DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

Similar documents
THE DIII D PROGRAM THREE-YEAR PLAN

NIMROD FROM THE CUSTOMER S PERSPECTIVE MING CHU. General Atomics. Nimrod Project Review Meeting July 21 22, 1997

EFFECT OF PLASMA FLOWS ON TURBULENT TRANSPORT AND MHD STABILITY*

DIII D UNDERSTANDING AND CONTROL OF TRANSPORT IN ADVANCED TOKAMAK REGIMES IN DIII D QTYUIOP C.M. GREENFIELD. Presented by

QTYUIOP LOCAL ANALYSIS OF CONFINEMENT AND TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL.

Observation of Neo-Classical Ion Pinch in the Electric Tokamak*

Localized Electron Cyclotron Current Drive in DIII D: Experiment and Theory

Transport Improvement Near Low Order Rational q Surfaces in DIII D

SUMMARY OF EXPERIMENTAL CORE TURBULENCE CHARACTERISTICS IN OH AND ECRH T-10 TOKAMAK PLASMAS

Performance, Heating, and Current Drive Scenarios of ASDEX Upgrade Advanced Tokamak Discharges

MHD. Jeff Freidberg MIT

Studies of H Mode Plasmas Produced Directly by Pellet Injection in DIII D

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

OVERVIEW OF THE ALCATOR C-MOD PROGRAM. IAEA-FEC November, 2004 Alcator Team Presented by Martin Greenwald MIT Plasma Science & Fusion Center

Role of Magnetic Configuration and Heating Power in ITB Formation in JET.

Plasma Stability in Tokamaks and Stellarators

Influence of ECR Heating on NBI-driven Alfvén Eigenmodes in the TJ-II Stellarator

On the physics of shear flows in 3D geometry

W.A. HOULBERG Oak Ridge National Lab., Oak Ridge, TN USA. M.C. ZARNSTORFF Princeton Plasma Plasma Physics Lab., Princeton, NJ USA

DYNAMICS OF THE FORMATION, SUSTAINMENT, AND DESTRUCTION OF TRANSPORT BARRIERS IN MAGNETICALLY CONTAINED FUSION PLASMAS

Observation of Reduced Core Electron Temperature Fluctuations and Intermediate Wavenumber Density Fluctuations in H- and QH-mode Plasmas

Role of Flow Shear in Enhanced Core Confinement

GA A27418 THE ROLE OF ZONAL FLOWS AND PREDATOR- PREY OSCILLATIONS IN THE FORMATION OF CORE AND EDGE TRANSPORT BARRIERS

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK

Diagnostics for Burning Plasma Physics Studies: A Status Report.

3-D Random Reconnection Model of the Sawtooth Crash

Observations of Counter-Current Toroidal Rotation in Alcator C-Mod LHCD Plasmas

Non-Solenoidal Plasma Startup in

Dependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D Steady-State Scenario Discharges

Stationary, High Bootstrap Fraction Plasmas in DIII-D Without Inductive Current Control

1999 RESEARCH SUMMARY

EX/C3-5Rb Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

Resistive Wall Mode Control in DIII-D

QTYUIOP ENERGY TRANSPORT IN NEUTRAL BEAM HEATED DIII D DISCHARGES WITH NEGATIVE MAGNETIC SHEAR D.P. SCHISSEL. Presented by. for the DIII D Team*

Predictive Study on High Performance Modes of Operation in HL-2A 1

ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations

Spontaneous tokamak rotation: observations turbulent momentum transport has to explain

GA A23114 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES

Investigation of Intrinsic Rotation Dependencies in Alcator C-Mod

Innovative Concepts Workshop Austin, Texas February 13-15, 2006

Overview of Tokamak Rotation and Momentum Transport Phenomenology and Motivations

ABSTRACT, POSTER LP1 12 THURSDAY 11/7/2001, APS DPP CONFERENCE, LONG BEACH. Recent Results from the Quiescent Double Barrier Regime on DIII-D

Advanced Tokamak Research in JT-60U and JT-60SA

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME

The RFP: Plasma Confinement with a Reversed Twist

Characterization of Edge Stability and Ohmic H-mode in the PEGASUS Toroidal Experiment

Triggering Mechanisms for Transport Barriers

Characterization of neo-classical tearing modes in high-performance I- mode plasmas with ICRF mode conversion flow drive on Alcator C-Mod

Pedestals and Fluctuations in C-Mod Enhanced D α H-modes

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation -

Performance limits. Ben Dudson. 24 th February Department of Physics, University of York, Heslington, York YO10 5DD, UK

TRANSPORT PROGRAM C-MOD 5 YEAR REVIEW MAY, 2003 PRESENTED BY MARTIN GREENWALD MIT PLASMA SCIENCE & FUSION CENTER

DIII D Research in Support of ITER

INTRODUCTION TO BURNING PLASMA PHYSICS

Current Drive Experiments in the HIT-II Spherical Tokamak

Study of B +1, B +4 and B +5 impurity poloidal rotation in Alcator C-Mod plasmas for 0.75 ρ 1.0.

Edge and Internal Transport Barrier Formations in CHS. Identification of Zonal Flows in CHS and JIPPT-IIU

GA A23797 UTILIZATION OF LIBEAM POLARIMETRY FOR EDGE CURRENT DETERMINATION ON DIII-D

Research of Basic Plasma Physics Toward Nuclear Fusion in LHD

INTERNAL TRANSPORT BARRIERS WITH

Experimental test of the neoclassical theory of poloidal rotation

Study of Enhanced D α H-modes Using the Alcator C-Mod Reflectometer

1 EX/C4-3. Increased Understanding of Neoclassical Internal Transport Barrier on CHS

Edge Rotational Shear Requirements for the Edge Harmonic Oscillation in DIII D Quiescent H mode Plasmas

Progress of Confinement Physics Study in Compact Helical System

Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas

GA A22443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D

n=1 RESISTIVE MODES in REVERSED MAGNETIC SHEAR ALCATOR C-MOD PLASMAS

Turbulence and Transport The Secrets of Magnetic Confinement

Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system

Measurements of rotational transform due to noninductive toroidal current using motional Stark effect spectroscopy in the Large Helical Device

Modeling of ELM Dynamics for ITER

A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current. John Sarff

Current density modelling in JET and JT-60U identity plasma experiments. Paula Sirén

Dynamics of Zonal Shear Collapse in Hydrodynamic Electron Limit. Transport Physics of the Density Limit

Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas )

Physics and Operations Plan for LDX

Energetic Particle Physics in Tokamak Burning Plasmas

Phase ramping and modulation of reflectometer signals

Characteristics of Internal Transport Barrier in JT-60U Reversed Shear Plasmas

Excitation of Alfvén eigenmodes with sub-alfvénic neutral beam ions in JET and DIII-D plasmas

Current-driven instabilities

ITER Predictions Using the GYRO Verified and Experimentally Validated TGLF Transport Model

Issues of Perpendicular Conductivity and Electric Fields in Fusion Devices

DIII D I. INTRODUCTION QTYUIOP

Oscillating-Field Current-Drive Experiment on MST

On tokamak plasma rotation without the neutral beam torque

GA A26887 ADVANCES TOWARD QH-MODE VIABILITY FOR ELM-FREE OPERATION IN ITER

High-m Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows

TOKAMAK EXPERIMENTS - Summary -

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission

Progress in Modeling of ARIES ACT Plasma

Plasma Science and Fusion Center

A THEORETICAL AND EXPERIMENTAL INVESTIGATION INTO ENERGY TRANSPORT IN HIGH TEMPERATURE TOKAMAK PLASMAS

Overview of results from MAST Presented by: Glenn Counsell, for the MAST team

Saturated ideal modes in advanced tokamak regimes in MAST

Impact of Toroidal Flow on ITB H-Mode Plasma Performance in Fusion Tokamak

ELMs and Constraints on the H-Mode Pedestal:

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation

Integrated Heat Transport Simulation of High Ion Temperature Plasma of LHD

Transcription:

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj

ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK RESEARCH Advanced tokamak research seeks to find the ultimate potential of the tokamak as a magnetic confinement system This requires innovative improvement of the tokamak concept towards Higher power density 3 Requires improved MHD stability Smaller size 3 Requires improved energy confinement Steady-state operation 3 Requires large fraction of self-generated (bootstrap) current to minimize current drive power Improved diagnostic measurements are a key aspect of this improvement Essential for developing predictive understanding Required as part of active feedback control of the state of the plasma 134 /KHB/wj

ADVANCED TOKAMAK BASICS In the range of densities and temperatures for planned magnetic fusion devices, increasing fusion power density requires increasing plasma pressure Power density p2 β2 T B4 T β T = p /(B 2 T /2 µ ) To achieve the plasma pressure needed for fusion, energy confinement time τ E must be big enough that the total power P T (fusion plus auxiliary) flowing through the plasma can produce that pressure p = (2/3) τ E P T τ E depends on many plasma parameters; generally increases with size Decreasing plasma energy loss allows us to achieve the needed p at a smaller size Tokamak plasmas require a toroidal current I to maintain the configuration; a portion of this is self-generated (bootstrap) provided by the plasma itself. Since current drive costs power, we want to maximize bootstrap current for steadystate operation fbs = CBS ε1/2 βp βp = p /(µ I2/2 Γ2) Γ is plasma poloidal circumference, ε = a/r is inverse aspect ratio 134 /KHB/wj

A COMPACT STEADY-STATE TOKAMAK REQUIRES OPERATION AT HIGH β N 15 T p = 25 ( 1 + κ 2 )( β ) 2 N 1 β β 2 β T 2 ε (1 + κ 2 ) 1 5 Current Limit Advanced Pressure Conventional Tokamak Limit Tokamak Equilibrium Limit βn βt I ab ( T ) κ = vertical plasma elongation β N = 5 a = plasma half-width β N = 3.5..5 1. 1.5 2. εβ p ε = inverse aspect ratio 134 /KHB/wj

TECHNIQUES FOR IMPROVING β N Plasma shaping Vertically elongated, somewhat triangular cross sections are much better than circles Current and pressure profile control Broad pressure profiles give higher β N Broad or hollow current profiles required for alignment with bootstrap current and provide access to second stable regime for ballooning modes in plasma core Wall stabilization Feedback control required to compensate for finite resistivity of wall material Advanced tokamak optimization is profile optimization 134 /KHB/wj

MULTIPLE INTERACTIONS MAKE ADVANCED TOKAMAK OPTIMIZATION A GRAND CHALLENGE Pressure profile shape affects stability MHD limits confinement TRANSPORT CONTROL Reduced Size Increased Power Density MHD STABILITY Current affects confinement P' affects bootstrap current Steady State Operation OPTIMIZED AT PLASMA CURRENT DRIVE Allowed P' limits bootstrap currents stability Current profile affects QTYUIOP 134-/rs

MSE MEASUREMENTS ALLOW DETERMINATION OF CURRENT DENSITY AND q PROFILES IN I p RAMP EXPERIMENTS MA a.u. MW %-mt/ma kev 1.5.5 16 8 1 5 2 8 4 I p q min β N P NBI D α q() T i () T e () shot 92389 5 1 15 2 25 Time (ms) A/cm 2 2 j 2.4 s 15 1 5 1 8 6 1.2 q.4 s shot 92389 1.6 s 1.1 s 1.4 1.6 1.8 2. 2.2 R (m).4 s 4 1.1 s 2 1.6 s 2.4 s..2.4.6 ρ.8 1. 134 /KHB/wj

COMPLETE SET OF TIME DEPENDENT PROFILES NEEDED TO STUDY TRANSPORT REDUCTION m 2 /s 1. 1. χ i ρ =.8 92389 Profile diagnostics n e : Thomson scattering, interferometry, reflectometry T e : Thomson scattering, ECE T i, v φ, n I : Charge exchange spectroscopy.1 8 P NBI ρ =.2 Ion transport reduced to neoclassical level in best cases MW 4 D α a.u. 5 1 15 2 25 Time (ms) 134 /KHB/wj

CORE TURBULENCE DROPS AS TRANSPORT DECREASES AFTER INPUT POWER INCREASE Frequency (khz) 1 5 5 k θ = 2 cm -1 r/a =.8.4 Turbulence Evolution As Barrier Expands intensity map 4.e-4 1 11 12 13 14 15 start of high time (ms) 92389 power NBI core } } edge m 2 /s 1 2 1 1 1 1 1 1 2 Ion Thermal Diffusivity ρ =.8 ρ =.2 Start of 2.5 MW NBI 92389 7.5 MW 5 1 15 2 Time (ms) Fluctuation diagnostics used at present in tokamaks: BES, FIR scattering, Langmuir probes, PCI, reflectometry QTYUIOP 134-/rs

STARK SPLITTING OF D β FROM BEAM COMPONENTS VARIES IN TIME SHOWING SENSITIVITY TO B CHANGES 2 15 3 35 4 45 16 12 8 Time (ms) Digitizer Counts 1 5 3 Shot 96625 195 ms 35 4 Pixel 45 149-/rs

E B SHEARING RATE INCREASES FASTER THAN TURBULENCE GROWTH RATE WHEN POWER INCREASES AND TRANSPORT DROPS E r from change exchange spectroscopy m 2 /s 1 2 1 1 1 1 1 1 2 Ion Thermal Diffusivity ρ =.8 ρ =.2 Start of 2.5 MW NBI 5 1 15 2 Time (ms) 92389 7.5 MW Frequency (1 3 /s) 5 4 3 2 1 Shot 92389 11 ms ω E B 2.5 MW γ max Shot 92389 15 ms 7.5 MW Reduced χ..2.4.6.8 1...2.4.6.8 1. ρ ρ ω E B = (RB θ )2 B ψ ( E r RB θ ( QTYUIOP 134-/rs

PREDICTIVE UNDERSTANDING OF MHD STABILITY MHD stability limits are the most fundamental If they are violated, plasma disrupts or has significantly reduced confinement Ideal MHD equilibrium and stability calculations are very accurate Accurate, measured profiles needed for input to calculation Theory is one of the success stories of plasma physics Active research now focuses on non-ideal effects Effect of neoclassically-driven currents on stability (neoclassical tearing modes) Resistive effects on wall-stabilization of kinks (resistive wall modes) Multiple coupled modes near the plasma boundary participating in edge localized modes Diagnostic needs concentrate on testing stability models 134 /KHB/wj

EXAMPLES OF TECHNIQUES FOR MHD STABILITY DIAGNOSTICS Measure internal structure of rotating and non-rotating low toroidal mode number (1 5) MHD modes Radial profiles of temperature at several toroidal locations (ECE) 2-D imaging at several toroidal locations (tangential SXR cameras, BES) Edge poloidal field measurement MSE measurement with counter plus co injected diagnostic neutral beams 3 Two views needed to take care of sensitivity to E r and B θ Zeeman polarimetry using lithium beam (Thomas, EP34) ff diagnostic through B measurement Spectroscopic measurement of wavelength shift of motional Stark components of D α or Dβ from fast beam neutrals Simultaneous X mode and O mode correlation reflectometry (Gilmore, AI2) 134 /KHB/wj

(cm ) R 35 3 25 35 (c m) R 3 25 MULTIPLE ECE SYSTEMS USED TO DEDUCE SAWTOOTH STRUCTURE IN TFTR REVERSE SHEAR PLASMAS ECE2 3.7274 3.7275 3.7276 3.7277 ECE1 2 µs t 1 t 2 t 3 t 4 3.7274 3.7275 3.7276 3.7277 Time (s) axis (kev) Z. Chang et al. Phys. Rev. Lett. 77, 3553 (1996) T e 4 3 2 1 (kev) 4 T e 3 2 1 t 1 t 2 t 3 t 4 ECE2 EC E 1 25 3 35 t 1 t 2 25 3 35 R (cm) hot isla nd 4 ms before sawtooth 4 ms before sawtooth t 3 t 4 cold island ECE2 TFTR top view φ ECE1 134 /KHB/wj

PREDICTIVE UNDERSTANDING OF TRANSPORT A fundamental assumption is that turbulence-driven transport can explain the difference between measured fluxes and the neoclassical predictions So far, this assumption has only been shown to be consistent with measurements of edge particle flux and edge electron heat flux Turbulence-driven transport has not been measured in plasma core Theory of turbulent-driven transport in tokamaks is not nearly as well developed and well tested as ideal MHD Significant progress recently with the gyrofluid and gyrokinetic approaches 134 /KHB/wj

EXAMPLES OF DIAGNOSTIC TECHNIQUES FOR TRANSPORT DIAGNOSTICS 2-D turbulence visualization BES (Fenzi, EP25) Laser fluorescence (Levinton, EI3) Gas puff imaging (Magueda, EP5) Thomson scattering (Zweben, FP31) Test basic modes included in theories Ion temperature gradient mode tests using high frequency charge exchange spectroscopy (HFCHERS on TFTR) Electron transport and electron temperature gradient modes High k (~1 cm 1) measurements with FIR scattering Zonal flow measurements Seek long correlation lengths in poloidal flow measured by BES, high frequency charge exchange spectroscopy or reflectometry Determine quantitatively whether fluctuation driven transport is big enough to be signicant in the plasma core Requires measurements of cross correlation between ñ, ṽ r, and T in plasma core Major innovation required to do this 134 /KHB/wj

ZONAL FLOW CHARACTERISTICS Low frequency (~5 khz), axisymmetric (k φ = ) and poloidally symmetric (k θ = ) oscillations in electrostatic potential.1 < k r ρ i <.5, comparable to standard turbulence scales ~ ~ 1 1 S ZF S ZF..5 1. 1.5 k r ρ i.6.6 ω/ω i T.S. Hahm et al., Plasma Phys. and Contr. Fusion 42, A25 (2) 134 /KHB/wj

REAL TIME MEASUREMENTS FOR FEEDBACK CONTROL Holding an advanced tokamak plasma reliably at peak performance will almost certainly require various types of feedback control For example, real time q profile measurement is crucial since current profile is so important for MHD stability Feedback loops require sensors and effectors that can work in real time Time scale is probably milliseconds to 1s of milliseconds Diagnostic challenge is to acquire the data, produce analyzed values and get these to the plasma control system in time for it to act Examples of real time sensors needed MSE polarimetry for q profile Radial and/or poloidal magnetic field at vessel wall for resistive wall mode (RWM) control Plasma rotation profile for RWM control β T value for stability limit feedback Electron density and temperature profiles for current drive control 134 /KHB/wj

CONCLUSION Advanced tokamak research seeks to find the ultimate potential of the tokamak as a magnetic confinement system This requires innovative improvement of the tokamak concept Increase power density, reduce size, achieve steady-state operation These require improvements in MHD stability, reduction in transport, and efficient current drive techniques This simultaneous, nonlinear optimization of current, pressure, and Er profiles to meet multiple goals is a grand challenge to plasma physics Innovation in diagnostic measurements is a key aspect of meeting this challenge Essential for developing predictive understanding Required as part of active feedback control of the state of the plasma 134 /KHB/wj