Introduction: from W W -scattering to the Higgs boson

Similar documents
Precision Calculations for Collider Physics

δm W = 15 MeV δm top = 1 GeV

Associated Higgs Production with Bottom Quarks at Hadron Colliders

HIGGS BOSONS AT THE LHC

Physics at the Large Hadron Collider

Physics at LHC. lecture seven. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

arxiv:hep-ph/ v1 13 Mar 2002

THE SEARCH FOR THE HIGGS BOSON AT THE LHC

New physics effects in Higgs cross sections

arxiv:hep-ph/ v1 25 Sep 2002

Higher Order QCD Lecture 2

Higgs Production at LHC

THE STRONG COUPLING AND LHC CROSS SECTIONS

Fully exclusive NNLO QCD computations

Searching for Supersymmetric Higgs Bosons at the LHC

Higgs physics at the LHC

Search for the Higgs Boson at the LHC. Karl Jakobs Physikalisches Institut Universität Freiburg

Cross sections for SM Higgs boson production

HIGGS BOSON PHYSICS AT THE LHC

Higgs Boson Production at the LHC

Recent theoretical issues in Higgs production

Channels and Challenges: Higgs Search at the LHC

Basics of Higgs Physics

m H tanβ 30 LHC(40fb -1 ): LEP2: e + e Zh m A (GeV)

Weak boson scattering at the LHC

HIGGS + 2 JET PRODUCTION AT THE LHC

Higgs + Jet angular and p T distributions : MSSM versus SM

Higgs Physics at the Large Hadron Collider

Threshold cross sections for Drell-Yan & Higgs productions in N 3 LO QCD

SM Predictions for Gluon- Fusion Higgs Production

Electroweak Physics at the LHC Introductory Lecture

The LHC Higgs Cross Section Working Group: Results and Future Goals. Higgs Hunting Chiara Mariotti, INFN Torino

THE TRANSVERSE MOMENTUM DISTRIBUTION OF THE HIGGS BOSON AT THE LHC

Higgs theory. Achilleas Lazopoulos (ETH Zurich) ATLAS HSG2 meeting Athens, 7 Sep Friday, December 30, 11

Physics at the LHC: from Standard Model to new discoveries

The study of the extended Higgs boson sector within 2HDM model

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

HIGGS Bosons at the LHC

AN INTRODUCTION TO QCD

Searching for the Higgs at the LHC

The Higgs boson. Marina Cobal University of Udine

Light Higgs Discovery Potential with ATLAS, Measurements of Couplings and

The forward-backward asymmetry in electron-positron annihilation. Stefan Weinzierl

Higgs in the light of Hadron Collider limits: impact on a 4th generation

SUSY-particle and MSSM Higgs production at the LHC

Finding the Higgs boson

Beyond the Standard Model Higgs boson searches using the ATLAS etector

Hunting for the Higgs Boson. Ulrich Heintz Brown University

ATLAS Discovery Potential of the Standard Model Higgs Boson

IX. Electroweak unification

SUSY-particle production at Hadron Colliders

Potential Discoveries at the Large Hadron Collider. Chris Quigg

Diphoton production at LHC

4. Search for the SM Higgs Boson

The search for the (SM) Higgs Boson

Higgs Signals and Implications for MSSM

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Higgs Searches at CMS

0.1 The Standard Model Higgs Boson

Higgs Searches and Properties Measurement with ATLAS 杨海军 ( 上海交通大学 )

Higgs and SUSY Particle Production at Hadron Colliders. Michael Spira. Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland.

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

arxiv:hep-ph/ v1 17 Apr 2000

Vector Boson Fusion approaching the (yet) unknown

The Standar Model of Particle Physics Lecture IV

Higgs Physics, after July 2012

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor

Physics at Hadron Colliders

Implications of LHC Higgs results

ATLAS+CMS Higgs run 1 Combinations

Discovery potential of the SM Higgs with ATLAS

Effects of Beyond Standard Model physics in Effective Field Theory approach on Higgs' pt spectrum

Introduction and Theoretical Background

Title Text. ATLAS Higgs Boson Discovery Potential

Higgs boson signal and background in MCFM

Pedro Teixeira-Dias. Higgs Overview

Higgs Coupling Measurements!

Higgs Searches - Overview. Kétévi A. Assamagan BNL

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Higgs-charm Couplings

Precision Higgs physics. at hadron colliders

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Higher Order Corrections to the Drell-Yan Cross Section in the Mellin Space

The Higgs discovery - a portal to new physics

Beyond the Standard Model

Study of H γγ at NLO and NNLO

Review of Higgs results at LHC (ATLAS and CMS results)

Towards Jet Cross Sections at NNLO

Tutorial 8: Discovery of the Higgs boson

Top pair production near threshold at LHC (NLO/NLL analysis in NRQCD)

Precision calculations for LHC physics

Tevatron Physics Prospects. Paul Grannis, for the CDF and DØ collaborations ICFA Seminar, Oct

Higgs production: theory overview

Threshold Corrections To DY and Higgs at N 3 LO QCD

BSM Higgs Searches at ATLAS

LHC Higgs Signatures from Extended Electroweak Guage Symmetry

Higgs production at the Tevatron and LHC

Physics at Hadron Colliders Part I

Higgs Prospects at the Upgraded Tevatron: Fermilab Study Results

The Higgs Scalar H. V (φ) φ 2. φ 1. unitary gauge. P529 Spring,

Transcription:

Introduction: from W W -scattering to the Higgs boson Michael Krämer Page 2 Universität Bielefeld, Mai 2005

Introduction: from W W -scattering to the Higgs boson Fermi: weak interactions described by effective Lagrangian eg. for µ decay µ e ν e ν µ L = G F 2 [ ν µ γ λ (1 γ 5 )µ][ēγ λ (1 γ 5 )ν e ] with G F 1.17 10 5 GeV 2 (Fermi coupling) Michael Krämer Page 2 Universität Bielefeld, Mai 2005

Introduction: from W W -scattering to the Higgs boson Fermi: weak interactions described by effective Lagrangian eg. for µ decay µ e ν e ν µ L = G F 2 [ ν µ γ λ (1 γ 5 )µ][ēγ λ (1 γ 5 )ν e ] with G F 1.17 10 5 GeV 2 (Fermi coupling) Fermi theory at high energies: M[ ν µ e µ ν e ] G F 2 2π s violates unitarity Michael Krämer Page 2 Universität Bielefeld, Mai 2005

Introduction: from W W -scattering to the Higgs boson Fermi: weak interactions described by effective Lagrangian eg. for µ decay µ e ν e ν µ L = G F 2 [ ν µ γ λ (1 γ 5 )µ][ēγ λ (1 γ 5 )ν e ] with G F 1.17 10 5 GeV 2 (Fermi coupling) Fermi theory at high energies: M[ ν µ e µ ν e ] G F 2 2π s violates unitarity Solution: interaction mediated by heavy vector boson W ± M[ ν µ e µ ν e ] G F s 2 2π M 2 W M 2 W s (with M W 100 GeV) Michael Krämer Page 2 Universität Bielefeld, Mai 2005

Introduction: from W W -scattering to the Higgs boson Consider W W W W M[W L W L W L W L ] s violates unitarity Michael Krämer Page 3 Universität Bielefeld, Mai 2005

Introduction: from W W -scattering to the Higgs boson Consider W W W W M[W L W L W L W L ] s violates unitarity Solution: strong W W interaction at high energies or new scalar particle H with g W W H M W M GF M 2H 4 2π Michael Krämer Page 3 Universität Bielefeld, Mai 2005

Introduction: from W W -scattering to the Higgs boson Consider W W W W M[W L W L W L W L ] s violates unitarity Solution: strong W W interaction at high energies or new scalar particle H with g W W H M W M GF M 2H 4 2π Unitarity properties of H: coupling g XXH particle mass M X M H < 1 TeV Michael Krämer Page 3 Universität Bielefeld, Mai 2005

Introduction: The ABEGHHK th Mechanism (Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble, t Hooft) Spontaneous symmetry breaking through scalar isodoublet φ L φ = D µ φ 2 + g d f ψ d Lφf d R + g u f ψ d L φf u R V (φ) scalar potential V = µ 2 φ 2 + λ φ 4 introduce Higgs field H: φ ( ) 0 (v+h)/ 2 (unitary gauge) Goldstone bosons longitudinal components of W, Z SM is renormalisable gauge field theory including W and Z boson masses and a physical Higgs particle Michael Krämer Page 4 Universität Bielefeld, Mai 2005

Introduction: The Higgs boson Michael Krämer Page 5 Universität Bielefeld, Mai 2005

Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: g ffh = 2m f /v gauge bosons: g V V H = 2M V /v with vacuum expectation value v 2 = 1/ 2G F (246 GeV) 2 Michael Krämer Page 5 Universität Bielefeld, Mai 2005

Introduction: The Higgs boson The Higgs mechanism is testable because all couplings are known: fermions: g ffh = 2m f /v gauge bosons: g V V H = 2M V /v with vacuum expectation value v 2 = 1/ 2G F (246 GeV) 2 The Higgs sector and the properties of the Higgs particle (lifetime, decay branching ratios, cross sections) are fixed in terms of the Higgs boson mass M H. Express Higgs potential in terms of (µ, λ) (v 2, M H ) Michael Krämer Page 5 Universität Bielefeld, Mai 2005

! " Higgs boson hunting: indirect searches Quantum corrections to precision observables m 2 t log M H Michael Krämer Page 6 Universität Bielefeld, Mai 2005

# % # # $ & Higgs boson hunting: indirect searches Quantum corrections to precision observables m 2 t log M H 200 High Q 2 except m t 68% CL m t [GeV] 180 160 m t (TEVATRON) 140 Excluded Preliminary (a) 10 10 2 10 3 m H [GeV] Michael Krämer Page 6 Universität Bielefeld, Mai 2005

' ) ' ' ( * Higgs boson hunting: indirect searches Quantum corrections to precision observables m 2 t log M H 200 High Q 2 except m t 68% CL Experimental data consistent with SM m t [GeV] 180 m t (TEVATRON) M H < 260 GeV (95% CL) (LEPEWWG) 160 140 Excluded Preliminary (a) 10 10 2 10 3 m H [GeV] Michael Krämer Page 6 Universität Bielefeld, Mai 2005

+ - + +,. Higgs boson hunting: indirect searches Quantum corrections to precision observables m 2 t log M H 200 High Q 2 except m t 68% CL Experimental data consistent with SM m t [GeV] 180 160 m t (TEVATRON) M H < 260 GeV (95% CL) (LEPEWWG) Note: Precision data also consistent with SUSY models 140 Excluded Preliminary (a) 10 10 2 10 3 m H [GeV] No evidence for ESWB through new strong interactions (eg. technicolour) Michael Krämer Page 6 Universität Bielefeld, Mai 2005

Higgs boson hunting To establish the Higgs mechanism we need to discover the Higgs boson directly at a high-energy collider measure the couplings g XXφ M X reconstruct the Higgs potential Michael Krämer Page 7 Universität Bielefeld, Mai 2005

Higgs boson hunting: collider searches Higgs decay modes and branching ratios 1 bb _ WW [HDECAY: M. Spira et al.] BR(H) ZZ 10-1 τ + τ cc _ tt - gg 10-2 10-3 γγ Zγ 50 100 200 500 1000 M H [GeV] dominant decay into b b for M H < 130 GeV W W, ZZ for M H > 130 GeV Michael Krämer Page 8 Universität Bielefeld, Mai 2005

Higgs boson hunting: past and present colliders search at the CERN LEP2 (e + e collider with s < 200 GeV) e + e / ZH M H > 114.4 GeV (95% CL) (LEPHIGGSWG) Michael Krämer Page 9 Universität Bielefeld, Mai 2005

Higgs boson hunting: past and present colliders search at the CERN LEP2 (e + e collider with s < 200 GeV) e + e / ZH M H > 114.4 GeV (95% CL) (LEPHIGGSWG) search at the Fermilab Tevatron (p p collider with s = 2 TeV) current L = 0.7 fb 1 expectation in 2008: L = 4 6 fb 1 Michael Krämer Page 9 Universität Bielefeld, Mai 2005

The Large Hadron Collider LHC pp collider located at CERN circumference 27 km s = 14 TeV L = 10 100 fb 1 /year in operation from April 2007 Michael Krämer Page 10 Universität Bielefeld, Mai 2005

We will start in 2007 CMS HB+1 CMS HB-1 Installation of readout boxes started source calibration in 2005. Insertion in vacuum tank: Summer 2005. Michael Kra mer Page 11 Universita t Bielefeld, Mai 2005

Higgs boson search at the LHC The days of the Higgs boson are numbered! Signal significance 10 2 H γ γ tth (H bb) H ZZ (*) 4 l H WW (*) lνlν H ZZ llνν H WW lνjj Total significance 10 5 σ ATLAS L dt = 30 fb -1 (no K-factors) 1 10 2 10 3 m H (GeV) Michael Krämer Page 12 Universität Bielefeld, Mai 2005

Higgs boson searches at the LHC 10 9 10 9 10 8 σ tot 10 8 10 7 10 6 10 5 Tevatron LHC 10 7 10 6 10 5 QCD background: σ b b 10 8 pb σ (nb) 10 4 10 3 10 2 10 1 10 0 10-1 10-2 10-3 10-4 σ bbar σ jet (E T jet > s/20) σ W σ Z σ jet (E T jet > 100 GeV) σ ttbar σ jet (E T jet > s/4) 10 4 10 3 10 2 10 1 10 0 10-1 10-2 10-3 10-4 events/sec for L = 10 33 cm -2 s -1 Higgs signal: σ H+X 10 pb 3 10 5 Higgs bosons/year ( L = 30 fb 1 ) 10-5 σ Higgs (M H = 150 GeV) 10-5 10-6 10-7 σ Higgs (M H = 500 GeV) 0.1 1 10 s (TeV) 10-6 10-7 Higgs-search through associate production or/and through rare decays Michael Krämer Page 13 Universität Bielefeld, Mai 2005

0 / 1 6 1 0 / 5 6 2 3 4 7 8 9 5 5 5 2 3 4 / 2 3 4 5 5 Higgs boson searches at the LHC: cross section predictions 10 2 10 gg H (NNLO) σ(pp H + X) [pb] s = 14 TeV NLO / NNLO 1 1 1 10-1 qq _ ' HW qq Hqq 10-2 10-3 10-4 gg/qq _ tt _ H (NLO) qq _ HZ MRST 100 200 300 400 500 600 700 800 900 1000 M H [GeV] 0 / Michael Krämer Page 14 Universität Bielefeld, Mai 2005

Higgs boson searches at the LHC: signal significance Signal significance 10 2 L dt = 30 fb -1 (no K-factors) ATLAS H γ γ tth (H bb) H ZZ (*) 4 l H WW (*) lνlν qqh qq WW (*) qqh qq ττ Total significance M H < 2M Z gg H (H γγ, ZZ, W W ( ) ) gg/q q t th (H b b, ττ) qq qqh q q W H (H γγ, W W, ττ) (H γγ) 10 M H > 2M Z { gg H (H ZZ, W W ) qq qqh (H ZZ, W W ) 1 100 120 140 160 180 200 m H (GeV/c 2 ) [ + diffractive Higgs production] Michael Krämer Page 15 Universität Bielefeld, Mai 2005

Higgs boson searches at the LHC: why precision calculations? Higgs discovery through resonance peak, eg. H γγ Events / 2 GeV 20000 17500 15000 12500 Signal-background, events / 2 GeV 1500 1000 500 0 10000 105 120 135 m γγ (GeV) 105 120 135 m γγ (GeV) Michael Krämer Page 16 Universität Bielefeld, Mai 2005

Higgs boson searches at the LHC: why precision calculations? Higgs discovery through resonance peak, eg. H γγ Events / 2 GeV 20000 17500 15000 12500 Signal-background, events / 2 GeV 1500 1000 500 0 10000 105 120 135 m γγ (GeV) 105 120 135 m γγ (GeV) However, need precision calculations for signal and background processes for Higgs discovery in W W decay channels (no reconstruction of mass peak possible) for a reliable determination of the discovery/exclusion significance for a precise measurement of the Higgs couplings test of the Higgs mechanism discrimination between SM and BSM (eg. SUSY) Michael Krämer Page 16 Universität Bielefeld, Mai 2005

Higgs boson searches at the LHC: why precision calculations? Example: MSSM Higgs sector two Higgs doublets to give mass to up- and down-quarks 5 physical states: h, H, A, H ± MSSM Higgs sector determined by tan β = v 2 /v 1 and M A Michael Krämer Page 17 Universität Bielefeld, Mai 2005

Higgs boson searches at the LHC: why precision calculations? Example: MSSM Higgs sector two Higgs doublets to give mass to up- and down-quarks 5 physical states: h, H, A, H ± MSSM Higgs sector determined by tan β = v 2 /v 1 and M A Consider σ MSSM (gg h γγ) σ SM (gg h γγ) 60 50 40 [Dedes, Heinemeyer, Su, Weiglein] < 0.5 0.5 0.8 0.8 1.0 1.0 1.2 1.2 1.5 >1.5 msugra gg >h >γγ differences < 10% Needs precision measurements & calculations for production cross sections and branching ratios tanβ 30 20 10 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 (GeV) M A Michael Krämer Page 17 Universität Bielefeld, Mai 2005

Particle production at hadron colliders Example: Drell-Yan process :;=< ;?> E C F=GHI BDC @ B KJ F H MLJ N N E A @ Michael Krämer Page 18 Universität Bielefeld, Mai 2005

Particle production at hadron colliders Example: Drell-Yan process OP=Q P?R W V X=YZ[ UDV S U ]\ X Z _^\ `` W T S Cross section: σ pp l + l = q dx 1 dx 2 f q (x 1 ) f q (x 2 ) ˆσ q q l + l Michael Krämer Page 18 Universität Bielefeld, Mai 2005

Particle production at hadron colliders Example: Drell-Yan process ab=c b?d i h j=klm gdh e g on j l qpn r r i f e Cross section: σ pp l + l = q dx 1 dx 2 f q (x 1 ) f q (x 2 ) ˆσ q q l + l f q, q (x) dx: probability to find (anti)quark with momentum fraction x process independent, measured in DIS Michael Krämer Page 18 Universität Bielefeld, Mai 2005

Particle production at hadron colliders Example: Drell-Yan process st=u t?v { z =}~ ydz w y ~ ƒ { x w Cross section: σ pp l + l = q dx 1 dx 2 f q (x 1 ) f q (x 2 ) ˆσ q q l + l f q, q (x) dx: probability to find (anti)quark with momentum fraction x process independent, measured in DIS ˆσ q q l + l : hard scattering cross section calculable in perturbation theory Michael Krämer Page 18 Universität Bielefeld, Mai 2005

Particle production at hadron colliders Factorization is non-trivial beyond leading order Michael Krämer Page 19 Universität Bielefeld, Mai 2005

Particle production at hadron colliders Factorization is non-trivial beyond leading order virtual corrections ˆŠ ˆ UV divergences IR divergences Michael Krämer Page 19 Universität Bielefeld, Mai 2005

Œ Œ Particle production at hadron colliders Factorization is non-trivial beyond leading order virtual corrections ŽŠ Ž real corrections Š UV divergences IR divergences IR divergences collinear divergences Michael Krämer Page 19 Universität Bielefeld, Mai 2005

Particle production at hadron colliders Factorization is non-trivial beyond leading order virtual corrections Š real corrections œš š ž œ š UV divergences IR divergences IR divergences collinear divergences UV divergences renormalization (α s (µ ren ) etc.) IR divergences cancel between virtual and real (KLN) collinear initial state divergences can be absorbed in pdfs Michael Krämer Page 19 Universität Bielefeld, Mai 2005

Ÿ Particle production at hadron colliders Initial state collinear singularities, eg. process independent divergence in dk 2 T as k2 T 0 Michael Krämer Page 20 Universität Bielefeld, Mai 2005

ª Particle production at hadron colliders Initial state collinear singularities, eg. process independent divergence in dk 2 T as k2 T 0 absorb singularity in parton densities: f q (x, µ fac ) = f q (x) + { divergent part of µ 2 fac 0 dk 2 T } Michael Krämer Page 20 Universität Bielefeld, Mai 2005

«Particle production at hadron colliders Initial state collinear singularities, eg. process independent divergence in dk 2 T as k2 T 0 absorb singularity in parton densities: f q (x, µ fac ) = f q (x) + { divergent part of µ 2 fac 0 dk 2 T } Hadron collider cross section σ = dx 1 f P i (x 1, µ F ) dx 2 f P j (x 2, µ F ) n α n s (µ R ) C n (µ R, µ F ) + O(Λ QCD /Q) (Collins, Soper, Sterman 82-84 and many others) Michael Krämer Page 20 Universität Bielefeld, Mai 2005

Particle production at hadron colliders Scale dependence σ = dx 1 fi P (x 1, µ F ) dx 2 f P j (x 2, µ F ) n α n s (µ R ) C n (µ R, µ F ) finite order in perturbation theory artificial µ-dependence: dσ d ln µ 2 R N = αs n (µ R ) C n (µ R, µ F ) n=0 = O(α s (µ R ) N+1 ) scale dependence theoretical uncertainty due to HO corrections Michael Krämer Page 21 Universität Bielefeld, Mai 2005

Particle production at hadron colliders Scale dependence Example: rapidity distribution in pp W +X σ = dx 1 fi P (x 1, µ F ) dx 2 f P j (x 2, µ F ) [Anastasiou, Dixon, Melnikov, Petriello 03] n α n s (µ R ) C n (µ R, µ F ) finite order in perturbation theory artificial µ-dependence: dσ d ln µ 2 R N = αs n (µ R ) C n (µ R, µ F ) n=0 = O(α s (µ R ) N+1 ) scale dependence theoretical uncertainty due to HO corrections significant reduction of µ dependence at (N)NLO Michael Krämer Page 21 Universität Bielefeld, Mai 2005

Particle production at hadron colliders pdf uncertainties σ W. B lν (nb) 2.80 2.75 2.70 2.65 2.60 2.55 MRST NLO and NNLO partons NNLO NLO [Martin, Roberts, Stirling, Thorne 03] W @ Tevatron Q 2 cut = 7 GeV2 Q 2 = 10 GeV2 cut x cut = 0 0.0002 0.001 0.0025 0.005 0.01 2.50 pdf < 5% (CTEQ, MRST, Alekhin,...) Michael Krämer Page 22 Universität Bielefeld, Mai 2005

Particle production at hadron colliders Precision physics at hadron colliders requires the calculation of QCD corrections at (N)NLO; the precision determination of input pdfs; the resummation of large logarithmic corrections; matching of fixed order calculations with parton showers & hadronization; the inclusion of electroweak corrections. Michael Krämer Page 23 Universität Bielefeld, Mai 2005

² ± Higgs production cross sections: theoretical status Higgs production in gluon-gluon fusion ³ ³ Michael Krämer Page 24 Universität Bielefeld, Mai 2005

µ Higgs production cross sections: theoretical status Higgs production in gluon-gluon fusion NLO corrections: K NLO 1.7 [Spira, Djouadi, Graudenz, Zerwas; Dawson, Kauffman] Michael Krämer Page 24 Universität Bielefeld, Mai 2005

Higgs production cross sections: theoretical status Higgs production in gluon-gluon fusion ¹ ¹ NLO corrections: K NLO 1.7 [Spira, Djouadi, Graudenz, Zerwas; Dawson, Kauffman] NNLO corrections: K NNLO (m top M H ) 2 [Harlander, Kilgore; Anastasiou, Melnikov 02; Ravindran et al. 03] consistent with calculations based on soft/collinear gluon approximations [MK, Laenen, Spira; Catani et al.] Michael Krämer Page 24 Universität Bielefeld, Mai 2005

» º Higgs production cross sections: theoretical status Higgs production in gluon-gluon fusion ¼ ¼ NLO corrections: K NLO 1.7 [Spira, Djouadi, Graudenz, Zerwas; Dawson, Kauffman] 10 2 σ(pp H+X) [pb] [Harlander, Kilgore 02] s = 14 TeV NNLO corrections: K NNLO (m top M H ) 2 [Harlander, Kilgore; Anastasiou, Melnikov 02; Ravindran et al. 03] consistent with calculations based on soft/collinear gluon approximations [MK, Laenen, Spira; Catani et al.] 10 LO NLO NNLO 1 100 120 140 160 180 200 220 240 260 280 300 M H [GeV] Michael Krämer Page 24 Universität Bielefeld, Mai 2005

¾ ½ Higgs production cross sections: theoretical status Higgs production in gluon-gluon fusion NLO corrections: K NLO 1.7 [Spira, Djouadi, Graudenz, Zerwas; Dawson, Kauffman] 10 2 σ(pp H+X) [pb] [Harlander, Kilgore 02] s = 14 TeV NNLO corrections: K NNLO (m top M H ) 2 [Harlander, Kilgore; Anastasiou, Melnikov 02; Ravindran et al. 03] consistent with calculations based on soft/collinear gluon approximations [MK, Laenen, Spira; Catani et al.] 10 LO NLO NNLO NNLO scale dependence < 15% 1 100 120 140 160 180 200 220 240 260 280 300 M H [GeV] Michael Krämer Page 24 Universität Bielefeld, Mai 2005

à à À Á?Â Ä À Á? à à Higgs production cross sections: theoretical status Vector boson fusion discovery channel & measurement of Higgs couplings [Kauer, Plehn, Rainwater, Zeppenfeld] NLO QCD corrections (cf DIS) +10% [Han, Valencia, Willenbrock] Michael Krämer Page 25 Universität Bielefeld, Mai 2005

È È Å Æ?Ç É Å Æ?Ç È È Higgs production cross sections: theoretical status Vector boson fusion Associated VH production ÑÓÒ Ô Î Ï Ê ËÍÌ Ð Î discovery channel & measurement of Higgs couplings [Kauer, Plehn, Rainwater, Zeppenfeld] NLO QCD corrections (cf DIS) +10% [Han, Valencia, Willenbrock] crucial for Tevatron search (M H < 130 GeV) NLO QCD corrections +(30 40)% [Han, Willenbrock] NNLO QCD corrections +10% [Brein, Djouadi, Harlander 03] NLO electroweak corrections 10% [Ciccolini, Dittmaier, MK 03] Michael Krämer Page 25 Universität Bielefeld, Mai 2005

Associated W H and ZH production: QCD + EW corrections K WH (LHC) 1.35 1.3 1.25 1.2 1.15 1.1 1.05 QCD QCD+EW 1 80 100 120 140 160 180 200 M H [GeV] K WH (Tevatron) 1.6 1.5 1.4 1.3 1.2 1.1 QCD QCD+EW 1 80 100 120 140 160 180 200 M H [GeV] K ZH (LHC) 1.6 1.5 1.4 1.3 1.2 QCD QCD+EW K ZH (Tevatron) 1.6 1.5 1.4 1.3 1.2 QCD QCD+EW 1.1 1.1 1 80 100 120 140 160 180 200 M H [GeV] 1 80 100 120 140 160 180 200 M H [GeV] Michael Krämer Page 26 Universität Bielefeld, Mai 2005

Õ Õ Ö Higgs production cross sections: theoretical status Higgs production in association with top quarks Ö Ø Michael Krämer Page 27 Universität Bielefeld, Mai 2005

Ù Û Ù Ú Higgs production cross sections: theoretical status Higgs production in association with top quarks Ú Ü σ(t th) < 1 pb (LHC, M H > 115 GeV) but: distinctive final state: pp t( W + b) t( W b) H( b b) important contribution to 5σ discovery for M H < 130 GeV Michael Krämer Page 27 Universität Bielefeld, Mai 2005

Ý ß Ý Þ Higgs production cross sections: theoretical status Higgs production in association with top quarks Þ à σ(t th) < 1 pb (LHC, M H > 115 GeV) but: distinctive final state: pp t( W + b) t( W b) H( b b) important contribution to 5σ discovery for M H < 130 GeV cross section g 2 tth direct measurement of top Yukawa coupling δg tth /g tth 15% (exp.) [Drollinger, Müller, Denegri] Michael Krämer Page 27 Universität Bielefeld, Mai 2005

á ã á â Higgs production cross sections: theoretical status Higgs production in association with top quarks â ä σ(t th) < 1 pb (LHC, M H > 115 GeV) but: distinctive final state: pp t( W + b) t( W b) H( b b) important contribution to 5σ discovery for M H < 130 GeV cross section g 2 tth direct measurement of top Yukawa coupling δg tth /g tth 15% (exp.) [Drollinger, Müller, Denegri] 1400 1200 1000 800 600 400 [Beenakker, Dittmaier, MK, Plümper, Spira, Zerwas] σ(pp tt _ H + X) [fb] s = 14 TeV M H = 120 GeV µ 0 = m t + M H /2 LO NLO 200 0.2 0.5 1 2 5 µ/µ 0 Michael Krämer Page 27 Universität Bielefeld, Mai 2005

å ç å æ Higgs production cross sections: theoretical status Higgs production in association with top quarks æ è σ(t th) < 1 pb (LHC, M H > 115 GeV) but: distinctive final state: pp t( W + b) t( W b) H( b b) important contribution to 5σ discovery for M H < 130 GeV cross section g 2 tth direct measurement of top Yukawa coupling δg tth /g tth 15% (exp.) [Drollinger, Müller, Denegri] 1400 1200 1000 800 600 400 [Beenakker, Dittmaier, MK, Plümper, Spira, Zerwas] σ(pp tt _ H + X) [fb] s = 14 TeV M H = 120 GeV µ 0 = m t + M H /2 LO NLO NLO scale dependence < 15% [Beenakker, Dittmaier, MK, Plümper, Spira, Zerwas 01; Dawson, Jackson, Orr, Reina, Wackeroth 01-03] 200 0.2 0.5 1 2 5 µ/µ 0 Michael Krämer Page 27 Universität Bielefeld, Mai 2005

Higgs production cross sections: theoretical status Recent progress for SM Higgs production includes NNLO QCD calculations for pp H [Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven; Anastasiou, Melnikov, Petriello; Blümlein, Ravindran;... (02-05)] NNLO QCD calculations for pp HZ, HW [Brein, Djouadi, Harlander (04)] (N)NLO QCD calculations for pp Q QH [Beenakker, Dittmaier, MK, Plümper, Spira, Zerwas; Dawson, Jackson, Orr, Reina, Wackeroth; Harlander, Kilgore; Campbell, Ellis, Maltoni, Willenbrock;... (01-05)] NLO QCD calculations for pp qqh [Figy, Oleari, Zeppenfeld; Berger, Campbell (03-04)] NLO EWK calculations for pp HZ, HW [Ciccolini, Dittmaier, MK (03)] (N)NLL resummation for pp H [Kulesza, Sterman, Vogelsang; Berger, Qiu; Catani, de Florian, Grazzini;... (03-04)] matching of NLO calculation with parton shower MC Herwig for pp H [Frixione, Webber (04)]; NNLO splitting functions and PDF fits, error estimates for PDF fits [Moch, Vermaseren, Vogt; MRST; CTEQ (02-05)]. Michael Krämer Page 28 Universität Bielefeld, Mai 2005

Higgs production in the MSSM: associated b bh production Associated b bh/h production is crucial for MSSM Higgs searches at large tan β Bottom-Higgs Yukawa coupling: g MSSM bbh = sin α cos β gsm bbh } tan β 1 { tan β g SM bbh (M h M A M Z ) g MSSM bbh = cos α cos β gsm bbh tan β g SM bbh (M H M A M Z ) Michael Krämer Page 29 Universität Bielefeld, Mai 2005

Higgs production in the MSSM: associated b bh production Associated b bh/h production is crucial for MSSM Higgs searches at large tan β Bottom-Higgs Yukawa coupling: g MSSM bbh = sin α cos β gsm bbh } tan β 1 { tan β g SM bbh (M h M A M Z ) g MSSM bbh = cos α cos β gsm bbh tan β g SM bbh (M H M A M Z ) [Spira] At tan β 1 associated b bh/h production becomes the dominant MSSM Higgs production mechanism Cross-section (pb) 10 4 10 3 10 2 10 h H Hbb tan β = 30 Maximal mixing gg H (SM) 1 10-1 Hqq gg H 10-2 Htt 10-3 10 2 HZ HW m h/h (GeV) Michael Krämer Page 29 Universität Bielefeld, Mai 2005

Associated b bh production mechanism At leading order Michael Krämer Page 30 Universität Bielefeld, Mai 2005

Associated b bh production mechanism At leading order }{{}}{{}}{{} M Q M H : α 2 s ln 2 (M H /M Q ) α 2 s ln(m H /M Q ) α 2 s Michael Krämer Page 30 Universität Bielefeld, Mai 2005

Associated b bh production mechanism At leading order }{{}}{{}}{{} M Q M H : α 2 s ln 2 (M H /M Q ) α 2 s ln(m H /M Q ) α 2 s Summation of ln(m H /M Q ) terms by using heavy quark PDFs [Collins, Olness, Tung; Barnett, Haber, Soper; Dicus, Willenbrock,... ] M Q M H Michael Krämer Page 30 Universität Bielefeld, Mai 2005

Associated b bh production: two calculational schemes 4-flavour scheme 5-flavour scheme Michael Krämer Page 31 Universität Bielefeld, Mai 2005

Associated b bh production: two calculational schemes 4-flavour scheme 5-flavour scheme + exact g b b splitting & mass effects no summation of ln(m H /M b ) terms Michael Krämer Page 31 Universität Bielefeld, Mai 2005

Associated b bh production: two calculational schemes 4-flavour scheme 5-flavour scheme + exact g b b splitting & mass effects no summation of ln(m H /M b ) terms + summation of ln(m H /M b ) terms LL approximation to g b b splitting Michael Krämer Page 31 Universität Bielefeld, Mai 2005

Associated b bh production: two calculational schemes 4-flavour scheme 5-flavour scheme + exact g b b splitting & mass effects no summation of ln(m H /M b ) terms + summation of ln(m H /M b ) terms LL approximation to g b b splitting The 4- and 5-flavour schemes are both theoretically consistent & well-defined represent different ways of ordering perturbation theory should agree at sufficiently high order do not match exactly at finite order Michael Krämer Page 31 Universität Bielefeld, Mai 2005

Associated b bh production: two calculational schemes Comparison at leading order strong scale dependence σ(b b H) σ(gg b bh) at µ = M H Michael Krämer Page 32 Universität Bielefeld, Mai 2005

Associated b bh production: two calculational schemes Comparison at leading order strong scale dependence σ(b b H) σ(gg b bh) at µ = M H Michael Krämer Page 32 Universität Bielefeld, Mai 2005

Associated b bh production: two calculational schemes Comparison at leading order strong scale dependence σ(b b H) σ(gg b bh) at µ = M H discrepancy reduced at µ F = M H /4 ( Harlander, Kilgore) [see also Spira; Maltoni, Sullivan, Willenbrock; Boos, Plehn] Michael Krämer Page 32 Universität Bielefeld, Mai 2005

Associated b bh production: (N)NLO corrections Comparison of 4- and 5-flavour schemes at (N)NLO (SM Higgs, LHC) [Harlander, Kilgore; Dittmaier, MK, Spira] 10 3 σ(pp bb _ h + X) [fb] s = 14 TeV µ = (2m b + M h )/4 10 2 bb _ h (NNLO) 10 gg bb _ h (NLO) 100 150 200 250 300 350 400 M h [GeV] Michael Krämer Page 33 Universität Bielefeld, Mai 2005

Higgs background calculations Example: pp H γγ/w W backgrounds γγ background NLO parton level MC program pp γγ (DIPHOX) [Binoth, Guillet, Heinrich, Pilon, Werlen] gg γγ at NLO (2-loop) [Bern, De Freitas, Dixon, Schmidt 02] W W background jet veto effects [Catani, De Florian, Grazzini] NLO parton level MC program pp W + W [Frixione, Nason, Ridolfi; Baur, Han, Ohnemus] NLO spin correlations in leptonic W decays [Dixon, Kunszt, Signer] t t backgrounds including finite width effects [Kauer, Zeppenfeld] NLO parton level MC program pp W/Z + b b [Campbell, Ellis, Veseli] gluon-gluon induced contributions to pp W W lνlν [Binoth, Ciccolini, Kauer, MK 05] Michael Krämer Page 34 Universität Bielefeld, Mai 2005

W W production: a background to Higgs searches pp H W W l ν l ν is an important Higgs search channel W W pair production is the dominant background: σ BR 5 times larger than signal a Higgs mass peak cannot be reconstructed from leptonic W decays theoretical control of the background is important ( 5%!) Michael Krämer Page 35 Universität Bielefeld, Mai 2005

W W production: a background to Higgs searches pp H W W l ν l ν is an important Higgs search channel W W pair production is the dominant background: σ BR 5 times larger than signal a Higgs mass peak cannot be reconstructed from leptonic W decays theoretical control of the background is important ( 5%!) experimental selection cuts to enhance the signal/background ratio may amplify the importance of higher-order corrections for background processes Michael Krämer Page 35 Universität Bielefeld, Mai 2005

W W production: a background to Higgs searches pp H W W l ν l ν is an important Higgs search channel W W pair production is the dominant background: σ BR 5 times larger than signal a Higgs mass peak cannot be reconstructed from leptonic W decays theoretical control of the background is important ( 5%!) experimental selection cuts to enhance the signal/background ratio may amplify the importance of higher-order corrections for background processes example: gg W W l ν l ν [Binoth, Ciccolini, Kauer, MK (05)] g d W e d ν µ g d W + u ν e µ + formally NNLO but enhanced by Higgs search cuts gg q q (NLO) corr. σ tot 54 fb 1373 fb 4% σ bkg 1.39 fb 4.8 fb 30% Michael Krämer Page 35 Universität Bielefeld, Mai 2005

Summary and Conclusions Michael Krämer Page 36 Universität Bielefeld, Mai 2005

Summary and Conclusions The LHC will find the (or a or various) Higgs boson(s) (or some new strong interactions in the gauge boson sector) Michael Krämer Page 36 Universität Bielefeld, Mai 2005

Summary and Conclusions The LHC will find the (or a or various) Higgs boson(s) (or some new strong interactions in the gauge boson sector) Higgs physics is exciting: reveals the mechanism of electroweak symmetry breaking points towards physics beyond the SM (hierarchy problem) Michael Krämer Page 36 Universität Bielefeld, Mai 2005

Summary and Conclusions The LHC will find the (or a or various) Higgs boson(s) (or some new strong interactions in the gauge boson sector) Higgs physics is exciting: reveals the mechanism of electroweak symmetry breaking points towards physics beyond the SM (hierarchy problem) Exploring Higgs physics at the LHC needs precision measurements and precision calculations signal cross sections are now known within 15% or better more work is needed to improve prediction of background processes Michael Krämer Page 36 Universität Bielefeld, Mai 2005

Summary and Conclusions The LHC will find the (or a or various) Higgs boson(s) (or some new strong interactions in the gauge boson sector) Higgs physics is exciting: reveals the mechanism of electroweak symmetry breaking points towards physics beyond the SM (hierarchy problem) Exploring Higgs physics at the LHC needs precision measurements and precision calculations signal cross sections are now known within 15% or better more work is needed to improve prediction of background processes Exciting times ahead! Michael Krämer Page 36 Universität Bielefeld, Mai 2005