Catalytic Technique of Bio oil Conversion to Valuable Chemicals

Similar documents
Application Note. Authors. Abstract. Energy & Chemicals, Biofuels & Alternative Energy

TRANSALKYLATION OF HEAVY AROMATICS FOR ENHANCED XYLENE PRODUCTION EFFECT OF METAL TYPE AND CONCENTRATION ON THE C9 CONVERSION AND XYLENE SELECTIVITY

Production of Renewable Chemicals. Pieter. C. A. Bruijnincx, Joseph Zakzeski, Anna L. Jongerius, and Bert M. Weckhuysen

Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review

Bulk Ni-Mo Composites Prepared by Solid Reaction Method and Their Hydrodeoxygenation Performance

The Effects of Temperature and Hydrogen Partial Pressure on Hydrocracking of Phenanthrene

2007 Elsevier Science. Reprinted with permission from Elsevier.

Dehydrogenation of Propane to Propylene Over Pt-Sn/Al 2 O 3 Catalysts: The influence of operating conditions on product selectivity

CHE 611 Advanced Chemical Reaction Engineering

Synthesis of mixed alcohols over K-Ni-MoS 2 catalysts

PETE 203: Properties of oil

Zn/H-ZSM-5 zeolite as catalyst for benzene alkylation with isobutane

Investigation of Hydrogen Influence on n-hexane Aromatization over Pt/Al O Catalyst

Rational Approach Towards Novel Catalysts for Biomass Conversion and Upgrading

Study of the liquid activation of CoMo and NiMo catalysts

Methanol Usage in Toluene Methylation over Pt Modified ZSM-5 Catalyst: Effect of. Total Pressure and Carrier Gas. Supporting Information

Effects of Different Processing Parameters on Divinylbenzene (DVB) Production Rate

Effect of Ni Loading and Reaction Conditions on Partial Oxidation of Methane to Syngas

Abstracts. p67. X. Tan, H. Lv, and X. Zhang. R. Hudson and A. Moores

Elucidation of the Influence of Ni-Co Catalytic Properties on Dry Methane Reforming Performance

Investigation of benzene and cycloparaffin containing hexane fractions skeletal isomerization on Pt/sulphated metal-oxide catalyst

Aqueous-phase reforming a pathway to chemicals and fuels

Fischer-Tropsch Synthesis over Co/ɣ-Al 2 O 3 Catalyst: Activation by Synthesis Gas

KMUTNB Int J Appl Sci Technol, Vol. 9, No. 4, pp , 2016

Kinetic Characterisation of Zeolite Catalysts Using Cracking, Alkylation and Other Chemical Reactions

Propylene: key building block for the production of important petrochemicals

UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE ADSORPTIVE TRAPPING OF BIO-OIL COMPOUNDS ONTO ACTIVATED CARBON A THESIS SUBMITTED TO THE GRADUATE FACULTY

Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) Hangzhou , PR China

Catalytic Hydrodesulfurisation

An Alternative Biofuel: LPG from Biomass- Derived Organic Acids TIE Graduate Research Fellowship Report

SINOPEC MTP and MTX technologies

Hydrogenation of Naphtalene on Pt-Pd Catalyst

Vapor phase hydrodeoxygenation of lignin-derived phenolic monomers to aromatics on transition metal carbides under ambient pressure.

Publication II. This article was published in

Selective Hydrogenation of PyGas over Palladium Catalysts

Conversion Technologies Chemical and Catalytical Processing: Gas phase route

Supports, Zeolites, Mesoporous Materials - Chapter 9

Prediction and accelerated laboratory discovery of heterogeneous catalysts

Figure S2: Representative TEM micrographs of the 1wt% Pt/ZSM-5 catalysts used in this work: (a) 2.A; (b) 2.B.

Supporting Information. Highly Selective Non-oxidative Coupling of Methane. over Pt-Bi Bimetallic Catalysts

ON THE POSSIBLE MECHANISMS OF HIGHER N-ALKANES ISOMERISATION

Methylation of benzene with methanol over zeolite catalysts in a low pressure flow reactor

Electronic Supplementary Information

CHAPTER 4 ISOPROPYLATION OF TOLUENE

Dr Panagiotis Kechagiopoulos. Lecturer in Chemical Engineering. School of Engineering

Selective O-Alkylation Reaction of Hydroquinone with Methanol over Cs Ion-Exchanged Zeolites

Simultaneous Hydrogenation of Multiring Aromatic Compounds over NiMo Catalyst

Aviation Fuel Production from Lipids by a Single-Step Route using

Part A: Operando FT-IR Studies of heterogeneous catalytic reactions: pitfalls and benefits.

Inmaculada Rodríguez Ramos Nanostructured catalysts for sustainable chemical processes

Reaction of nitrous oxide with methane to produce synthesis gas (CO + H 2 ); a thermodynamic and catalytic analysis

Hydrogen Effect on Coke Removal and Catalytic Performance in Pre-Carburization and Methane Dehydro-Aromatization Reaction on Mo/HZSM-5

The Contribution of the Methanol-to-Aromatics Reaction to Benzene Methylation over ZSM-5 Catalysts

A New Catalytic Pathway for the Production of Bio-based 1,5-Pentanediol

PROCESS TECHNOLOGY- ORGANIC II. 51. Gas phase dehydrogenation of ethyl-benzene to styrene occurs over catalyst based on

Mechanical Engineering Research Journal RENEWABLE HYDROGEN FROM AQUEOUS PHASE REFORMING (APR) OF GLYCEROL

CHAPTER 7 SELECTIVE OXIDATION OF ETHYL BENZENE

Ni-Mo Nanocatalysts on N-Doped Graphite Nanotubes for Highly Efficient Electrochemical Hydrogen Evolution in Acid

EFFECT OF SUPERCRITICAL WATER ON COKE FORMED DURING DODECANE CRACKING WITH ZSM-5. Patricia Guerra. A Thesis. Submitted to the Faculty.

Transalkylation of Toluene with 1, 2, 4 Trimethylbenzene over Large Pore Zeolites with Differing Si/Al Ratios

Liquid-Phase Hydrogenation Kinetics of Multicomponent Aromatic Mixtures on Ni/Al 2 O 3

Synthesis gas production via the biogas reforming reaction over Ni/MgO-Al 2 O 3 and Ni/CaO-Al 2 O 3 catalysts

n-octane reforming over alumina-supported Pt, Pt Sn and Pt W catalysts

Supported molybdenum oxides as effective catalysts for the catalytic fast pyrolysis of lignocellulosic biomass

TRANSALKYLATION OF DIISOPROPYLBENZENE WITH BENZENE IN SUPERCRITICAL CARBON DIOXIDE

Studies on Mo/HZSM-5 Complex catalyst for Methane Aromatization

CFD Simulation of Catalytic Combustion of Benzene

Low Temperature Catalytic Ethanol Conversion Over Ceria-Supported Platinum, Rhodium, and Tin-Based Nanoparticle Systems

Fast pyrolysis oil hydrodeoxygenation kinetics using lignin-derived model compounds

Hydrogenation Conversion of Phenanthrene over Dispersed Mo-based Catalysts

BAE 820 Physical Principles of Environmental Systems

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati

Catalysis Science & Technology

Oxygen Reduction Reaction

CONVERSION OF CROP OIL TO AROMATICS OVER DOPED ZSM-5 CATALYSTS

GTC Technology. Rethinking Xylenes Production via Toluene Methylation

INTENSIFICATION OF THE PERFORMANCE OF A GASOLINE ISOMERIZATION UNIT

Catalytic Chemistry. Bruce C. Gates. John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore. University of Delaware ^.'-'.

HYDROGEN PRODUCTION THROUGH GLYCEROL STEAM REFORMING REACTION USING TRANSITION METALS ON ALUMINA CATALYSTS

Supported Ni and Pt-Ni Nanoparticles by Supercritical Deposition

2011 DOE Crosscut Workshop on Lean Emissions Reduction Simulation April 2011 Dearborn, MI

CHAPTER Identification of side products in the synthesis of MMBC. As shown in the previous chapter, MMBC can be produced with high

Alkylation of benzene with ethanol over ZSM-5 catalyst with different SiO 2 /Al 2 O 3 ratios

CHAPTER 6 SELECTIVE OXIDATION OF DIPHEYLMETHANE TO BENZOPHENONE

C 6 H H 2 C 6 H 12. n C6H12 n hydrogen n benzene. n C6H6 n H2 100 C 6 H 6 n 2 n C6H H 2. n 1

Research Article Thermodynamic Equilibrium Analysis of Methanol Conversion to Hydrocarbons Using Cantera Methodology

POLYSTYRENE (General purpose)(gpps)

Catalysis. Catalytic nanoparticles have been used for centuries to facilitate desirable chemical reactions and to suppress unwanted byproducts.

Reactive Adsorption of Thiophene on ZnNi/Diatomite- Pseudo-Boehmite Adsorbents

A mini review on the chemistry and catalysis of the water gas shift reaction

CHAPTER 7 FRIEDEL-CRAFTS ACYLATION OF TOLUENE WITH ACETIC ACID

Aqueous-Phase Reforming of Ethylene Glycol Over Supported Platinum Catalysts

A novel BN supported bi-metal catalyst for selective hydrogenation of crotonaldehyde

Trickle Column Reactors

Plasma and catalysts. Part-financed by the European Union (European Regional Development Fund

RKCL5155 PREPARATION AND EVALUATION OF AMMONIA DECOMPOSITION CATALYSTS BY HIGH-THROUGHPUT TECHNIQUE

Supplementary Information. Synthesis and Characterization of Fibrous Silica ZSM-5 for Cumene Hydrocracking

Method and process for combustion synthesized supported cobalt catalysts for fixed bed Fischer Tropsch reaction

Cyanide Analysis of Wastewater Samples from FCC and Hydrocracking Operations

Transcription:

American Journal of Chemical Engineering 2017; 5(2-1): 1-5 http://www.sciencepublishinggroup.com/j/ajche doi: 10.11648/j.ajche.s.2017050201.11 ISSN: 2330-8605 (Print); ISSN: 2330-8613 (Online) Catalytic Technique of Bio oil Conversion to Valuable Chemicals Majid Saidi Faculty of Engineering, Shahrekord University, Shahrekord, Iran Email address: m.saidi@eng.sku.ac.ir To cite this article: Majid Saidi. Catalytic Technique of Bio oil Conversion to Valuable Chemicals. American Journal of Chemical Engineering. Special Issue: Advanced Chemical and Biochemical Technology for Biofuels. Vol. 5, No. 2-1, 2017, pp. 1-5. doi: 10.11648/j.ajche.s.2017050201.11 Received: January 29, 2017; Accepted: February 7, 2017; Published: February 28, 2017 Abstract: Catalytic technique of lignin derived bio oil conversion, has been studied over Pt γal 2 O 3 catalyst in a fixed bed tubular micro activity flow reactor at 673 K, 14 bar and space velocity 3 (g of Anisole)/(g of catalyst h), in the presence of H2. A reaction network according to selectivity conversion data is proposed to describe the evolution of products observed. The reactions include the following, anisole to benzene via HDO, to hexamethylbenzene via hydrodeoxygenation and alkylation, to phenol via hydrogenolysis, to 2 methylphenol via transalkylation and finally to 2, 4 dimethylphenol, 2, 4, 6 trimethylphenol and 2, 3, 5, 6 tetramethylphenol via transalkylation and alkylation. Experimental results indicated that the anisole conversion decreases about 20% with increasing the pressure from 8 to 14 bar at 673 K. Keywords: Bio oil, Valuable Chemicals, Anisole, Catalytic Conversion, Hydrodeoxygenation 1. Introduction To begin to meet the needs for renewable fuels, many researchers have turned their attention recently to a massive resource that today finds few applications: lignin [1, 2]. Bio oils derived from lignin are poor fuels, being unstable and having undesirable physical properties, and so they require upgrading. A potentially valuable processing goal is to convert lignin to bio oils and to subject the bio oils to hydrodeoxygenation (HDO), a chemical conversion that takes place at high H 2 partial pressures (as high as 100 200 bar) and high temperatures (250 400 C) to remove oxygen primarily in the form of water [2-7]. Oxygen containing products, in addition to water, include CO 2, formed in decarboxylation reactions, CO, and methanol. The upgrading classes of reactions include decarboxylation, hydrogenation, hydrogenolysis, hydrocracking, and dehydration [8-10]. Experimental investigations of anisole conversion with various catalysts have led to the inference that specific catalyst functions are responsible for specific reaction pathways. This work considers the potential use of lignin derived bio oil as possible renewable fuel and chemical feedstock source. Anisole is representative of bio oils compounds that incorporate C methyl O C aromatic moieties which are prevalent in lignin as well as lignin derived bio oils. In the HDO of anisole, four reaction pathways demethylation, hydrogenation, hydrogenolysis, and methyl group transfer (transalkylation) occur, not all of them leading to the removal of oxygen. Because the C methyl O bond is weaker than the C aromatic O bond, demethylation via the rupture of the C methyl O bond is typically favored kinetically [11-13]. The catalytic species that accelerate the HDO reactions include metals, metal sulfides, metal phosphides, metal carbides, and metal nitrides. These have been used on various supports, and in general the acidic supports catalyze methyl group transfers and also lead to catalyst deactivation by carbonaceous deposits (coke) that form on their surfaces. Experimental investigations with various catalysts have led to the inference that specific catalyst functions are responsible for specific reaction pathways. Runnebaum et al. [14] reported that a noble metal (platinum) catalyzes phenol formation, and phenol is subsequently converted to benzene by breaking of the Caromatic O bond and then to cyclohexane by hydrogenation of the aromatic ring, which is followed by hydrogenolysis of the Calicylic O bond. Transalkylation was found to be kinetically significant when the catalyst contained an acidic function, such as γ Al 2 O 3

2 Majid Saidi: Catalytic Technique of Bio oil Conversion to Valuable Chemicals serving as the support [14]. Ardiyanti et al. [8] investigated the catalytic hydroprocessing of anisole with monometallic and bimetallic catalysts (Ni Cu supported on δ Al 2 O 3 ) and observed that the bimetallic catalyst had a higher activity than a monometallic nickel catalyst. Li et al. [11] considered the conversion of anisole catalyzed by Ni 2 P/SiO 2 and MoP/SiO 2, as well as NiMoP/SiO 2 with various Ni/Mo ratios, and they found that the nickel phosphide containing catalysts, especially Ni 2 P/SiO 2, are more active than conventional NiMo/γ Al 2 O 3. They concluded that the activity and stability of the phosphide catalyst increases with increasing Ni/Mo ratios. Yang et al. [13] considered the influence of supports of nickel containing catalysts on selectivity in anisole HDO, finding that reducible oxide supports such as TiO 2 and CeO 2 give high selectivities to aromatic products; they found an increasing trend for formation of benzene over cyclohexane in the series Ni/C, Ni/Al SBA 15, and Ni/γ Al 2 O 3. They attributed this trend to carbon deposits on nickel sites that reduced the hydrogenation activity, favoring aromatic formation instead. In related work, Huuska [15] investigated the effects of catalyst composition on the hydrogenolysis of anisole on molybdenum and nickel catalysts. They observed that when the catalysts were supported on an acidic oxide the main products were phenol and methyl substituted phenols because methyl group transfer is catalyzed by acidic sites. In contrast, when the support was not acidic, only limited methyl group transfer occurred, and the main products were phenol and cyclic hydrocarbons. In an investigation of anisole HDO catalyzed by mesoporous silica (SBA 15 and SBA 16) supported CoMoW catalysts, Loricera et al. [16] represented the benefits of the high support surface area and the opportunities to vary the framework compositions. The literature of catalytic HDO has been reviewed recently [2]; it includes numerous reports characterizing the conversion of whole bio oil feedstocks, but there is a lack of fundamental understanding of the reactions. In present study, the catalytic upgrading of anisole to valuable chemicals in the presence of H 2 over platinum supported on alumina (Pt/Al 2 O 3 ) is studied, regarding anisole as an excellent compound to represent lignin derived bio oils. 2. Experiment Catalytic reaction experiments were carried out with a fixed bed tubular micro flow reactor. The Pt/Al 2 O 3 catalyst pellets (Pt/γ Al 2 O 3 pellets containing 1 wt% Pt, Sigma Aldrich) were placed on the porous plate in the reactor, mixed with about 2 g of inert α Al 2 O 3 beads. The catalyst in a mixture of N 2 and H 2 (50 50 volume percent) flowing at 20 l/h of was heated to the desired reaction temperature and held at this temperature for 20 min prior to the start of liquid reactant flow (anisole 99.8%, purchased from Merck). Fresh catalyst (0.25 2 g) was used for each experiment, and each experiment was typically run for 6 h of continuous operation. The catalytic conversion of anisole was carried out at 673 K and 14 bar; the liquid anisole flow rate was 0.03 ml/min, and the N 2 and H 2 flow rates were each 20 l/h. The value of the weight hourly space velocity (WHSV) was either 3 (g of anisole)/(g of catalyst h), varied by changing the catalyst mass and liquid flow rate. Anisole conversion (X) and selectivity to various products i (S i ) was defined as: ( moles of Anisole) in ( molesof Anisole) out X = *100% (1) ( moles of Anisole) molar flow rateof producti S i = (2) molar flow rateof Anisoleconsumed 3. Results and Discussion The major products of anisole upgrading identified by GC MS were found to be benzene, phenol, 2 methylphenol, 2, 6 dimethylphenol, 2, 4, 6 trimethylphenol, 2, 3, 5, 6 tetramethylphenol, and hexamethylbenzene. Trace products that were identified only qualitatively were toluene, o xylene, p xylene, 4 methylphenol, 2, 3 dimethylphenol, 2, 4 dimethylphenol, 2, 6 dimethylanisole, 2, 3, 5 trimethylphenol, 3, 4, 5 trimethylphenol, 2, 3, 4, 6 tetramethylphenol, cyclohexane, methylcyclohexanone, and methylcyclohexane. The conversion of anisole catalyzed by Pt/Al 2 O 3 as a function of time on stream (TOS) is shown in Figure 1. Figure 1. The conversion of anisole catalyzed by Pt/Al 2O 3 as a function of time on stream (TOS) at WHSV=3 g anisole/ (g catalyst h). Figures 2 4 represents the selectivity for the formation of the main products in the conversion of anisole to valuable chemicals catalyzed by Pt/Al 2 O 3 in the presence of H 2 at 673K. From this figure it can be observed that selectivity to alkylation and transalkylation is more than HDO reaction [15, 26, 27]. The selectivity conversion data for anisole indicate that benzene, phenol and 2 methylphenol are primary products and that 2, 6 dimethylphenol, 2, 4, 6 in

American Journal of Chemical Engineering 2017; 5(2-1): 1-5 3 trimethylphenol, 2, 3, 5, 6 tetramethylphenol and hexamethylbenzene are higher order products. Reaction network development is based on determination of the likely reaction classes by identification of the main products in the conversion of anisole catalyzed by Pt/Al 2 O 3. The main products investigation indicates that the important kinetically reaction classes are as follow: formation of phenol by Hydrogenolysis reaction; formation of benzene by hydrodeoxygenation reaction; formation of 2 methylphenol by Transalkylation reaction; formation of 2, 6 demitheyphenol, 2, 4, 6 trimethylphenol, 2, 3, 5, 6 tetramethyl phenol and hexamethylbenzene by Alkylation reaction. The reactions giving the most abundant products in the conversion of anisole catalyzed by Pt/Al 2 O 3 at 673 K and 14 bar are represented in Figure 5. The products and reactions are consistent with those observed previously [15]. Figure 2. Selectivity for the formation of benzene in the conversion of anisole catalyzed by Pt/Al 2O 3 in the conversion of anisole in the presence of H 2 at 673 K. Figure 3. Selectivity for the formation of phenol, 2 methylphenol and 2, 6 dimethylphenol in the conversion of anisole catalyzed by Pt/Al 2O 3 in the presence of H 2 at 673 K. Figure 5. The main reactions to most abundant products based on analysis of selectivity conversion plots for the conversion of anisole and H 2 catalyzed by Pt/Al 2O 3 at 5673 K. Figure 4. Selectivity for the formation of 2, 4, 6 trimethylphenol, 2, 3, 5, 6 terramethylphenol and hexamethylphenol in the conversion of anisole catalyzed by Pt/Al 2O 3 in the presence of H 2 at 673 K. Figure 6 represents the variation of anisole conversion as a function of WHSV at different operating temperature. It is obvious that anisole conversion decreases with increasing WHSV. The effect of pressure on anisole upgrading process is considered in Figure 7. Based on reported data in Figure 7, the anisole conversion at 673 K and WHSV=3 (g of anisole)/(g of catalyst h) decreases from 50% to 30% with increasing the pressure from 8 to 14 bar, but enhancing the pressure more than 14 bar has not significant effect on conversion. It seems that increasing the pressure not only has

4 Majid Saidi: Catalytic Technique of Bio oil Conversion to Valuable Chemicals not positive effect on anisole conversion, it decreases the rate of reactions. combination of a noble metal and an acidic support provide a higher catalytic activity. Figure 8. Reaction network for the conversion of anisole catalyzed by Pt/Al 2O 3 at 673 K and 14 bar. Figure 6. The conversion of anisole catalyzed by Pt/Al 2O 3 as a function of WHSV at p= 14 bar and T=673 K. 4. Conclusions In this work a reaction network for catalytic upgrading of anisole on the Pt/Al 2 O 3 catalyst is developed. The experimental data indicated that the platinum catalyzed hydrogenolysis of the anisole to produce phenol as the significant primary product under the applied operating conditions (673 K and 14 bar). Other main products were produced by alkylation, transalkylation and HDO reactions. The main products that were detected in relatively high yields include benzene, formed by HDO of anisole or phenol, hexamethylbenzene formed by alkylation of benzene, 2 methylphenol formed by transalkylation of anisole and alkylation of phenol, and finally 2, 6 dimethylphenol, 2, 4, 6 trimethylphenol and 2, 3, 5, 6 tetramethylphenol formed by subsequent alkylation of 2 methylphenol. Acknowledgements Figure 7. The conversion of anisole as a function of pressure at 673 K and WHSV=3 g anisole/ (g catalyst h). As a model reaction development, the upgrading process of anisole has been considered, and the reaction network represented in Figure 8. The main reaction routes during the upgrading process of anisole are hydrogenation, hydrogenolysis, hydrodeoxygenation, transalkylation and alkylation. In the present study, benzene, phenol, hexamethylbenzene, 2 methylphenol, 2, 6 demitheyphenol, 2, 4, 6 trimethylphenol and 2, 3, 5, 6 tetramethyl phenol were detected as the main products, whereas no methyl anisole, cyclohexanol and cyclohexanone were observed. Hydrogenolysis or demethylation takes place on the metal surface to form phenol. Another reaction involves direct deoxygenation, leading to methanol and benzene. Also using catalysts that incorporate both metal and acid functions such as Pt/Al 2 O 3, in addition to direct deoxygenation, transalkylation and HDO are catalyzed by acidic sites. So the The authors gratefully acknowledge the support (Grant No. 95821383) from Iran National Science Foundation (INSF). This work has been financially supported by the research deputy of Shahrekord University. The grant number was 94PRM2M35963. References [1] F. K. Forson, E. K. Oduro, E. Hammond-Donkoh, Performance of jatropha oil blends in a diesel engine, Renewable Energy 29 (2004) 1135-1145. [2] M. Saidi, F. Samimi, D. Karimipourfard, T. Nimmanwudipong, B. C. Gates, M. R. Rahimpour, Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation, Energy & Environmental Science 7 (2014) 103-129. [3] T. R. Viljava, R. S. Komulainen, A. O. I. Krause, Effect of H2S on the stability of CoMo/Al 2 O 3 catalysts during hydrodeoxygenation, Catalysis Today 60 (2000) 83-92.

American Journal of Chemical Engineering 2017; 5(2-1): 1-5 5 [4] M. Saidi, H. R. Rahimpour, B. Rahzani, P. Rostami, B. C. Gates, M. R. Rahimpour, Hydroprocessing of 4-Methylanisole as a Representative of Lignin-derived Bio-oils Catalyzed by Sulfided CoMo/γ-Al 2 O 3 : A Semiquantitative Reaction Network, Canadian Journal of Chemical Engineering (2016). [5] M. Saidi, M. R. Rahimpour, S. Raeissi, Upgrading Process of 4-Methylanisole as a Lignin-Derived Bio-Oil Catalyzed by Pt/γ-Al 2 O 3 : Kinetic Investigation and Reaction Network Development, Energy & Fuels 29 (2015) 3335-3344. [6] M. Saidi, P. Rostami, H. R. Rahimpour, M. A. Roshanfekr Fallah, M. R. Rahimpour, B. C. Gates, S. Raeissi, Kinetics of Upgrading of Anisole with Hydrogen Catalyzed by Platinum Supported on Alumina, Energy & Fuels 29 (2015) 4990-4997. [7] M. Saidi, P. Rostami, M. R. Rahimpour, B. C. Gates, S. Raeissi, Upgrading of Lignin-Derived Bio-oil Components Catalyzed by Pt/γ-Al 2 O 3 : Kinetics and Reaction Pathways Characterizing Conversion of Cyclohexanone with H2, Energy & Fuels 29 (2014) 191-199. [8] A. R. Ardiyanti, S. A. Khromova, R. H. Venderbosch, V. A. Yakovlev, H. J. Heeres, Catalytic hydrotreatment of fastpyrolysis oil using non-sulfided bimetallic Ni-Cu catalysts on a δ-al 2 O 3 support, Applied Catalysis B: Environmental 117 118 (2012) 105-117. [9] J. B.s. Bredenberg, M. Huuska, J. Räty, M. Korpio, Hydrogenolysis and hydrocracking of the carbon-oxygen bond: I. Hydrocracking of some simple aromatic O- compounds, Journal of Catalysis 77 (1982) 242-247. [10] M. Á. González-Borja, D. E. Resasco, Anisole and Guaiacol Hydrodeoxygenation over Monolithic Pt Sn Catalysts, Energy & Fuels 25 (2011) 4155-4162. [11] K. Li, R. Wang, J. Chen, Hydrodeoxygenation of Anisole over Silica-Supported Ni2P, MoP, and NiMoP Catalysts, Energy & Fuels 25 (2011) 854-863. [12] X. Zhu, L. L. Lobban, R. G. Mallinson, D. E. Resasco, Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst, Journal of Catalysis 281 (2011) 21-29. [13] Y. Yang, C. Ochoa-Hernández, V. A. de la Peña O'Shea, P. Pizarro, J. M. Coronado, D. P. Serrano, Effect of metal support interaction on the selective hydrodeoxygenation of anisole to aromatics over Ni-based catalysts, Applied Catalysis B: Environmental 145 (2014) 91-100. [14] R. Runnebaum, T. Nimmanwudipong, D. Block, B. Gates, Catalytic Conversion of Anisole: Evidence of Oxygen Removal in Reactions with Hydrogen, Catal Lett 141 (2011) 817-820. [15] M. K. Huuska, Effect of catalyst composition on the hydrogenolysis of anisole, Polyhedron 5 (1986) 233-236. [16] C. V. Loricera, B. Pawelec, A. Infantes-Molina, M. C. Álvarez-Galván, R. Huirache-Acuña, R. Nava, J. L. G. Fierro, Hydrogenolysis of anisole over mesoporous sulfided CoMoW/SBA-15 (16) catalysts, Catalysis Today 172 (2011) 103-110.