Cluster Extensions to the Dynamical Mean-Field Theory

Similar documents
O. Parcollet CEA-Saclay FRANCE

Magnetic Moment Collapse drives Mott transition in MnO

16 Dynamical Mean-Field Approximation and Cluster Methods for Correlated Electron Systems

Mott transition : beyond Dynamical Mean Field Theory

Introduction to DMFT

Dynamical Mean Field Theory and Numerical Renormalization Group at Finite Temperature: Prospects and Challenges

Diagrammatic Monte Carlo methods for Fermions

Electronic correlations in models and materials. Jan Kuneš

Quantum Cluster Methods (CPT/CDMFT)

An efficient impurity-solver for the dynamical mean field theory algorithm

From Gutzwiller Wave Functions to Dynamical Mean-Field Theory

Role of Hund Coupling in Two-Orbital Systems

NiO - hole doping and bandstructure of charge transfer insulator

Numerical Studies of the 2D Hubbard Model

A DCA Study of the High Energy Kink Structure in the Hubbard Model Spectra

Dynamical mean field approach to correlated lattice systems in and out of equilibrium

Quantum Cluster Simulations of Low D Systems

Numerical Methods in Quantum Many-body Theory. Gun Sang Jeon Pyeong-chang Summer Institute 2014

Nano-DMFT : the electronic structure of small, strongly correlated, systems

Spin and orbital freezing in unconventional superconductors

Dual fermion approach to unconventional superconductivity and spin/charge density wave

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

arxiv:cond-mat/ v1 [cond-mat.str-el] 11 Aug 2003

Introduction to SDFunctional and C-DMFT

An introduction to the dynamical mean-field theory. L. V. Pourovskii

arxiv:cond-mat/ v2 [cond-mat.supr-con] 1 Dec 2005

Topological order in the pseudogap metal

The Hubbard model out of equilibrium - Insights from DMFT -

MOTTNESS AND STRONG COUPLING

First-order Mott transition at zero temperature in two dimensions: Variational plaquette study

FROM NODAL LIQUID TO NODAL INSULATOR

How to model holes doped into a cuprate layer

Quantum Monte Carlo study of strongly correlated electrons: Cellular dynamical mean-field theory

Recent advances on Hubbard models using quantum cluster methods

Surprises in Correlated Electron Physics

Metal-insulator transitions

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada.

Surprises in correlated electron physics

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Mott physics: from basic concepts to iron superconductors

Superconductivity, antiferromagnetism and Mott critical point in the BEDT family

Diagrammatic Monte Carlo simulation of quantum impurity models

Inelastic light scattering and the correlated metal-insulator transition

Strong Correlation Effects in Fullerene Molecules and Solids

The Gutzwiller Density Functional Theory

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model

Organic Conductors and Superconductors: signatures of electronic correlations Martin Dressel 1. Physikalisches Institut der Universität Stuttgart

arxiv:cond-mat/ v2 [cond-mat.str-el] 24 Feb 2006

Magnetism and Superconductivity on Depleted Lattices

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

Transfer of spectral weight in spectroscopies of correlated electron systems

Preface Introduction to the electron liquid

IMPACT ionization and thermalization in photo-doped Mott insulators

Dynamical Mean Field within Iterative Perturbation Theory

Magnetism and Superconductivity in Decorated Lattices

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6

Dynamical cluster approximation: Nonlocal dynamics of correlated electron systems

Mott insulators. Mott-Hubbard type vs charge-transfer type

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

From Materials to Models and Back. Dieter Vollhardt

Effect of next-nearest-neighbour interaction on d x 2 y2-wave superconducting phase in 2D t-j model

Diagrammatic extensions of (E)DMFT: Dual boson

Theory of carbon-based magnetism

arxiv:cond-mat/ v1 [cond-mat.str-el] 2 Apr 2004

College of Chemistry, Peking University, Beijing, China. Fritz-Haber-Institut der MPG, Berlin, Germany

DMFT for correlated bosons and boson-fermion mixtures

The Hubbard model in cold atoms and in the high-tc cuprates

PHYSICAL REVIEW B 80,

Quantum impurities in a bosonic bath

UNIVERSITY OF CINCINNATI

De l atome au. supraconducteur à haute température critique. O. Parcollet Institut de Physique Théorique CEA-Saclay, France

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

Continuous time QMC methods

Theory of magnetic interactions in real materials. Mikhail Katsnelson

Design and realization of exotic quantum phases in atomic gases

Quantum Cluster Methods: An introduction

Introduction to DMFT

Metal-insulator transition with Gutzwiller-Jastrow wave functions

Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations

DMFT and beyond : IPAM, Los Angeles, Jan. 26th 2009 O. Parcollet Institut de Physique Théorique CEA-Saclay, France

The Mott Metal-Insulator Transition

Topological order in quantum matter

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

arxiv:cond-mat/ v1 [cond-mat.str-el] 4 Jul 2000

Demystifying the Strange Metal in High-temperature. Superconductors: Composite Excitations

Linearized dynamical mean-field theory for the Mott-Hubbard transition

Superconducting properties of carbon nanotubes

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Mar 2006

Pseudogap and high-temperature superconductivity from weak to strong coupling. Towards a quantitative theory Review Article

Seconde partie: Quelques questions liées au transport dans les matériaux à fortes corrélations électroniques

Theoretical and experimental study of aromatic hydrocarbon superconductors

Dynamical Mean-Field Theory for Correlated Electron Materials Dieter Vollhardt

Examples of Lifshitz topological transition in interacting fermionic systems

Metal - Insulator transitions: overview, classification, descriptions

Mott metal-insulator transition on compressible lattices

Tunable frustration as a discriminator of antiferromagnetic signatures in cold atoms

Intermediate valence in Yb Intermetallic compounds

Transcription:

Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods?

Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? 2. Cluster extensions DCA, CDMFT and Co.

Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? 2. Cluster extensions DCA, CDMFT and Co. 3. Spectral functions from the DCA

Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? 2. Cluster extensions DCA, CDMFT and Co. 3. Spectral functions from the DCA 4. Summary

Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? 2. Cluster extensions DCA, CDMFT and Co. 3. Spectral functions from the DCA 4. Summary Collaborators: Th. Maier, M. Jarrell

Standard model for e.g. TMO: One band Hubbard model

Standard model for e.g. TMO: One band Hubbard model Simplest possible lattice

Standard model for e.g. TMO: One band Hubbard model Simplest possible lattice Only one relevant orbital per site

Standard model for e.g. TMO: One band Hubbard model Simplest possible lattice Only one relevant orbital per site Hopping between nearest t

Standard model for e.g. TMO: One band Hubbard model Simplest possible lattice Only one relevant orbital per site t Hopping between nearest t and next-nearest neighbors

Standard model for e.g. TMO: One band Hubbard model Simplest possible lattice Only one relevant orbital per site t U Hopping between nearest t and next-nearest neighbors Coulomb correlations

Standard model for e.g. TMO: One band Hubbard model Simplest possible lattice Only one relevant orbital per site t U Hopping between nearest t and next-nearest neighbors Coulomb correlations H = ij,σ t ij c iσ c jσ + U i n i n i Dispersion: ɛ k = ɛ 0 2t(cos k x + cos k y ) 4t (cos k x cos k y 1) Typical parameters: t 0.25eV, t /t 0.2

Standard model for e.g. TMO: One band Hubbard model Simplest possible lattice Only one relevant orbital per site t U Hopping between nearest t and next-nearest neighbors Coulomb correlations H = ij,σ t ij c iσ c jσ + U i n i n i W/2 Dispersion: ɛ k = ɛ 0 2t(cos k x + cos k y ) 4t (cos k x cos k y 1) E F -W/2 Typical parameters: t 0.25eV, t /t 0.2 Γ M X M Γ Γ X

Standard model for e.g. TMO: One band Hubbard model Simplest possible lattice Only one relevant orbital per site t U Hopping between nearest t and next-nearest neighbors Coulomb correlations H = ij,σ t ij c iσ c jσ + U i n i n i W/2 Dispersion: ɛ k = ɛ 0 2t(cos k x + cos k y ) 4t (cos k x cos k y 1) E F -W/2 Typical parameters: t 0.25eV, t /t 0.2, U/t 8 W Γ M X M Γ Intermediate coupling Regime Γ X

Standard techniques Exact Diagonalization Quantum Monte-Carlo Properties of finite systems (ED: N < 20, QMC: N < 100) Density-Matrix RenormalizationGroup Dynamical Mean-Field Theory Ground state and dynamics for D = 1 Approach to local properties RenormalizationGroup Low-energy properties Perturbation Theory Resummation of sub-classes of diagrams (FLEX) Variational wave functions Ground state properties

Successful approach for qualitative properties: DMFT

Successful approach for qualitative properties: DMFT Metal-insulator transition for n = 1 Georges et al., RMP 96, Bulla et al.,prl 99 & PRB 01 0.05 0.04 0.5 U<U c U>U c T/W 0.03 0.02 0.01 metal DOS 0-6 -4-2 0 2 4 6 ω insulator 0.00 1.0 1.2 1.4 1.6 U/W

Successful approach for qualitative properties: DMFT Metal-insulator transition for n = 1 Magnetism (AFM & FM) PSfrag replacements Zitzler et al., EPJ 02 U/(W+U) 1 0,8 0,6 0,4 0,2 FM AFM (??) AFM(PS) PM 0 0% 10% δ = 1 n 20% 30%

Successful approach for qualitative properties: DMFT Metal-insulator transition for n = 1 TP et al., PRB 93 0.6 QP Magnetism (AFM & FM) DOS 0.4 LHB UHB Correlated metal for n < 1 0.2 0-5 -4-3 -2-1 ω 0 1 2 3 4 5 Problems: No dependency on dimensionality of system wrong for D = 1 Fermi liquid ubiquitous No phases with non-local order parameter e.g. d-wave sc

Idea: Try to combine ED, QMC and (D)MFT

Idea: Try to combine ED, QMC and (D)MFT FiniteSystemSimulations Numerical exact Local & non-local dynamics Thermodynamic limit

Idea: Try to combine ED, QMC and (D)MFT FiniteSystemSimulations DynamicalMeanFieldTheory Numerical exact Local & non-local dynamics Thermodynamic limit Thermodynamic limit Local dynamics Non-local dynamics

Idea: Try to combine ED, QMC and (D)MFT FiniteSystemSimulations DynamicalMeanFieldTheory Numerical exact Local & non-local dynamics Thermodynamic limit Thermodynamic limit Local dynamics Non-local dynamics Combination: Cluster MFT Hettler, TP et al., PRB 58, 7475( 98) Lichtenstein et al., PRB 62, R9283 ( 00) Kotliar et al. PRL 87, 186401 ( 01) Maier et al., RMP ( 05).

Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? 2. Cluster extensions DCA, CDMFT and Co. 3. Spectral functions from the DCA 4. Summary

General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. Maier et al., RMP 05

General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. k y k x Maier et al., RMP 05

General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. k y (0, π) (π, π) Choose N c cluster points K: (0, 0) (π, 0) k x Maier et al., RMP 05

General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. k y (0, π) (π, π) Choose N c cluster points K: (0, 0) (π, 0) k x K Maier et al., RMP 05

General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. k y (0, π) k (π, π) Choose N c cluster points K: Σ( k, z) (0, 0) (π, 0) k x K Maier et al., RMP 05

General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. k y (0, π) k (π, π) Choose N c cluster points K: Σ( k, z) = Σ( K + k, z) k K (0, 0) (π, 0) k x K Maier et al., RMP 05

General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. k y (0, π) k (π, π) Choose N c cluster points K: Σ( k, z) = Σ( K + k, z) Σ( K, z) k K (0, 0) (π, 0) k x K Maier et al., RMP 05

General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. k y (0, π) k (π, π) Choose N c cluster points K: Σ( k, z) = Σ( K + k, z) Σ( K, z) k (0, 0) K (π, 0) k x coarse graining: Ḡ( K, z) = N c G( K N + k, z) k K Maier et al., RMP 05

General scheme in all cluster MFT: Take into account short-ranged correlations exactly Neglect long-ranged correlations Example DCA: Reduce k-space resolution to K = 2π/L. k y (0, π) k (π, π) Choose N c cluster points K: Σ( k, z) = Σ( K + k, z) Σ( K, z) k (0, 0) K (π, 0) k x coarse graining: Ḡ( K, z) = N c G( K N + k, z) k K effective periodic cluster model Maier et al., RMP 05

Practical implementation: Initial guess for Σ(K)

Practical implementation: Initial guess for Σ(K) Ḡ(K) = N c N 1 k ω ɛ K+k + µ Σ(K)

Practical implementation: G 1 (K) = Ḡ 1 (K) + Σ(K) Initial guess for Σ(K) Ḡ(K) = N c N k 1 ω ɛ K+k + µ Σ(K)

Practical implementation: Cluster Solver G(K) G c (K) G 1 (K) = Ḡ 1 (K) + Σ(K) Initial guess for Σ(K) Ḡ(K) = N c N k 1 ω ɛ K+k + µ Σ(K)

Practical implementation: Cluster Solver G(K) G c (K) G 1 (K) = Ḡ 1 (K) + Σ(K) Σ(K) = G 1 (K) G c (K) 1 Ḡ(K) = N c N k 1 ω ɛ K+k + µ Σ(K)

Practical implementation: Cluster Solver G(K) G c (K) G 1 (K) = Ḡ 1 (K) + Σ(K) Σ(K) = G 1 (K) G c (K) 1 Ḡ(K) = N c N k 1 ω ɛ K+k + µ Σ(K) Exact limits: N c = 1 DMFT, N c = N exact

Other realizations: Define cluster in real space Lichtenstein et al., PRB 00; Kotliar et al. PRL 01 Neglect self-consistency cluster perturbation-theory Gros & Valenti, Ann. der Physik 94; Sénéchal et al., PRL 00 Unifying framework: Self-energy functional theory Potthoff, EPJ 03; Dahnken et al., 03 General problem: Reconstruct full k-dependence from coarse-grained self-energy e.g. DCA: interpolate Σ(K, z) Σ(k, z)

Schematic structure of effective cluster:

Schematic structure of effective cluster: Dynamical mean-field: infinitely many degrees of freedom (noninteracting)

Schematic structure of effective cluster: Dynamical mean-field: infinitely many degrees of freedom (noninteracting) Method of choice: Hirsch-Fye QMC

Schematic structure of effective cluster: Dynamical mean-field: infinitely many degrees of freedom (noninteracting) Method of choice: Hirsch-Fye QMC

Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? 2. Cluster extensions DCA, CDMFT and Co. 3. Spectral functions from the DCA 4. Summary

2D Hubbard Modell: N c = 1 vs. N c > 1 (t = 0)

Maier, TP et al., EPJ B 13 ( 00) 2D Hubbard Modell: N c = 1 vs. N c > 1 (t = 0) 0.2 U=0 N(ω) t 0.1 0-8 -4 0 4 8 ω/t

Maier, TP et al., EPJ B 13 ( 00) 2D Hubbard Modell: N c = 1 vs. N c > 1 (t = 0) 0.2 U=0 N c = 1, U = W/2, t = 0 T=0.80t T N = 0.34t N(ω) t 0.1 0-8 -4 0 4 8 ω/t -8-4 0 4 8 ω/t

Maier, TP et al., EPJ B 13 ( 00) 2D Hubbard Modell: N c = 1 vs. N c > 1 (t = 0) 0.2 U=0 N c = 1, U = W/2, t = 0 T=0.80t T=0.40t T N = 0.34t N(ω) t 0.1 0-8 -4 0 4 8 ω/t -8-4 0 4 8 ω/t

Maier, TP et al., EPJ B 13 ( 00) 2D Hubbard Modell: N c = 1 vs. N c > 1 (t = 0) 0.2 U=0 N c = 1, U = W/2, t = 0 T=0.80t T=0.40t T N = 0.34t T=0.31t N(ω) t 0.1 0-8 -4 0 4 8 ω/t -8-4 0 4 8 ω/t N c = 1: No precursor of AF

Maier, TP et al., EPJ B 13 ( 00) 2D Hubbard Modell: N c = 1 vs. N c > 1 (t = 0) 0.2 U=0 N c = 1, U = W/2, t = 0 T=0.80t T=0.40t T N = 0.34t T=0.31t N c = 4, U = W/2, t = 0 T=0.80t T N = 0.21t N(ω) t 0.1 0-8 -4 0 4 8 ω/t -8-4 0 4 8 ω/t -8-4 0 4 8 ω/t N c = 1: No precursor of AF

Maier, TP et al., EPJ B 13 ( 00) 2D Hubbard Modell: N c = 1 vs. N c > 1 (t = 0) 0.2 U=0 N c = 1, U = W/2, t = 0 T=0.80t T=0.40t T N = 0.34t T=0.31t N c = 4, U = W/2, t = 0 T=0.80t T=0.40t T N = 0.21t N(ω) t 0.1 0-8 -4 0 4 8 ω/t -8-4 0 4 8 ω/t -8-4 0 4 8 ω/t N c = 1: No precursor of AF

Maier, TP et al., EPJ B 13 ( 00) 2D Hubbard Modell: N c = 1 vs. N c > 1 (t = 0) 0.2 U=0 N c = 1, U = W/2, t = 0 T=0.80t T=0.40t T N = 0.34t T=0.31t N c = 4, U = W/2, t = 0 T=0.80t T=0.40t T N = 0.21t T=0.17t N(ω) t 0.1 0-8 -4 0 4 8 ω/t -8-4 0 4 8 ω/t -8-4 0 4 8 ω/t N c = 1: No precursor of AF N c = 4: pseudo gap in paramagnet

Spectral functions Maier, TP et al., PRB 66 ( 02) N c = 16, U = W = 8t, t = 0.2t, t = 0.25eV

M Γ X Spectral functions Maier, TP et al., PRB 66 ( 02) N c = 16, U = W = 8t, t = 0.2t, t = 0.25eV 0-0.5-1 -1.5-2 -2.5-3 ImΣ(ω+iδ) n = 0.80, T = 370K k a k b ω -1 0 1 M X k b (c) Γ M k a (a) X Γ (b) -1 0 1-1 0 1

M Γ X Spectral functions Maier, TP et al., PRB 66 ( 02) N c = 16, U = W = 8t, t = 0.2t, t = 0.25eV 0-0.5-1 -1.5-2 -2.5-3 ImΣ(ω+iδ) n = 0.80, T = 370K k a k b ω -1 0 1 M X k b (c) Γ M k a (a) X Γ (b) -1 0 1-1 0 1 well defined quasi particles weak k-dependence of Σ( k, ω)

M Γ X Spectral functions Maier, TP et al., PRB 66 ( 02) N c = 16, U = W = 8t, t = 0.2t, t = 0.25eV n = 0.80, T = 370K well defined quasi particles weak k-dependence of Σ( k, ω) reduced quasi-particle bandwidth

M Γ X Spectral functions Maier, TP et al., PRB 66 ( 02) N c = 16, U = W = 8t, t = 0.2t, t = 0.25eV 0-0.5-1 -1.5-2 -2.5-3 ImΣ(ω+iδ) n = 0.80, T = 370K k a k b ω -1 0 1 M X k b (c) Γ M k a (a) X Γ (b) -1 0 1-1 0 1 well defined quasi particles weak k-dependence of Σ( k, ω) reduced quasi-particle bandwidth

M Q Γ X Spectral functions Maier, TP et al., PRB 66 ( 02) N c = 16, U = W = 8t, t = 0.2t, t = 0.25eV 0-0.5 n = 0.80, T = 370K M X k b (c) 0-0.5 n = 0.95, T = 370K M X k b (c) -1-1 -1.5 ImΣ(ω+iδ) k a -1.5 ImΣ(ω+iδ) -2-2.5-3 k b ω -1 0 1-2 -2.5-3 k a k b -1 0 1 ω Γ M k a (a) X Γ (b) Γ M k a (a) X Γ (b) -1 0 1-1 0 1-1 0 1-1 0 1 well defined quasi particles weak k-dependence of Σ( k, ω) reduced quasi-particle bandwidth overdamping of structures near X

M Q Γ X Spectral functions Maier, TP et al., PRB 66 ( 02) N c = 16, U = W = 8t, t = 0.2t, t = 0.25eV 0-0.5 n = 0.80, T = 370K M X k b (c) 0-0.5 n = 0.95, T = 370K M X k b (c) -1-1 -1.5 ImΣ(ω+iδ) k a -1.5 ImΣ(ω+iδ) -2-2.5-3 k b ω -1 0 1-2 -2.5-3 k a k b -1 0 1 ω Γ M k a (a) X Γ (b) Γ M k a (a) X Γ (b) -1 0 1-1 0 1-1 0 1-1 0 1 well defined quasi particles weak k-dependence of Σ( k, ω) reduced quasi-particle bandwidth overdamping of structures near X strong k-dependence of Σ( k, ω) non-fl Σ( k, ω) near X?

Fermi surface Maier, TP et al., PRB 66 ( 02) N c = 16, U = W, t = 0.2, T = 370K n = 0.95 n = 0.90 n = 0.85 n = 0.80 n 0.9 Small FS for n 1 Hole pockets? n 0.9 Large FS for n < 0.9 free-electron like FS

Thomas Pruschke Institut für Theoretische Physik Universität Göttingen Cluster Extensions to the Dynamical Mean-Field Theory 1. Why cluster methods? 2. Cluster extensions DCA, CDMFT and Co. 3. Spectral functions from the DCA 4. Summary

Aspects of cluster MFT Interpolation between finite system simulations and DMFT Thermodynamic limit for dynamics Systematic inclusion of short- and mid-ranged correlations Sensible results Reduction of transition temperatures Fluctuation induced precursors of order in spectra Nontrivial k-dependent renormalization of single-particle properties