Susan D. Benecchi 18 April 2013

Similar documents
Transneptunian Binaries and Collision Families: Probes of our Local Dust Disk

ASTEROIDS, COMETS, AND TRANS-NEPTUNIAN OBJECTS:

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects

Pluto, the Kuiper Belt, and Trans- Neptunian Objects

Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems

Orbital Structure and Dynamical Evolution of. TNOs. Patryk Sofia Lykawka ( )

Pluto Data: Numbers. 14b. Pluto, Kuiper Belt & Oort Cloud. Pluto Data (Table 14-5)

Kuiper Belt Dynamics and Interactions

Solar System Science: Small Bodies

Chapter 06 Let s Make a Solar System

How did it come to be this way? Will I stop sounding like the

The Planet Pluto. & Kuiper Belt. The Search for PLANET X Pluto Discovered. Note how Pluto Moved in 6 days. Pluto (Hades): King of the Underworld

Lecture Outlines. Chapter 14. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Pueo-Nui Workshop Solar System Observations

A Survey of the Trans-Neptunian Region

on it, can still ripen a bunch of grapes as though it had nothing else in the Universe to do. Galileo Galilei

Corrigendum: All planetesimals born near the Kuiper belt formed as binaries

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture 38. The Jovian Planets; Kuiper Belt. Tides; Roche Limit; Rings Jupiter System Saturn, Uranus, Neptune rings Plutinos and KBO's

Solar System Research Teacher Notes The Sun

The solar system pt 2 MR. BANKS 8 TH GRADE SCIENCE

Universe Now. 5. Minor planets and other small bodies in the Solar System

Currently, the largest optical telescope mirrors have a diameter of A) 1 m. B) 2 m. C) 5 m. D) 10 m. E) 100 m.

Report to Planetary Science Decadal Survey Primitive Bodies Panel. Perspectives from the Previous PBP Experience,

SBAG GOALS Origin of the Solar System Theme

Astronomy November, 2016 Introduction to Astronomy: The Solar System. Mid-term Exam 3. Practice Version. Name (written legibly):

ABSTACT KUIPER BINARY OBJECT FORMATION

Solar System revised.notebook October 12, 2016 Solar Nebula Theory

IX. Dwarf Planets A. A planet is defined to be an object that is large enough to coalesce into a sphere and to have cleared its orbit of other

Chapters 7&8. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 21: Solar System [3/12/07] Announcements.

1UNIT. The Universe. What do you remember? Key language. Content objectives

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

The Solar System 6/23

11th tri-annual CFHT User's Meeting. Brett Gladman, UBC, for the OSSOS collaboration

Lecture 16 Dwarf Planets and Comets January 8a, 2014

The Collisional Evolution of Small Bodies in the Solar System

Which of the following statements best describes the general pattern of composition among the four jovian

Earth, Uranus, Neptune & Pluto

Water Ice on the Satellite of Kuiper Belt Object 2003 EL61

Astronomy Wed. Oct. 6

arxiv: v1 [astro-ph.ep] 31 Jul 2017

ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy

Earth-Based Support for the New Horizons Kuiper Extended Mission. Richard Binzel Alan Stern John Spencer 2016 DPS Meeting, Pasadena October18 th 2016

Smallest Kuiper Belt Object Ever Detected

New Horizons Mission To Pluto Fran Bagenal University of Colorado

Gravity: Motivation An initial theory describing the nature of the gravitational force by Newton is a product of the resolution of the

Postcards from the Edge. JJ Kavelaars

Team Name: Team Number: Score: SOLAR SYSTEM SCIENCE OLYMPIAD ROCKFORD INVITATIONAL 12 JANUARY 2019

Today. Solar System Formation. a few more bits and pieces. Homework due

Today. The Little Things. Comets. Dwarf Planets. Last Exam in last class, Thursday Dec. 7. Homework also due then.

Comet Science Goals II

PHYSICAL CHARACTERIZATION OF THE BINARY EDGEWORTH KUIPER BELT OBJECT 2001 QT 297

Comets and Kuiper Belt Objects 4/24/07

Five New and Three Improved Mutual Orbits of Transneptunian Binaries

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

Outline. Question of Scale. Planets Dance. Homework #2 was due today at 11:50am! It s too late now.

1 of 5 5/2/2015 5:50 PM

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Planetarium observing is over. Nighttime observing starts next week.

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley

9. Formation of the Solar System

THE SIZES OF KUIPER BELT OBJECTS. P. Lacerda 1,2

Earth s Formation Unit [Astronomy] Student Success Sheets (SSS)

Chapter 9 Remnants of Rock and Ice. Asteroids, Comets, and Pluto

Discovery and characteristics of the Kuiper belt binary 2003QY90

Prentice Hall EARTH SCIENCE

Chapter 15 The Formation of Planetary Systems

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Jovian Planet Properties

SOLAR SYSTEM 2019 SAMPLE EXAM

It Might Be a Planet If...

Whipple: Exploring the Solar System Beyond Neptune Using a Survey for Occultations of Bright Stars

Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n)

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements

University of Hawai'i at Mänoa

Solar Systems Near and Far - ALMA View

FCAT Review Space Science

Starting from closest to the Sun, name the orbiting planets in order.

23.1 The Solar System. Orbits of the Planets. Planetary Data The Solar System. Scale of the Planets The Solar System

Astr 1050 Wed., March. 22, 2017

Prentice Hall EARTH SCIENCE

Chapter 23: Touring Our Solar System

Who was here? How can you tell? This is called indirect evidence!

Astronomy 210 Midterm #2

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts. Chapter 12 Lecture

PTYS/ASTR 206 Section 2 Spring 2007 Homework #6 (Page 1/4) NAME: KEY

AST 105. Overview of the Solar System

Small Bodies in the Outer Solar System

12.3 Pluto: Lone Dog No More

Uranus & Neptune, The Ice Giants

Phys 214. Planets and Life

Chapter 12 Remnants of Rock and Ice. Asteroid Facts. NEAR Spacecraft: Asteroid Eros

Inclination Mixing in the Classical Kuiper Belt

Considerations on the magnitude distributions of the Kuiper belt and of the Jupiter Trojans

The Solar System - I. Alexei Gilchrist. [The Story of the Solar System]

Icarus. Considerations on the magnitude distributions of the Kuiper belt and of the Jupiter Trojans

Forming the Kuiper Belt by the Outward Transport of Objects During Neptune s Migration

PLANETARY FORMATION 5) THE SOLAR SYSTEM : GRAND TAK & NICE MODEL. Aurélien CRIDA

Unit 3 Lesson 6 Small Bodies in the Solar System. Copyright Houghton Mifflin Harcourt Publishing Company

Origin of the Solar System

Transcription:

Susan D. Benecchi Collaborators: Scott Sheppard, Keith Noll, Will Grundy, Jim Elliot & Marc Buie Some of the work presented has been supported by a Carnegie Fellowship at DTM and NASA grants at The Planetary Science Institute

Motivation & Background Survey Techniques Binaries Colors Variability/Lightcurves Summary & Implications Take home messages: Objects in the Kuiper Belt can be used as tracers for planetary migration. The characteristics of Kuiper Belt objects can help us learn about the distribution of material in the original solar nebula.

Motivation & Background Survey Techniques Binaries Colors Variability/Lightcurves Summary & Implications Take home messages: Objects in the Kuiper Belt can be used as tracers for planetary migration. The characteristics of Kuiper Belt objects can help us learn about the distribution of material in the original solar nebula.

Study of the planets and small bodies in our solar system (and others) can help us to better understand its formation. Giant planet migration. Giant planet small moons. Dust disks (the results of small body collisions). Binaries allow us to determine the physical properties of objects.

Debes et al. 2008

Perspective 1700s Halley s Comet (short period comets) 1801 1 st Asteroid, Ceres 1930 Pluto discovered 1932/1950 Opik & Oort theorize about Oort cloud (long period comet reservoir) 1949/1951 Edgeworth & Kuiper theorize about the Kuiper Belt 1992 First Kuiper Belt Object discovered 2002 First binary Kuiper Belt Object, 1998 WW 31

First Kuiper Belt Object (KBO)

Orbits related Physical characteristics related

Motivation & Background Survey Techniques Binaries Colors Variability/Lightcurves Summary & Implications Take home messages: Objects in the Kuiper Belt can be used as tracers for planetary migration. The characteristics of Kuiper Belt objects can help us learn about the distribution of material in the original solar nebula.

Box=0.6 x0.6 on the sky ±6.5 of the ecliptic Millis et al. 2002 Near Earth: 75 ''/hr Main Belt: 30-40 ''/hr Centaurs: 5-15 ''/hr Kuiper Belt: 5 ''/hr

Searched 800 square degrees 321,146 astrometric measurements, many main belt objects 498 objects designated through the Minor Planet Center (MPC) and another 371 undesignated objects Notable objects Discoveries by year: DES in red The First Neptune Trojan: 2001 QR 322 (Chiang et al. 2003) Dynamically Extreme Objects: 2000 CR 105, 2000 OM 67, 2001 FP 185 & 2000 OJ 67 (Buie et al. 2003) The first high inclination Centaur: 2002 PL 149 Binaries: 2003 UN 284, (88611) Teharon, 2003 QY 90 & 2005 EO 304 (Kern 2006+ref therein) References: Millis et al. 2002, Elliot et al. 2005 2 February 2012

Focus on End-Members Objects in dynamically interesting locations Cold Classical Kuiper Belt Resonance populations Centaurs (transition objects) Large Objects Binaries Edge-on Face-on ~1600 Objects

Focus on End-Members Objects in dynamically interesting locations Cold Classical Kuiper Belt Resonance populations Centaurs (transition objects) Large Objects Binaries Edge-on Face-on ~1600 Objects

Inclination distribution Classical population double peaked Luminosity function/size distribution Classical & Excited populations different Classical divides farther still: cold/hot Classical Resonant Scattered (Bernstein et al. 2004) (Fraser et al. 2010) (Gublis et al. 2010)

3 C9G( Terrestrial Planets Gaseous Planets 2 Asteroids Kuiper Belt 3 8*9):94 ;*(:% <'9&= 8'5(*&$&* #*(%$&4+56)7 1 8'9% M49GN*(* EK$L$(* I:'9&J 0 B*9*% A*?&:(* B'9FG( H9'?=$&* C)*+,BE++/ 2 >:?$&*9.9'(:% C)*+,D'&*9/ @'&:9( "!!"!"" #$%&'()*+,-./

Motivation & Background Survey Techniques Binaries Colors Variability/Lightcurves Summary & Implications Take home messages: Objects in the Kuiper Belt can be used as tracers for planetary migration. The characteristics of Kuiper Belt objects can help us learn about the distribution of material in the original solar nebula.

binary orbit -> system mass. Kepler s 3rd law ( m p + m ) s = 4π 2 a 3 GP 2 diameters assuming (or measuring) an albedo, p. WATER ICE I d = 2rΔ R p 10 0.2 ( m kbo +αβ m sun ) PARTIALLY HYDRATED ROCK WATER ICE I + HYDRATED ROCK Density -> Suggest composition. BASELINE PLUTO 1180 km, 1.85 g cm 3 DIFFERENTIATED ROCK FRACTION=0.65 McKinnon et al 1997 ICE II + HYDRATED ROCK BASELINE CHARON 625 km, 1.75 g cm 3 UNDIFFERENTIATED ROCK FRACTION=0.55 ρ = 4 3 d p 2 m p + m s 3 + d s 2 3 π

Dataset Details WFPC2 and ACS/HRC, 3 programs 329 objects, 3-4 images each Analyzed data with standard HST pipeline and iterative PSF fitting of images using models generated with Tiny Tim considering both single and binary results. Science Motivation: Binaries allow us to extract physical information (density/composition) about these objects from a distance. Also because these systems can be broken up they tell us about the dynamical excitation in the Kuiper Belt.

Data Model: PSFx1 Resid Scale 1 Resid Scale 2 Data Model: PSFx2 Resid Scale 1 Resid Scale 2 1999 RY 214, sep=0.055±0.014, Δm=0.09±0.09 WFPC2 ACS/HRC 2000 WT 169, sep=0.085±0.006, Δm=0.43±0.13 Data Model, Single PSF Residual 2006 SF 369, sep=0.107±0.004, Δm=0.1±0.1 Data Model, Double PSF Residual Data Model, Single PSF Residual 2003 YS 179, sep=0.248±0.007, Δm=0.30±0.03

Adapted from Kern & Elliot, 2006 Filled circles are binaries. Updated from Noll et al. 2008

HST/WFPC2 and HST/ACS programs (also some Keck LGS AO) 4 observations per HST orbit, 5 or more orbits per object Filter: F606W ~ V, F814W ~ I 18+ objects Analyzed data with standard HST pipeline and iterative PSF fitting of binary images with Tiny Tim models. Science Motivation: Measure system mass for objects in the Kuiper Belt to learn about density/composition. Also to learn about scattering in the Kuiper Belt. 2001 QL 251, 5 HST visits with WFPC2, Grundy et al. 2009 Icarus

Grundy et al. 2009, 2011

Adapted from Kern & Elliot, 2006 Filled circles are binaries. Updated from Noll et al. 2008

2000 CF 105 2001 QW 322 2003 UN 284 2005 EO 304 Classical Scattered Disk Resonant Centaur Grundy et al. 2011

3 C5B( Terrestrial Planets Gaseous Planets 2 Asteroids Kuiper Belt #*(%$&7+LM)N 3 1 4*5)657 9'5&: 8*(6% 4'5% 4'L(*&$&* @75BK*(* IA$J$(* G6'5&H 0?*5*% @A6&B >*<&6(* ;6<$&*5.5'(6%?'5EB( F5'<:$&* C)*+,?I++/ 2 C)*+,D'&*5/ " ='&65(!!"!"" #$%&'()*+,-./

22 orbits (more in progress), 8 with orbital ambiguity resolved: 6 prograde and 2 retrograde Periods range from 5 to over 800 days Semi-major axis ranges from 1,600 to 37,000 km Eccentricities range from 0 to 0.82 System masses range from 2x10 17 to 2x10 22 kg Most of the systems are near equal mass but the most massive systems are lopsided The distribution of orbital properties suggests that the most loosely-bound TNO binary systems are only found on dynamically cold heliocentric orbits, and that small TNOs may be highly dissipative

Motivation & Background Survey Techniques Binaries Colors Variability/Lightcurves Summary & Implications Take home messages: Objects in the Kuiper Belt can be used as tracers for planetary migration. The characteristics of Kuiper Belt objects can help us learn about the distribution of material in the original solar nebula.

Compilation of all color data from the literature Objects that have multiple measurements are combined with weighted averages BVRI, JHK (optical and IR) Resolved colors of 22 binaries in F606W,F814W (VI) Archive HST dataset (WFPC2, NIC2) 70 objects with F555W,F675W,F814W (VRI) 69 objects in F110W,F160W (JH) 24 overlap optical/ir 299 objects in the final database Science Motivation: Look for dynamical or physical signatures left over from giant planet migration. Ask the questions, are binaries representative of the larger population? 18 April 2012

Archive HST dataset (WFPC2, NIC2)+ Compilation of all color data from the literature = 299 objects in the final database Cold Cassical Δ Resonant Excited Science Motivation: Look for dynamical or physical signatures left over from giant planet migration. Benecchi et al. 2011

Primary and secondary components are identical in color. Correlated with Spearman Rank probability of 99.976%. Benecchi et al. 2009

K-S Test > Probability the distribution is the same for (assumed) singles and binaries > 98.8% (for all objects) > 73-98.8% (Use same classification) distribution) Benecchi et al. 2009 Benecchi et al. 2009 MBOSS (Hainaut & Delsanti 2002) and HST (Stephens et al. 2007) Color surveys

Cold Classical objects, i<6, come from a different distribution than the Resonant or excited objects, both optical and infrared colors support this conclusion No significant correlations between color and dynamical properties (semi-major axis, eccentricity, inclination and perihelion) Centaur colors are bimodal Suggestions among resonance objects, but not really enough statistics The colors of the approximately equal sized binaries in our sample are representative of the larger KBO population the coloring mechanism is not unique to binary systems. KBO color is related to the region of formation or to the region in which these objects currently reside.

Motivation & Background Survey Techniques Binaries Colors Variability/Lightcurves Summary & Implications Take home messages: Objects in the Kuiper Belt can be used as tracers for planetary migration. The characteristics of Kuiper Belt objects can help us learn about the distribution of material in the original solar nebula.

Dataset Details du Pont, Magellan Observed objects on at least 3 nights, preferably 2 observing runs. ~33 objects (to report on) + 7 resolved binaries (data under analysis) Large Southern Hemisphere TNOs, Binary TNOs, Bright Haumea Family TNOs Synthesis with datasets in the literature Biases: (1) Smaller objects are harder to get observing time to observe. (2) Long duration periods (>20 hours) are harder to obtain. Science Motivation: Investigate how rotation is influenced by size, shape and dynamical interactions. Again, are binaries representative of the larger population.

!"#$%&'()'%*"#'(+,-./%*'0(!1%2'(+,-./%*'0( (3((((((((((((((((((((4((((((((((((((((((((5(((((((((((((((((((((+(((((((((((((((((((((((((((((((6((((((((((((((((((((()( 3( )( )( 4( +( 5( 6( 6( The amplitude of the lightcurve can tell us about the spherical/elongated nature of the object. a b =10 0.4Δm

Sheppard & Jewitt 2004 Takahaski & Ip, 2005 Lacerda et al. 2008

Benecchi & Sheppard 2013

)**+,-./012!3.0/212+!45/6!"#$$!!!%#&'!!!!!!(((!!!!!!!%$(!!!!!!!!!"#!!!!!!!!!%&!; 678#%$'9)5*!"#"$%&'()*6"#:)8 -.- 3.- -.2 -.1 -.0 -./!"#"$%&'()*+%#,$) Cold Classical = red triangle Scattered = blue diamond Resonant = gray square All= black circle -.- -./ -.0 -.1 -.2 3.- 3./ 4#,$'&"5) ;<'=*>78? Cold Classical = red triangle Scattered = blue diamond Resonant = gray square All= black circle -.- -.3 -./ -.@ -.0 A'#'&= )432+.<8.1=.5/>*-1-4*3/8.>4*5/9?*,>): 5*,(+.<8.1=.5/>*-1-4*3/8.>4*5/9?*,>):!& %; %& ; &!;!& %; %& ; & The Cold Classical lightcurve properties are different from the Scattered and Resonant Population at the 3-sigma level however, there may be some observational biases to be sorted out. '78+4-,5./901234-,5.: %6& &6$ &6# &6" Benecchi & Sheppard 2013 &6!! " # $ %& '()*+,-./01234-,5.

&78*3,+4-.9/0123,+4-: B),0,3)2.C-<3)4.9D)+<(: 65" 65!!5%!5$!5#!5"!5! A!! " # $ % &'()*+,-./0123,+4- Pluto 79360 "@ "! 6@ 6! @!! " # $ % &'()*+,-./0123,+4- Benecchi & Sheppard 2013 ;)<70*3=-4.>+7+*0,3?-.;+7'-< ;+7'-<.)E.F'G-H,( 65!!5%!5$!5#!5"!5!!5!!5"!5#!5$!5% 65! 65" &78*3,+4-( % $ # "!! " # $ % 6! &'()*+,-./0123,+4- Mostly mirrors the larger TNO population, but special cases: tidally locked objects, contact binaries. Typically these are smaller objects then measured for the larger TNO population. Wide binary lightcurve results to come in a few months.

magnitude (Sloan r') The secondary variation dominates the lightcurve. Sloan i' Primary Sloan r' normalized magnitude 6.4 6.3 6.2 6.1 6 combined lightcurve 5.5 hour period Secondary Sloan i' Sloan r' 0 1 2 3 4 5 time (hours) Kern 2006

2006CH69 2006JZ81 2005EO304 Data collected with MegaCam at Magellan, March 2012 (still under analysis)

Science Goal: Mutual events occur when the components of a binary system occult and eclipse each other. Combining the results of multiple mutual events over time allows us to determine accurate sizes, and to map shapes and the distribution of surface ices on remote objects in the outer solar system, a task that cannot be accomplished with other types of observations. It also allows us to refine the mutual binary orbit. From 2009 until 2017 the Kuiper Belt binary system (79360) Sila/Nunam is undergoing such mutual events., K. S. Noll, E. Ryan

Combine observations to get full temporal coverage of event. IRTF provides part of the event plus the critical out of eclipse baseline. Prediction (UT) Start: 2013/02/08 00:30 Mid-time: 2013/02/08 04:43 End: 2013/02/08 09:03 Duration: 8.55 hours, K. S. Noll, E. Ryan

(a) y Appearance Primary d x! No eclipse z To Earth Secondary Shallow eclipse (b) G r1 r2 Deep eclipse A B k1 h2 h1 E D k2 C!1!2 F Total eclipse H

, K. S. Noll, E. Ryan, A. Thirouin Results (UT) Start: 2013/02/07 22.89844 Mid-time: 2013/02/08 03.90960 End: 2013/02/08 08.91600 Duration = 10.017 hours Next Steps Combine with Inferior event to refine mutual binary orbit. Refine timing of future events. Calculate diameters. Analyze color data from dupont & TNG.

Motivation & Background Survey Techniques Binaries Colors Variability/Lightcurves Summary & Implications Take home messages: Objects in the Kuiper Belt can be used as tracers for planetary migration. The characteristics of Kuiper Belt objects can help us learn about the distribution of material in the original solar nebula.

The Nice model. Figure from Gomes 2003, EMP and West 2003 Model: Series of papers by Morbidelli, Levison, Gomes, Tsiganis, 2005

Our planetary system is much larger than we had ever thought. Alan Stern It s akin to not having maps of the Earth that included the Pacific Ocean as recently as 1992! Planetary locations and orbits can change over time. KBO orbits are artifacts of planetary migration. Our solar system, and likely others as well, was very good at making small planets. Many KBOs, Centaurs, Comets and Asteroids

Thanks for listening. Questions?