstructed PT (MeV/c) Reconstructed Z vertex (mm) 39 Developing BG reduction with cluster shape

To suppress low P T events CC05 CC06 Beam pipe Plastic scintillator WLS fiber 1m PMT Beam pipe (5mm t) SUS Aluminum Installed Beam Pipe Charged Veto Plastic scintillator 5-mm thick Wavelength shifting fber readout ~1/60 reduction expected 40

To suppress KL 2π0 Added modules X0: 4 6.2 Photon punch-through inefficiency 1/5 In-beam photon veto Lead and Aerogel Cherenkov detector Lead and Acrylic Cherenkov detector 41

Prospect 42

0 To suppress KL 2π more Install inner barrel detector in winter 2015 Add 5 X0 to 13.5 X0 of current Main Barrel Suppress punch-through ineffciency by 1/50. Gluing fber to scintillator was mostly fnished. Module assembly will start soon. Will install it in this winter + Maintenance for existing broken channels in vacuum 43

Plan NA62 will take 100 events toward 2017 for Push Grossman-Nir limit down. We will overcome our background and improve our sensitivity 2015 April-June 2015 Fall 2016 2017 44

Long term plan 45

Summary New physics scenario MFV or non-mfv? Similar to MFV Z' model, generic SUSY,.. will still enhance Br(KL) largely NP in 5 TeV still enhance Br(KL) largely SM extension with 4 generation ruled out Littlest Higgs with T-parity under pressure from B μμ KOTO already have discovery potential for light Z' with ~π0 mass Sensitivity ~ current limit with only 100 hours data New background mechanism neutron Restarted in 2015 Non-MFV with left and right-handed coupling 1st Physics run in 2013 Br(KL π0νν) ε'/ε > SM? will suppress Br(KL) enhancement Strong correlation pattern from εk Non-MFV with only left or right-handed coupling MFV like KOTO already took 5.3 times larger statistics Data to study neutron background Calibration and study to suppress neutron background Prospects Will overcome neutron background Will search O(10-11) area for Br(KL) ~2018 Continue to KOTO Step2 in enlarged Hadron Experimental Facility 46