Complex Variables. Chapter 19 Series and Residues. March 26, 2013 Lecturer: Shih-Yuan Chen

Similar documents
10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

ICS141: Discrete Mathematics for Computer Science I

Asymptotic Dominance Problems. is not constant but for n 0, f ( n) 11. 0, so that for n N f

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

Available online through

this is the indefinite integral Since integration is the reverse of differentiation we can check the previous by [ ]

14.2 Line Integrals. determines a partition P of the curve by points Pi ( xi, y

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

In Calculus I you learned an approximation method using a Riemann sum. Recall that the Riemann sum is

Chapter 1. Infinite Sequences and Series. 1.1 Sequences. A sequence is a set of numbers written in a definite order

COMPLEX NUMBERS AND DE MOIVRE S THEOREM

n 1 n 2 n 2 n n 1 ln n 2 1 n Express the number as a ratio of integers

12 Iterative Methods. Linear Systems: Gauss-Seidel Nonlinear Systems Case Study: Chemical Reactions

Differential Entropy 吳家麟教授

Strategies for the AP Calculus Exam

Area and the Definite Integral. Area under Curve. The Partition. y f (x) We want to find the area under f (x) on [ a, b ]

The z-transform. LTI System description. Prof. Siripong Potisuk

Linear Open Loop Systems

Math 2414 Activity 16 (Due by end of class August 13) 1. Let f be a positive, continuous, decreasing function for x 1, and suppose that

Sequences and summations

Outline. Finite Difference Grids. Numerical Analysis. Finite Difference Grids II. Finite Difference Grids III

LECTURE 8: Topics in Chaos Ricker Equation. Period doubling bifurcation. Period doubling cascade. A Quadratic Equation Ricker Equation 1.0. x x 4 0.

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

under the curve in the first quadrant.

Review Exam II Complex Analysis

Chapter 7 Infinite Series

THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 6, Number 1/2005, pp

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

Review of Sections

Basic Structures: Sets, Functions, Sequences, and Sums

Chapter 7. Bounds for weighted sums of Random Variables

UNIT I. Definition and existence of Riemann-Stieltjes

On Several Inequalities Deduced Using a Power Series Approach

Mu Sequences/Series Solutions National Convention 2014

Chapter 2 Intro to Math Techniques for Quantum Mechanics

POWER SERIES R. E. SHOWALTER

MTH 146 Class 7 Notes

A Study on New Sequence of Functions Involving the Generalized Contour Integral

CS321. Numerical Analysis

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

Infinite Sequences and Series. Sequences. Sequences { } { } A sequence is a list of number in a definite order: a 1, a 2, a 3,, a n, or {a n } or

X ε ) = 0, or equivalently, lim

( a n ) converges or diverges.

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists.

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

Mathematically, integration is just finding the area under a curve from one point to another. It is b

MAS221 Analysis, Semester 2 Exercises

Integration by Parts for D K

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen

Chapter 2 Infinite Series Page 1 of 9

Simple Linear Regression Analysis

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Numerical Differentiation and Integration

A Brief Introduction to Olympiad Inequalities

b a 2 ((g(x))2 (f(x)) 2 dx

Chapter Simpson s 1/3 Rule of Integration. ( x)

Sequence and Series of Functions

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

COMPLEX ANALYSIS AND PROBABILITY DISTRIBUTION

BC Calculus Review Sheet

Course 121, , Test III (JF Hilary Term)

On a class of analytic functions defined by Ruscheweyh derivative

15 DEFINITE INTEGRALS

Chapter #2 EEE Subsea Control and Communication Systems

Chapter 12-b Integral Calculus - Extra

Math 104: Final exam solutions

ROOT-LOCUS ANALYSIS. Lecture 11: Root Locus Plot. Consider a general feedback control system with a variable gain K. Y ( s ) ( ) K

Linear Approximating to Integer Addition

Review of the Riemann Integral

Approximations of Definite Integrals

Module 2: Introduction to Numerical Analysis

Chapter 5 Properties of a Random Sample

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES

means the first term, a2 means the term, etc. Infinite Sequences: follow the same pattern forever.

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

CS321. Introduction to Numerical Methods

MATH2999 Directed Studies in Mathematics Matrix Theory and Its Applications

We will begin by supplying the proof to (a).

ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT DIVERGENT INTEGRALS

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

Chapter Newton-Raphson Method of Solving Simultaneous Nonlinear Equations

6.6 Moments and Centers of Mass

SUMMARY OF THE ZETA REGULARIZATION METHOD APPLIED TO THE CALCULATION OF DIVERGENT SERIES

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

The Basic Properties of the Integral

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 2 Intro to Math Techniques for Quantum Mechanics

PubH 7405: REGRESSION ANALYSIS REGRESSION IN MATRIX TERMS

Sequences and Series of Functions

MA123, Chapter 9: Computing some integrals (pp )

Math 3B Midterm Review

Analysis of error propagation in profile measurement by using stitching

The definite Riemann integral

CS473-Algorithms I. Lecture 12b. Dynamic Tables. CS 473 Lecture X 1

Test Info. Test may change slightly.

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Answer: First, I ll show how to find the terms analytically then I ll show how to use the TI to find them.

The Mathematical Appendix

Transcription:

omplex Vrble hpter 9 Sere d Redue Mrch 6, Lecturer: Shh-Yu he Except where otherwe oted, cotet lceed uder BY-N-SA. TW Lcee.

otet Sequece & ere Tylor ere Luret ere Zero & pole Redue & redue theorem Evluto o rel tegrl

Sequece & Sere Sequece { }: A ucto whoe dom the et o potve teger; other word, we g complex umber to ech teger,,, Ex. The equece { } lm Sequece { } coverget. 5 L

Sequece & Sere Or { } coverge to L, or ech potve umber ε, N c be oud uch tht L < ε wheever > N. A { } coverge to L, ll but te umber o t term re wth every ε -eghborhood o L. Ex. Sequece lm,,,, 5,

Sequece & Sere rtero or covergece Thm. { } coverge to complex umber L Re( ) coverge to Re(L) d Im( ) coverge to Im(L). Ex. Sequece Im Re 5

Sequece & Sere Sere A te ere o complex umber coverget the equece o prtl um {S }, where S, coverge. I S L, we y tht the um o the ere L. 6

Sequece & Sere Geometrc ere For the geometrc ere the -th term o the equece o prtl um S S For For S <,, S the ere dverge. ( ), 7

Sequece & Sere Two pecl geometrc ere I ddto, we hve vld or < 6 5 8

Sequece & Sere Ex. The geometrc ere 5 5 5 5 5 5 5 5 5 5 5 < 9

Sequece & Sere Necery codto or covergece lm Thm. I coverge, the The -th term tet or dvergece lm Thm. I, the the ere dverge. 5 Ex. dverge ce. Ex. The geometrc ere () dverge whe.

Sequece & Sere Abolute covergece De. Ite ere coverget d to be bolutely coverge. Abolute covergece mple covergece. Ex. Sere bolutely coverget ce & the rel ere coverge. Alo, rel ere coverge or p > & p dverge or p.

Sequece & Sere Rto tet Thm. Suppoe complex term uch tht ere o oero lm L 7 () L <, the ere coverge bolutely. () L > or L, the ere dverge. () L, the tet cocluve.

Sequece & Sere Root tet Thm. Suppoe uch tht ere o complex term () L <, the ere coverge bolutely. () L > or L, the ere dverge. lm L 8 () L, the tet cocluve.

Sequece & Sere Power ere A te ere o the orm ( 9) where re complex cott, clled power ere. (9) d to be cetered t & the complex pot reerred to the ceter o the ere. From (9), oe c dee eve whe

Sequece & Sere rcle o covergece Every complex power ere h rdu o covergece R or h crcle o covergece deed by R or < R <. The power ere coverge bolutely or ll tyg < R & dverge or > R. A power ere my coverge t ome, ll, or oe o the pot o the crcle o covergece. R c be ero, te umber, or. 5

Sequece & Sere Ex. oder the power ere lm lm Thu the ere coverge bolutely or <. The crcle o covergece & the rdu o covergece R. O the crcle, the ere doe ot coverge bolutely, ce the ere o bolute vlue the dverget ere 6

Sequece & Sere At, the ere coverget. Ideed, the ere coverge t ll pot o the crcle except t. From bove, or power ere the lmt (7) deped o oly the coecet. Thu, lm lm α R α R lm R ( )

Sequece & Sere Ex. The power ere ( ) ( ) ( )!! lm lm!! R The power ere wth ceter coverge bolutely or ll. 8

Sequece & Sere Ex. The power ere The crcle o covergece /; the ere coverge bolutely or < /. 5 6 5 6 lm lm 5 6 R 9

Tylor Sere Here, we wll ume tht power ere h ether potve or te rdu R o covergece. otuty ( ) Thm. A power ere repreet cotuou ucto () wth t crcle o covergece R.

Tylor Sere Term-by-term tegrto Thm. A power ere ( ) c be tegrted term by term wth t crcle o covergece R, or every cotour lyg etrely wth the crcle o covergece. Term-by-term deretto Thm. A power ere ( ) c be deretted term by term wth t crcle o covergece R.

Tylor Sere Tylor ere Suppoe power ere repreet ucto () or < R ; tht

Tylor Sere The orgl power ere repreet deretble ucto wth t crcle o covergece. From bove, we coclude tht R, power ere repreet lytc ucto wth t crcle o covergece. Reltohp betwee & the dervtve o () ( ), ( )!, ( )!, ( ) ( ) ( )! ( ) ( )! or!

Tylor Sere Thu we hve ( ) whch clled Tylor ere or cetered t. A Tylor ere wth ceter, ( )! reerred to Mclur ere. ( ) ( )!

Tylor Sere Tylor theorem Let be lytc wth dom D & let be pot D. The h the ere repreetto ( ) ( )! vld or the lrget crcle cetered t & rdu R tht le etrely wth D. 5

Tylor Sere (proo) Let be xed pot wth & let deote the vrble o tegrto. decrbed by R. Ue the uchy tegrl ormul to obt the vlue o t : d d d 6

Tylor Sere Ug (6), we hve d d d d d 7

Tylor Sere Ug uchy tegrl ormul or dervtve, ( ) where R ( ) ( ) ( ) ( ) ( ) R ( )!! ( )( ) () clled Tylor ormul wth remder R.! d 8

Tylor Sere Sce lytc D, () h mx vlue M o. Bede, ce de, we hve < R, & coequetly, The ML-equlty the gve d R R d d R MR R R d R M d d R 9

Tylor Sere Thereore, the te ere ( ) ( ) ( )! coverge to (). I other word, the reult vld or y pot teror to.! ( ) ( )!

Tylor Sere Note tht R the dtce rom the ceter o the ere to the eret olted gulrty o (). A olted gulrty pot t whch () l to be lytc but lytc t ll other pot throughout ome eghborhood o the pot. Ex. 5 olted gulrty o () /( 5). I etre, the the rdu o covergece o Tylor ere cetered t y pot ecerly te.

Tylor Sere Ug () & the lt ct, we c y tht the Mclur ere repreetto e ( )!!! 5! 5! co!! re vld or ll. ( 5)! ( 6)!

Tylor Sere The power ere expo o ucto wth ceter uque. It me tht power ere expo o lytc ucto cetered t, rrepectve o the method ued to obt t, the Tylor ere expo o the ucto. Ex. Oe c lo obt (6) by mply derettg (5) term by term.

Tylor Sere Ex. Fd the Mclur expo. Note tht or <, The rdu o covergece o th lt ere the me the orgl ere, R.

Tylor Sere Ex. Expd ceter., ( )! ( ) ( )! ( ) ( ) ( ) Tylor ere wth, ( ), The crcle o covergece or the power ere 5 5

Tylor Sere Altertvely, we c wrte From (), we hve

Tylor Sere The ucto c be expded to The rt ere h ceter ero & R. The d ere h ceter & R. 5 7

Luret Sere I l to be lytc t, the th pot d to be gulrty or gulr pot o the ucto. Ex. () /( ) & Ex. L & ll egtve rel umber Iolted gulrte Suppoe tht gulrty o (). d to be olted gulrty o there ext ome puctured ope d < < R o throughout whch lytc. 8

Luret Sere A ew d o ere I gulrty o, the c ot be expded power ere wth t ceter. However, oe could repreet bout olted gulrty by ew ere volvg both egtve & oegtve teger power o ; tht, 7 9

Luret Sere The ere prt o the RHS (7) wth egtve power, tht ( ) ( ) clled the prcpl prt o the ere (7) & wll coverge or /( ) < r* or > /r* r. The prt cotg o the oegtve power, ( ) clled the lytc prt o (7) & wll coverge or < R.

Luret Sere Hece, the um o thee prt coverge whe both > r & < R, or whe pot ulr dom deed by r < < R. (7) c be wrtte compctly ( )

Luret Sere Ex. () ( )/ ot lytc t & hece cot be expded Mclur ere. However, etre ucto, & rom (5) coverge or ll.! 5 5! 7 7!! 5! 7! ( 8) Th ere coverge or ll except t, or or <.

Luret Sere Luret theorem Thm. Let be lytc wth the ulr dom D deed by r < < R. The h the ere repreetto ( ) ( ) d or ( 9) vld or r < < R. The coecet re, ±, ±, where mple cloed curve tht le etrely wth D & h t teror.

Luret Sere (proo) Let & be cocetrc crcle wth ceter & rd r & R, where r < r < R < R. Let be xed pot D tht lo te r < < R. By troducg cro cut betwee &, we d rom uchy tegrl ormul ( ) ( ) d d

Luret Sere Ug (6), we hve,,, or where d d d d d 5

Luret Sere,,, d R d R d or where 6

d Luret Sere Let d & let M deote the mx vlue o () o the cotour. Sce r, The ML-equlty the gve Thu, r d d r r d Mr r r d r M d d R 7

Luret Sere ombg the two term yeld ( ) ( ) ( ) ( ) ( ) where or, ±, ± Note tht we hve replced & by y mple cloed cotour D wth t teror. d, 8

Luret Sere Note tht Luret expo geerlto o Tylor ere. Some poble ulr dom: r, R te: the ere coverge the ulr dom < < R. r, R : r <. r, R : <. Regrdle o how Luret ere o ucto obted peced ulr dom, the obted Luret ere uque.

Luret Sere Ex. Expd Luret ere ( ) vld or () < < (b) < (c) < < (d) <. For () & (b), oe c repreet ere volvg oly egtve & oegtve teger power o. ( ) 5

Luret Sere < / < For (c) & (d), oe c repreet ere volvg egtve & oegtve teger power o. 5 5

Luret Sere coverge or < <. Smlrly, [ ]

Luret Sere coverge or /( ) < & lo <. 5 5

Luret Sere Ex. Expd Luret ere or () < < (b) < <. () 6 8 5

Luret Sere (b) [ ] 8 6!!! 55

Luret Sere Ex. Expd Luret ere vld or < <. The geometrc ere coverge or <. Thu, the reultg Luret ere vld or < <. 8 9 9 9 8 8 8 56

Luret Sere Ex. Expd or < <. ( ) Luret ere The dom ceter pot o lytcty o. Oe c d two ere volvg teger power o : covergg or < & <, repectvely. 57

Luret Sere th ere coverge or ( )/ < or <. 58

Luret Sere coverge or /( ) < or <. ombg the reult o () & (), vld or < <. 59

Luret Sere Ex. Expd vld or <. From (), e e!! e!! Th ere vld or <. Luret ere or 6

Luret Sere Replcg the complex vrble wth, we ee tht whe, () or the Luret ere coecet yeld ( ) d or, ±, ±, d d 6

Zero & Pole lcto o olted gulr pot Deped o whether the prcpl prt (PP) o t Luret expo cot ero, te umber, or te umber o term. () I PP ero, removble gulrty. (b) I PP cot te umber o oero term, the pole. For the lt oero term wth ( ), pole o order. A pole o order commoly clled mple pole. (c) I PP cot tely my oero term, the eetl gulrty. 6

Zero & Pole Ex. Sce! 5! removble gulrty o (). I h removble gulrty t, the we c properly dee the vlue o ( ) o tht become lytc t the pot. Sce the RHS o () t, t me ee to dee (). Wth th deto, () ( )/ lytc t. 6

Zero & Pole Ex. From! 5! or <, we ee tht & o mple pole o () ( )/. Ex. For the exmple p.6, e or <!! PP o () e / cot te umber o term. Thu eetl gulrty. 6

Zero & Pole Ex. For prt (b) o the exmple p.5, The Luret expo o ( ) 5 or < However, NOT eetl gulrty o. From prt () o the exmple, we w tht or < < Hece, mple pole. 65

[ ] but,,,,, Zero & Pole Zero ero o ucto ( ). Alytc ucto h ero o order t Ex. For () ( 5) 5 ero o order. I lytc ucto h ero o order t, the Tylor ere expo o cetered t

Zero & Pole Ex. () h ero t. By replcg by (5), we obt 6!! 5! Hece, ero o order. 5! 8 67

Zero & Pole A ero o otrvl lytc ucto olted ce there ext ome eghborhood o or whch () t every pot tht eghborhood except t. Thereore, ero o otrvl lytc ucto, the the ucto / () h olted gulrty t. Pole o order Thm. I & g re lytc t d h ero o order t & g( ), the the ucto F() g()/ () h pole o order t. 68

Zero & Pole Ex. For the ucto F 5 ( )( 5)( ) F() h mple pole t & 5 d pole o order t. Ex. From the exmple p.67, we coclude tht the ucto F() /( ) h pole o order t. Note tht ucto h pole t, the () rom y drecto. 69

Redue & Redue Theorem Redue Recll, the complex ucto h olted gulrty t, the h Luret ere repreetto whch coverge or < < R. The coecet clled the redue o t the olted gulrty wth the otto Re (, ) 7

Redue & Redue Theorem I PP o the Luret ere vld or < < R cot te umber o term wth the lt oero coecet, the pole o order. I PP o the ere cot te umber o term wth oero coecet, the eetl gulrty. Ex. For the exmple p.6, eetl gulrty o () e /. The redue o t (, ) Re 7

lm, Re Redue & Redue Theorem Redue t mple pole Thm. I h mple pole t, the (proo) The Luret ere expo o bout the mple pole h the orm, Re lm 7

lm!, Re d d Redue & Redue Theorem Redue t pole o order Thm. I h pole o order t, the (proo) The Luret ere expo or < < R 7

Redue & Redue Theorem Derette tme d d d d d d lm!! lm!! 7

Redue & Redue Theorem Ex. h mple pole t ( ) & pole o order t. Fd the redue. Ue () or the mple pole t, Re(, ) lm( ) lm Ue () or the pole o order t, Re! d d ( ), lm lm ( ) lm d d 75

Redue & Redue Theorem For () g()/h(), where g & h re lytc t. I g( ) & h h ero o order t, the h mple pole t d g Re(, ) lm lm h Re (, ) lm g h h g h( ) ( ) ( ) ( 5) g h ( ) ( ) 76

Redue & Redue Theorem Ex. Ue (5) to compute the redue o e e e e e e e e, Re, Re, Re, Re,,, where 5 9 7 5 77

Redue & Redue Theorem Redue theorem Thm. Let D be mply coected dom & mply cloed cotour lyg etrely wth D. I lytc o & wth, except t te umber o gulr pot,,, wth, the d Re(, ) ( 6) (proo) From (), & () o h.8, d Re(, ) d d

Redue & Redue Theorem Ex. Evlute wth :. d 6 d d, Re d d 6 6 lm, Re 6 6 79

Redue & Redue Theorem Ex. Evlute ( ) where () the rectgle deed by x, x, y, y & (b) :. ( ) ( ) d d Re d [ Re(,) Re(, ) ] ( ) (,) ( b) 8

Redue & Redue Theorem Ex. Evlute wth :. e d 5 e e d 5 Re lm ( 5) (, ) lm! d d d ( 8 7) ( 5) ( 5) e e 7 5 8

Redue & Redue Theorem t d Ex. Evlute wth :. t d co d Re, Re ( ) ( ) [ ] ( ) ( ), 8

Redue & Redue Theorem e d Ex. Evlute wth :. From the exmple p.6, eetl gulrty o the tegrd. So ()-(5) re ot pplcble to d the redue o t. e d (, ) Re 6 I () g()/h(), where g & h re lytc t, g( ), h( ), & h ( ), the g g lm h h ( ) ( ) 8

Evluto o Rel Itegrl Itegrl o the orm The bc de to covert (7) to complex tegrl wth cotour the ut crcle cetered t the org. (: coθ θ e θ, θ ) Ue d dθ e θ d (7) become F, coθ dθ, coθ F e θ ( coθ,θ ) dθ ( 7) e θ, θ e θ ( ) (, θ ) d ( ) (, ) where e θ

Evluto o Rel Itegrl Ex. Evlute We c let where 85 ( coθ ) d dθ, d Re ( ) ( ) d ( ) (, )

Evluto o Rel Itegrl Sce pole o order & rom (), 6 lm lm lm, Re d d d d co 6 θ θ d d 86

Evluto o Rel Itegrl Itegrl o the orm Recll tht whe cotuou o (, ), both lmt ext, the tegrl d to be coverget; otherwe, the tegrl dverget. For coverget tegrl, we c evlute t by The lmt clled the uchy prcpl vlue o the tegrl & wrtte P.V. ( x) dx ( 8) ( x) dx lm ( x) dx lm ( x) r r R ( x) dx ( x) dx ( 9) lm R R R ( x) dx lm ( x) R R R R dx dx

Evluto o Rel Itegrl Note tht the ymmetrc lmt (9) my ext eve though the mproper tegrl dverget. Ex. However, ug (9) Thu, x dx dverget ce lm R R P.V. x dx R x dx R R lm x dx lm R R R lm R ( R) 88

Evluto o Rel Itegrl To ummre, whe tegrl o the orm (8) coverge, t uchy prcpl vlue equl the vlue o the tegrl. I the tegrl dverge, t my tll poe uchy prcpl vlue. To evlute ( x) dx wth (x) P(x)/Q(x) cotuou o (, ), replce x by & tegrte () over cloed cotour tht cot o [R, R] o the rel x & emcrcle R o rdu R lrge eough to ecloe ll the pole o () the upper hl-ple Im() >.

Evluto o Rel Itegrl By (6) we hve d d ( x) R Re (, ) where deote pole the upper hl-ple. R d I R, the we obt P.V. R R dx ( x) dx lm ( x) dx Re(, ) R R R 9

Evluto o Rel Itegrl Ex. Evlute Let be the cloed cotour how the gure. dx x x 9 P.V. 9 [ ] 8 6, Re, Re 9 9 9 I I I I d x x dx d R R R

Evluto o Rel Itegrl O R, whch how tht I R, & o 9 9 9 9 9 9 R R R d I R R R lm R I lm lm 9 lm 9 P.V. I I dx x x dx x x R R R R R 9

Re Evluto o Rel Itegrl Behvor o tegrl R P.V. Thm. Suppoe () P()/Q() wth P() o degree & Q() o degree m. I R emcrculr cotour Re θ, θ, d R. R Ex. Evlute P.V. x dx e d e (, ), Re(, ) x dx [ Re(, ) Re(, )] 9

Evluto o Rel Itegrl Itegrl o the orm They pper the rel & mgry prt the tegrl ( x) coαx dx ( ) ( x) αx dx ( ) wheever both tegrl o RHS coverge. Whe (x) P(x)/Q(x) cotuou o (, ) we c evlute both Fourer tegrl t the me tme by coderg α e d, where α > & cotg o [R, R] o rel x & emcrculr cotour R wth R lrge eough to ecloe the pole o () the upper hl-ple. αx x e dx ( x) coαx dx ( x) αx dx ( ) 9

Evluto o Rel Itegrl Behvor o tegrl R Thm. Suppoe () P()/Q() wth P() o degree & Q() o degree m. I R emcrculr cotour Re θ, θ, α >, the R α e d R. Ex. Evlute x x P.V. dx x 9 x x x x dx dx x 9 x 9 Wth α, we orm the cotour tegrl 9 e d

Evluto o Rel Itegrl From the bove theorem, e e e e dx x xe d e R R x R, 9 Re 9 9 9 P.V. 9 P.V. 9 P.V. d 9 co P.V. 9 P.V. 9 e dx x x x dx x x x e dx x x x dx x x x e dx e x x R d e x R 96

Evluto o Rel Itegrl Ideted cotour So r, the mproper tegrl (8), (), () re cotuou o [, ]. Whe h pole o the rel x, the procedure ued the bove exmple mut be moded. oder whe () h pole t ( x)dx c, where c rel umber. r deote emcrculr cotour cetered t c oreted the potve drecto.

Evluto o Rel Itegrl Behvor o tegrl r Thm. Suppoe h mple pole c o the rel x. For cotour r deed by c re θ, θ, the (proo) lm r r d Re(, c) Sce h mple pole t c, t Luret ere g wth Re( (), c) c & g lytc t c. re re θ I θ r ( θ ) θ d dθ r g c re e dθ I

Evluto o Rel Itegrl Sce g lytc t c, t cotuou t th pot & bouded t eghborhood; tht, there ext M > or whch g(c re θ ) M. c d d re re I, Re θ θ θ θ [ ] lm lm lm lm I I I d I I rm Md r d e re c g r I r r r r r θ θ θ θ 99

Evluto o Rel Itegrl Ex. Evlute P.V. oder the cotour tegrl h mple pole t & ( ) the upper ple. where R r R Te R & r d recll the two precedg theorem. r x ( x x ) e d r R r x dx e Re r ( ) ( e, ) d

Evluto o Rel Itegrl x e ( P.V. ) dx Re e, x x x Re( e, ) Re P.V. P.V. P.V. ( e,), Re x ( x x ) x x e x co ( x x ) x x dx ( x x ) ( e, ) ( ) dx dx e e e e ( co) ( ) [ ( )] e co

opyrght Pge Wor Lcee Author/Source Shh-Yu he Shh-Yu he 5 Shh-Yu he 5 6 9 Shh-Yu he

opyrght Pge Wor Lcee Author/Source 7 Shh-Yu he Shh-Yu he Shh-Yu he

opyrght Pge Wor Lcee Author/Source 5 Shh-Yu he 5 Shh-Yu he 57 Shh-Yu he 78 Shh-Yu he

opyrght Pge Wor Lcee Author/Source 89 Shh-Yu he 9 Shh-Yu he 97 Shh-Yu he Shh-Yu he 5