More a progress report than a talk

Similar documents
Back to the Iron age the physics of Fe-pnictides

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010

Anisotropic Magnetic Structures in Iron-Based Superconductors

Магнетизм в железосодержащих сверхпроводниках: взаимодействие магнитных, орбитальных и решеточных степеней свободы

New perspectives in superconductors. E. Bascones Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC)

Workshop on Principles and Design of Strongly Correlated Electronic Systems August 2010

Nodal and nodeless superconductivity in Iron-based superconductors

Electronic Structure of Iron Based Superconductors: Pnictides vs. Chalcogenides

Magnetic Order versus superconductivity in the Iron-based

Structural and magnetic phase diagram of CeFeAsO 1-x F x and. its relationship to high-temperature superconductivity

Journal of Physics and Chemistry of Solids

Physics of iron-based high temperature superconductors. Abstract

Superconductivity and Magnetism in (Tl,K,Rb)Fe x Se 2. Minghu Fang ( 方明虎 ) Zhejiang University, Hangzhou , China

arxiv: v2 [cond-mat.supr-con] 26 Oct 2008

Koenigstein School April Fe-based SC. review of normal state review of sc state standard model new materials & directions

A brief Introduction of Fe-based SC

ARPES studies of Fe pnictides: Nature of the antiferromagnetic-orthorhombic phase and the superconducting gap

Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors

We have investigated the effect of atomic substitutions in the FeSe system, which

From ( 0) magnetic order to superconductivity with ( ) magnetic resonance in Fe 1.02 (Te 1-x Se x )

Superconductivity and Spin Density Wave (SDW) in NaFe 1-x Co x As

Phase Diagram of Pnictide Superconductors. Interplay between magnetism, structure, and superconductivity. B. Büchner

arxiv: v1 [cond-mat.supr-con] 26 Feb 2009

Caloric Determination of the Upper Critical Fields and Anisotropy of NdFeAsO 1-x F x. Single Crystals. U. Welp, R. Xie, A. E. Koshelev and W. K.

Brief review on iron-based superconductors: are there clues for unconventional superconductivity?

Mott physics: from basic concepts to iron superconductors

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

A Model of the Normal State Susceptibility and Transport Properties of Ba(Fe 1-

Pairing symmetry in iron based superconductors

ANISOTROPIC TRANSPORT IN THE IRON PNICTIDES

ARPES studiesof magneticphases in parents of iron-basedsuperconductors

Fermi surface nesting induced strong pairing in iron-based superconductors

Linear decrease of critical temperature with increasing Zn substitution in the iron-based superconductor BaFe x Zn 2x Co 0.

Nematic and Magnetic orders in Fe-based Superconductors

Characterization and Uncertainties in the New Superconductor A x Fe 2-y Se 2 (A= K, Rb)

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

arxiv: v1 [cond-mat.supr-con] 17 Oct 2008

Neutron scattering from quantum materials

Iron-based superconductor --- an overview. Hideo Aoki

A New Electronic Orbital Order Identified in Parent Compound of Fe-Based High-Temperature Superconductors

ARPES studies of the electronic structure of LaOFe(P,As)

Seminar Iron Pnictide Superconductors

Nodal s-wave superconductivity in BaFe 2 (As,P) 2

Superconductivity at 41.0 K in the F-doped LaFeAsO 1-x F x

Orbital-Selective Pairing and Gap Structures of Iron-Based Superconductors

Dao-Xin Yao and Chun Loong

Physics. Physics Research Publications. Purdue University Year 2009

Superconductivity in Fe-based ladder compound BaFe 2 S 3

Pairing Symmetry in a Two-Orbital Exchange Coupling Model of Oxypnictides

arxiv: v2 [cond-mat.supr-con] 11 Apr 2009

Very High Field Two-Band Superconductivity in LaFeAsO 0.89 F 0.11

edited by Nan-Lin Wang Hideo Hosono Pengcheng Dai MATERIALS, PROPERTIES, AND MECHANISMS IRON-BASED SUPERCONDUCTORS

Zhiping Yin. Department of Physics, Rutgers University Collaborators: G. Kotliar, K. Haule

arxiv: v2 [cond-mat.supr-con] 10 May 2010

A new 111 type iron pnictide superconductor LiFeP. Abstract

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Resistivity studies in magnetic materials. Makariy A. Tanatar

FROM NODAL LIQUID TO NODAL INSULATOR

Superconductivity and spin excitations in orbitally ordered FeSe

I. Review of Fe-based Superconductivity II. Disorder effects in unconventional sc

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

What we have learned from Ba(Fe 1-x TM x ) 2 As 2 studies: empirical rules to inform theory

A twisted ladder: relating the Fe superconductors to the high-t c. cuprates. Related content. Recent citations

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Anomalous Raman Scattering from Phonons and Electrons of Superconducting FeSe 0.82

Miniworkshop on Strong Correlations in Materials and Atom Traps August Superconductivity, magnetism and criticality in the 115s.

arxiv: v2 [cond-mat.supr-con] 2 May 2009

A Twisted Ladder: relating the Fe superconductors to the high T c cuprates. (Dated: May 7, 2009)

arxiv: v2 [cond-mat.supr-con] 8 May 2009

arxiv: v1 [cond-mat.supr-con] 12 Dec 2010

Superconductivity close to magnetic instability in Fe(Se 1 x Te x ) 0.82

Phonon Anomalies, Orbital-Ordering and Electronic Raman Scattering in iron-pnictide Ca(Fe 0.97 Co 0.03 ) 2 As 2 : Temperature-dependent Raman Study

Pairing state with a time-reversal symmetry breaking in FeAs-based superconductors

The Gutzwiller Density Functional Theory

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Magnetism and Superconductivity

High-T c superconductivity in FeSe monolayers: Why T c is so High?

Stripes developed at the strong limit of nematicity in FeSe film

arxiv: v2 [cond-mat.supr-con] 18 Sep 2015

Evolution of superconductivity in LaO 1-x F x BiS 2 prepared by high pressure technique

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

Strength of the spin fluctuation mediated pairing interaction in YBCO 6.6

Electronic Origin of High-Temperature Superconductivity in Single-Layer FeSe Superconductor*

Many-body effects in iron pnictides and chalcogenides

SCIENCE CHINA Physics, Mechanics & Astronomy. Charge density wave transition in Na 2 Ti 2 Sb 2 O probed by 23 Na NMR

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

Temperature and Spatial Dependence of the Superconducting

Structural and magnetic properties of transition metal substituted BaFe 2 As 2 compounds studied by x-ray and neutron scattering

Calculations of de Haas van Alphen frequencies: an ab initio approach. Simon Blackburn, Michel Côté Université de Montréal, Canada

arxiv: v3 [cond-mat.supr-con] 22 Mar 2011

Effective Hamiltonian for FeAs-based superconductors

ORBITAL SELECTIVITY AND HUND S PHYSICS IN IRON-BASED SC. Laura Fanfarillo

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Amalia Coldea. c/a. Oxford University. KITP, Santa Barbara, Jan

Material Science II. d Electron systems

A New look at the Pseudogap Phase in the Cuprates.

SYNTHESIS OF SmFeAsO BY AN EASY AND VERSATILE ROUTE AND ITS PHYSICAL PROPERTY CHARACTERIZATION

Doping-dependent phase diagram of LaOMAs (M = V Cu) and electron-type superconductivity near ferromagnetic instability

Coexistence of static magnetism and superconductivity in

Transcription:

Superconductivity and Magnetism in novel Fe-based superconductors Ilya Eremin 1,2 and Maxim Korshunov 1 1 - Max-Planck Institut für Physik komplexer Systeme, Dresden, 2- Institut für Theoretische Physik, TU Braunschweig More a progress report than a talk

Compound (powder & single crystals) Re(O 1-x F x )FeAs Superconductors T c Reference LaOFeP ~5 K Y. Kamihara et al., J. Am. Chem. Soc.128, 10012 (2006) LaNiOP ~3 K T. Watanabe et al., Inorg. Chem. 46, 7719 (2007) La[O 1-x F - x ]FeAs La[O 1-x Ca 2+ x ]FeAs 26 K (x=0.05-0.12) 0 K Y. Kamihara et al., J. Am. Chem. Soc.130, 3296 (2008) La[O 1-x F x ]NiAs 3.8 K (x=0.1)2.75 K (x=0) Z. Li et al., arxiv:0803.2572 (La 1 x Sr x )ONiAs 3.7 K (x=0.1-0.2) 2.75 K (x=0) L. Fang et al., arxiv:0803.3978 (La 1 x Sr x )OFeAs 25 K (x=0.13) H.-H. Wen et al., EPL 82, 17009 (2008) Ce[O 1 x F x ]FeAs 41 K (x=0.2) G.F. Chen et al., PRL 100, 247002 (2008) Pr[O 1-x F x ]FeAs Nd[O 1-x F x ]FeAs 52 K (x=0.11) Z.-A. Ren et al., arxiv:0803.4283; Z.-A. Ren et al., EPL, 82 (2008) Gd[O 1 x F x ]FeAs 36 K (x=0.17) P. Cheng et al., Science China 51(6), (2008). Sm[O 1 x F x ]FeAs 55 K (x=0.1-0.2) Z.-A. Ren et al., Chin. Phys. Lett. 25, (2008); R.H. Liu et al., arxiv:0804.2105

Crystal Structure of ReFeAs(O 1-x F x ) Quasi-2D Fe-As layers divided by La with Fe forming a square lattice The unit cell contains two molecules, and the chemical formula is represented by (La 2 O 2 )(Fe 2 As 2 ) Tetragonal P4/nmm space group Y. Kamihara et al., J. Am. Chem. Soc. 130, 3296 (2008)

Fe-layered structure and elementary unit cell 2a x 2a a x a top bottom

Phase diagram: n-doped n (La 3+ [O 2 1-xF 1 x]) +(Fe 2+ As 3 ) Y. Kamihara et al., J. Am. Chem. Soc. 130, 3296 (2008) Similar phase diagrams in other ReFeAs(O 1-x F x )

Phase diagram: two phase transitions at x=0 H.-H. Klauss et al., arxiv:0805.0264 T. Nomura et al., arxiv:0804.3569 1) structural phase transition at 150K 2) no Curie-Weiss behavior above T struc

Magnetic structure below T N Neutron scattering: C. de la Cruz et al., Nature 453, 899 (2008) μsr: H.-H. Klauss et al., arxiv:0805.0264 1) SDW order with Q=(π,π) for 2a x 2a or Q =(π,0) for a x a 2) magnetic moments ~ 0.3 μ B CeFeAs(O 1-x F x ) 0.8μ B Neutron scattering: J. Zhao et al., arxiv:0806.2528

Magnetism as a function of doping CeFeAs(O 1-x F x ) J. Zhao et al., arxiv:0806.2528 S. Margadonna H. Luetkens et al, al., arxiv:0806.3533 arxiv:0806.3962 Results for LaFeAs(O 1-x F x ); 1) Magnetism and structural transition are closely bound together 2) Antiferromagnetism and superconductivity do not coexist

Magnetism as a function of doping CeFeAs(O 1-x F x ) J. Zhao et al., arxiv:0806.2528 S. Margadonna H. Luetkens et al, al., arxiv:0806.3533 arxiv:0806.3962 Results for LaFeAs(O 1-x F x ); 1) Magnetism and structural transition are closely bound together 2) Antiferromagnetism and superconductivity do not coexist

Phase diagram: h-doped h K 1-x A x Fe 2 As 2 with A = Sr,Ba (Sr 2+ 1-x K + x) ) +(Fe 2+ As 3 ) 2 M. Rotter et al., arxiv:0805.4630 (2008); G.F. Chen et al., arxiv:0806.1209 (2008); K. Sasmal et al., arxiv:0806.1301 (2008); G. Wu et al., arxiv:0806.1459 (2008). magnetic transition T SDW =205K 1) crystal structure is the same as CeCu 2 Si 2 2) maximum T c = 38K (two FeAs layers per unit cell) 3) structural and magnetic transition occur at the same temperature 4) FM along b direction, AFM along a direction (b<a) Q. Huang et al., arxiv:0806.2776 (2008)

Electronic structure: LAPW LDA S. Lebegue, PRB 75, 035110 (2007); D.J. Singh, and M.-H. Du, PRL 100, 237003 (2008); I.I. Mazin et al., arxiv:0803.2740 Fe 2+ 3d 6 -states h e Weak CEF splitting: all 5(10) orbitals are crossing the Fermi level

Electronic Structure: Bands close to Fermi Level L. Boeri, O.V. Dolgov, and A.A. Golubov, PRL 101, 026403 (2008)

Electronic Structure: FS folding 2a x 2a a x a X top bottom I.I. Mazin et al., arxiv:0803.2740v3

Effective low-energy model 1) based on the two (xz,yz) orbitals plus hybridiztion between them S. Raghu et al., arxiv:0804.1113 (PRB 77 (R), (2008)) 2) 5-bands tight-binding: K. Kuroki et al., arxiv:0803.3325 3) matrix elements equal unity: four-bands model M. Korshunov and I. Eremin arxiv:0804.1793

Magnetic excitations: nearly perfect nesting at x=0 h Q AFM Q SDW e 1) nearly perfect nesting, agrees with LDA [J. Dong et al., EPL 83, 27006 (2008).] M. Korshunov and I. Eremin arxiv:0804.1793

Itinerant magnetism at AFM wave vector: RPA Magnetic instability at Q AFM det I-Γχ 0 =0 U=0.26eV J=U/5 μ=0.32 μ B μ 2 =0.1 (μ B ) 2 H.-H. Klauss et al., arxiv:0805.0264

Itinerant magnetism: doping dependence Instead of nesting hot spots magnetic instability decreases M. Korshunov and I. Eremin, Europhys. Lett.,

ARPES Fermi surfaces NdFeAs(O 1-x F x ) (x=0.1 before cleavage) BaFe 2 As 2 C. Liu et al., arxiv:0806.2147v3 L.X. Yang et al., arxiv:0806.2627v1 Both electron and hole pockets do exist There is a Fermi surface even at zero doping

Non-phononic mechanism of superconductivity interband AFM fluctuations enhancing interband Cooper-pair scattering: extended s-wave I.I. Mazin et al., arxiv:0803.2740; K. Kuroki et al., arxiv:0803.3325; M. Korshunov and I. Eremin, arxiv:0804.1793 1) isotropic gap in thermodynamics (no nodes at the Fermi surface at least in simple picture) 2) no Hebel-Slichter peak in 1/T 1, resonance peak in INS

Symmetry of the superconducting gap 1) nearly isotropic gap in ARPES Ba 0.6 K 0.4 Fe 2 As 2 H. Ding et al., arxiv:0807.0419 NdFeAsO 1-x F x T. Kondo et al., arxiv:0807.0815

Exp. situation: NMR data PrFeAs(O 1-x F x ) (x=0.11) K. Matano et al., arxiv:0806.0249 LaFeAs(O 1-x F x ) (x=0.11) Y. Nakai et al., JPSJ 77 (2008) 073701 nodal lines at the Fermi surface (not expected in the extended s-wave gap), multiple gaps further studies are necessary (conflict with pen. depth, tunneling and μsr isotropic gap)

Exp. situation: NMR data 0.15 (a) -0.06-0.07 (T 1 T) -1 (s -1 K -1 ) 0.10 0.05 K a,b (%) -0.08-0.09-0.10-0.11-0.12-0.13 0.00 0 50 100 150 200 250 300 Temperature (K) Spin lattice relaxation in the normal state: Korringa behavior: K ab2 /ακ, κ = Korringa constant typical for metals no signatures of spin fluctuations (in the As NMR!!!), Pseudogap -0.14 0 50 100 150 200 250 300 Temperature (K) H. Grafe et al., cond-mat/0805.2595

Possible effect of frustrations Q. Si and E. Abrahams, arxiv:08.04.2480v1; C. Fang et al., arxiv: 0804.3843v1; T. Yildirim arxiv0804.2252; F. Ma, arxiv:0804.3370v3 Undoped S=2 Electron doping S=3/2 J 1 ~ J 2

Electronic correlation effects 1) correlations are moderate no Mott transition U~1eV 2) situation changes for significant J H ~ 0.7 ev orbital selective Mott transition K. Haule, J.H. Shim, and G. Kotliar, Phys. Rev. Lett. 100, 226402 (2008); K. Haule, G. Kotliar, arxiv:0805.0722

Effect of the magnetic rare-earth earth substitution LaFeAs(O 1-x F x ) B. Buechner et al., unpublished SmFeAs(O 1-x F x ) Resistivity does not ~T 2 for large x Resistivity ~T 2 at x> 0.12 L. Pourovskii et al., arxiv:0807.1037

ReFeAs(O 1-x F x ) and K 1-x A x Fe 2 As 2 superconductors: present questions 1) Origin of the structural transition 2) Interrelation of structural transition and magnetism 3) frustrations effects? 4) orbital effects 5) symmetry of superconducting gap (extended s-wave) 6) relevance of spin fluctuations above T c 7) influence of the magnetic rareearth elements 8) effect of electronic correlations 9)

Standard electron-phonon interaction L. Boeri, O.V. Dolgov, and A.A. Golubov, arxiv:0803.2703; D.J. Singh and M.-H. Du, arxiv:0803.0429 For Al λ=0.44 Not sufficient to explain SC

El-ph interaction enhanced due to nesting H. Eschrig, arxiv:0804.0186v2 DOS as a function of Fe breathing phonon mode displacement