TESTING FOR THE BUFFERED AUTOREGRESSIVE PROCESSES (SUPPLEMENTARY MATERIAL)

Similar documents
Convergence of random variables. (telegram style notes) P.J.C. Spreij

1 Convergence in Probability and the Weak Law of Large Numbers

Solution to Chapter 2 Analytical Exercises

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Math Solutions to homework 6

Sequences and Series of Functions

Berry-Esseen bounds for self-normalized martingales

Empirical Processes: Glivenko Cantelli Theorems

MAT1026 Calculus II Basic Convergence Tests for Series

MAS111 Convergence and Continuity

The Bilateral Laplace Transform of the Positive Even Functions and a Proof of Riemann Hypothesis

Kolmogorov-Smirnov type Tests for Local Gaussianity in High-Frequency Data

The log-behavior of n p(n) and n p(n)/n

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate

Self-normalized deviation inequalities with application to t-statistic

BIRKHOFF ERGODIC THEOREM

Notes 27 : Brownian motion: path properties

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck!

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 7 Isoperimetric problem

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

5.1 A mutual information bound based on metric entropy

An Introduction to Asymptotic Theory

Notes 19 : Martingale CLT

Asymptotic distribution of products of sums of independent random variables

Random Walks on Discrete and Continuous Circles. by Jeffrey S. Rosenthal School of Mathematics, University of Minnesota, Minneapolis, MN, U.S.A.

Information Theory and Statistics Lecture 4: Lempel-Ziv code

Lecture 8: Convergence of transformations and law of large numbers

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Entropy Rates and Asymptotic Equipartition

A RANK STATISTIC FOR NON-PARAMETRIC K-SAMPLE AND CHANGE POINT PROBLEMS

7.1 Convergence of sequences of random variables

Properties of Fuzzy Length on Fuzzy Set

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

Kernel density estimator

S1 Notation and Assumptions

Approximation theorems for localized szász Mirakjan operators

EFFECTIVE WLLN, SLLN, AND CLT IN STATISTICAL MODELS

Lecture Notes for Analysis Class

STAT Homework 1 - Solutions

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate

Homework 4. x n x X = f(x n x) +

Research Article On the Strong Laws for Weighted Sums of ρ -Mixing Random Variables

Ma 530 Introduction to Power Series

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

Theorem 3. A subset S of a topological space X is compact if and only if every open cover of S by open sets in X has a finite subcover.

32 estimating the cumulative distribution function

2 Markov Chain Monte Carlo Sampling

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

lim za n n = z lim a n n.

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

Notes 5 : More on the a.s. convergence of sums

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Optimally Sparse SVMs

Central Limit Theorem using Characteristic functions

Appendix to Quicksort Asymptotics

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

On Weak and Strong Convergence Theorems for a Finite Family of Nonself I-asymptotically Nonexpansive Mappings

Periodic solutions for a class of second-order Hamiltonian systems of prescribed energy

Appendix to: Hypothesis Testing for Multiple Mean and Correlation Curves with Functional Data

An Introduction to Randomized Algorithms

for all x ; ;x R. A ifiite sequece fx ; g is said to be ND if every fiite subset X ; ;X is ND. The coditios (.) ad (.3) are equivalet for =, but these

ON POINTWISE BINOMIAL APPROXIMATION

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences

arxiv: v1 [math.pr] 4 Dec 2013

Solutions to home assignments (sketches)

Econometrica Supplementary Material

Journal of Multivariate Analysis. Superefficient estimation of the marginals by exploiting knowledge on the copula

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization

This section is optional.

The Wasserstein distances

Lecture 19: Convergence

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator

Rademacher Complexity

1 Review and Overview

Exponential Functions and Taylor Series

HAJEK-RENYI-TYPE INEQUALITY FOR SOME NONMONOTONIC FUNCTIONS OF ASSOCIATED RANDOM VARIABLES

Modern Discrete Probability Spectral Techniques

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

INFINITE SEQUENCES AND SERIES

Exponential Functions and Taylor Series

M17 MAT25-21 HOMEWORK 5 SOLUTIONS

MAXIMAL INEQUALITIES AND STRONG LAW OF LARGE NUMBERS FOR AANA SEQUENCES

Different kinds of Mathematical Induction

A constructive analysis of convex-valued demand correspondence for weakly uniformly rotund and monotonic preference

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT

Sieve Estimators: Consistency and Rates of Convergence

Strong Convergence Theorems According. to a New Iterative Scheme with Errors for. Mapping Nonself I-Asymptotically. Quasi-Nonexpansive Types

An alternative proof of a theorem of Aldous. concerning convergence in distribution for martingales.

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002

Gamma Distribution and Gamma Approximation

Solutions of Homework 2.

Rank tests and regression rank scores tests in measurement error models

An almost sure invariance principle for trimmed sums of random vectors

Analytic Continuation

A Note on the Kolmogorov-Feller Weak Law of Large Numbers

Research Article Moment Inequality for ϕ-mixing Sequences and Its Applications

Transcription:

TESTING FOR THE BUFFERED AUTOREGRESSIVE PROCESSES SUPPLEMENTARY MATERIAL) By Ke Zhu, Philip L.H. Yu ad Wai Keug Li Chiese Academy of Scieces ad Uiversity of Hog Kog APPENDIX: PROOFS I this appedix, we first give the proofs of Lemmas 2.-2.2. Deote C as a geeric costat which may vary from place to place i the rest of this paper. The proofs of Lemmas 2.-2.2 rely o the followig three basic lemmas: Lemma A.. Suppose that y t is strictly statioary, ergodic ad absolutely regular with mixig coefficiets βm) = Om A ) for some A > v/v ) ad r > v > ; ad there exists a A 0 > such that 2A 0 rv/r v) < A. The, for ay γ = r L, r U ) Γ, we have r v)/2a j 0 rv E Ir L < y t i r U ) <. j= i= Proof. First, deote ξ i = Ir L < y t i r U ). The, ξ i is strictly statioary, ergodic ad α-mixig with mixig coefficiets αm) = Om A ). Next, take ι [2A0 rv/r v) + ]/A + ), ), ad let p = j ι ad s = j/j ι, where x is the largest iteger ot greater tha x. Whe j j 0 is large eough, we ca always fid {ξ kp+ } s k=0, a subsequece of {ξ i} j i=. Furthermore, let Fm = σξ i, m i ). The, ξ kp+ F kp+2 kp+. Note that E [ξ kp+ ] < P a y t b) ρ 0, ). Hece, by Propositio 2.6 i Fa ad Yao 2003, p.72), we have that for j j 0, j E ξ i E i= { = [ s E ] ξ kp+ k=0 [ s k=0 ξ kp+ ] 6s )αp) + ρ s s k=0 C j/j ι j ι A + ρ j/jι. E [ξ kp+ ] } + s k=0 E [ξ kp+ ]

2 Therefore, sice r v)/2a 0 rv > 0, by usig the iequality x + y) k Cx k + y k ) for ay x, y, k > 0, it follows that A.) r v)/2a j 0 rv r v)/2a j 0 rv E ξ i j 0 ) + E ξ i j= i= j=j 0 i= [ j 0 ) + C j/j ι j ι A] r v)/2a 0 rv j=j 0 + C ρ j/jι r v)/2a 0rv. j=j 0 Sice ι > [2A 0 rv/r v) + ]/A + ), we have ιa + ι )r v)/2a 0 rv >, ad hece j= j ιa+ι )r v)/2a 0rv <, which implies that A.2) [ j/j ι ] r v)/2a0 rv j=j 0 j ι A [ ] r v)/2a0 rv j j= j ι j ι ) A <. O the other had, sice ρ j/jι r v)/2a 0 rv ) /j <, by Cauchy s root test, we have A.3) ρ j/jι r v)/2a 0rv < ρ j/jι r v)/2a 0 rv <. j=j 0 j= Now, the coclusio follows directly from A.)-A.3). This completes the proof. Lemma A.2. Suppose that the coditios i Lemma A. hold, ad y t has a bouded ad cotiuous desity fuctio. The, there exists a B 0 > such that for ay γ, γ 2 Γ, we have R t γ ) R t γ 2 ) 2rv/r v) C γ γ 2 r v)/2b0rv. Proof. Let γ = r L, r U ) ad γ 2 = r 2L, r 2U ). Sice R t γ) = Iy t d r L ) + R t γ)ir L < y t d r U ), we have R t γ ) R t γ 2 ) = t γ, γ 2 ) + Ir L < y t d r U ) [R t γ ) R t γ 2 )], where t γ, γ 2 ) = Ir 2L < y t d r L ) + R t γ 2 ) [Ir L < y t d r U ) Ir 2L < y t d r 2U )].

Thus, by iteratio we ca show that R t γ ) R t γ 2 ) TESTING FOR BAR PROCESSES 3 A.4) j = t γ, γ 2 ) + t j γ, γ 2 ) Ir L < y t i d r U ). j= i= Next, for brevity, we assume that r 2L r L r 2U r U, because the proofs for other cases are similar. Note that for ay j 0, R t j γ 2 ) ad Ir L < y t j d r U ) Ir 2L < y t j d r 2U ) = Ir 2U < y t j d r U ) Ir 2L < y t j d r L ). Let fx) be the desity fuctio of y t. Sice x fx) < ad t j γ, γ 2 ) 2, by Hölder s iequality ad Taylor s expasio, it follows that for ay s, A.5) E t j γ, γ 2 ) s 2 s E t j γ, γ 2 ) 2 s [2 x C γ γ 2. fx) r L r 2L + fx) r U r 2U x ] Let A 0 > be specified i Lemma A., ad choose B 0 such that /A 0 + /B 0 =. By Hölder s iequality ad A.5), we ca show that j 2rv/r v) E t jγ, γ 2 ) Ir L < y t i d r U ) i= { E[ t j γ, γ 2 )] } 2B /B 0rv/r v) 0 j E Ir L < y t i d r U ) i= /A 0 A.6) 2 [2B0rv/r v)] {E t j γ, γ 2 ) } /B 0 j E Ir L < y t i d r U ) i= /A 0 j C γ γ 2 /B 0 E Ir L < y t i d r U ) i= /A 0. By A.4)-A.6), Mikowski s iequality, Lemma A. ad the compactess of Γ, we

4 have R t γ ) R t γ 2 ) 2rv/r v) C γ γ 2 r v)/2rv + C γ γ 2 r v)/2b 0rv j E Ir L < y t i d r U ) j= This completes the proof. i= C γ γ 2 r v)/2b 0rv. r v)/2a 0 rv Lemma A.3. Suppose that the coditios i Lemma A.2 hold ad Ey 4 t <. The, X γx Σ γ 0 a.s. as. Proof. For brevity, we oly prove the uiform covergece for t= φ t γ), the last compoet of X γx, where φ t γ) = yt pr 2 t γ). First, for fix ε > 0, we partitio Γ by {B,, B Kε }, where B k = {r L, r U ); ω k < r L ω k+, ν k < r U ν k+ } Γ. Here, {ω k } ad {ν k } are chose such that A.7) ω k+ ω k ) r v)/2b 0rv < C ε ad ν k+ ν k ) r v)/2b 0rv < C ε, where B 0 > is specified as i Lemma A.2, ad C > 0 will be selected later. Next, we set f u t ε) = y 2 t pr t ω k+, ν k+ ) ad f l tε) = y 2 t pr t ω k, ν k ). By costructio, sice R t γ) is a odecreasig fuctio with respect to r L ad r U, for ay γ Γ, there is some k such that γ B k ad f l tε) φ t γ) f u t ε). Furthermore, sice rv/2rv r + v) <, we have yt p 2 < y 2 2rv/2rv r+v) t p <. 2

TESTING FOR BAR PROCESSES 5 Thus, by Hölder s iequality, Lemma A.2 ad A.7), we have E [ ft u ε) ftε) ] l yt p 2 R t ω k+, ν k+ ) R t ω k, ν k ) 2rv/2rv r+v) 2rv/r v) C [ ω k+ ω k ) r v)/2b0rv + ν k+ ν k ) ] r v)/2b 0rv 2CC ε. By settig C = 2C), we have E [ f u t ε) f l tε) ] ε. Thus, the coclusio holds accordig to Theorem 2 i Pollard 984, p.8). This completes the proof. Proof of Lemma 2.. First, sice K γγ is positive defiite by Assumptio 2., we kow that both Σ ad Σ γ are positive defiite. By usig the same argumet as for Lemma 2.iv) i Cha 990), it is ot hard to show that for every γ Γ, Σ γ Σ γ Σ Σ γ is positive defiite. Secod, by the ergodic theorem, it is easy to see that A.8) Third, by Lemma A.3 we have A.9) X γx X X Σ γ 0 ad as. Note that if H 0 holds, we have Σ a.s. as. X γx γ T γ = { X γ X γxx X) X } ε = X γ X)X X), I ) Z γε. Σ γ 0 a.s. The, i) ad ii) follow readily from A.8)-A.9). This completes the proof. Proof of Lemma 2.2. Deote G γ) Z γε = N x t γ)ε t. It is straightforward to show that the fiite dimesioal distributio of {G γ)} coverges to that of {σg γ }. By Pollard 990, Sec.0), we oly eed to verify the stochastic equicotiuity of {G γ)}. To establish it, we use Theorem, Applicatio

6 4 i Doukha, Massart, ad Rio 995, p.405); see also Adrews 993) ad Hase 996). First, the evelop fuctio is γ x t γ)ε t = x t ε t, where x t = γ x t γ). By Hölder s iequality ad Assumptio 2., we kow that the evelop fuctio is L 2v bouded. Next, for ay γ, γ 2 Γ, by Assumptios 2.-2.3, Lemma A.2 ad Hölder s iequality, we have x t γ )ε t x t γ 2 )ε t 2v = h t γ )ε t h t γ 2 )ε t 2v x t ε t 2r R t γ ) R t γ 2 ) 2rv/r v) C x t 4r ε t 4r γ γ 2 r v)/2b 0rv C γ γ 2 r v)/2b 0rv for some B 0 >, where the last iequality holds sice x t 4r ε t 4r <. Now, followig the argumet i Hase 996, p.426), we kow that G γ) is stochastically equicotiuous. This completes the proof. Next, we give Lemmas A.4-A.6, i which Lemma A.4 is crucial for provig Lemma A.5, ad Lemmas A.5 ad A.6 are eeded to prove Corollary 2. ad Theorem 3., respectively. Lemma A.4. Suppose that y t is strictly statioary ad ergodic. The, i) 0 = O p ); ii) furthermore, if E y t 2 < ad E ε t 2 <, for ay a = o), we have a 0 x t x A.0) tr t γ) = O p) ad A.) a 0 h t γ)ε t = O p). Proof. First, by the ergodic theory, we have that M M Ia y t d b) = P a y t d b) κ > 0 as M. Thus, η > 0, there exists a iteger Mη) > 0 such that P M Ia y t d b) < κ < η. M 2 a.s.

By the defiitio of 0, it follows that A.2) TESTING FOR BAR PROCESSES 7 M P 0 > M) = P Ia y t d b) = 0 = P M Ia y t d b) = 0 M P M Ia y t d b) < κ M 2 < η, i.e., i) holds. Furthermore, by takig M = M 2, from A.2) ad Markov s iequality, it follows that η > 0, A.3) 0 P a x t x tr t γ) > M 0 = P a x t x tr t γ) > M, 0 M P max k a x t x tr t γ) > M p k M M k P a x t 2 > M k=p a M = O k k=p a M 2 ) M E x t 2 M = O a ) < η as is large eough. Thus, we kow that equatio A.0) holds. Next, by Hölder s iequality ad a similar argumet as for A.3), it is ot hard to show that η > 0, P a 0 h t γ)ε t > M O a ) < η as is large eough, i.e., A.) holds. This completes the proof.

8 Lemma A.5. If Assumptios 2.-2.3 hold, the it follows that uder H 0 or H, i) Xγ X ) γ X = o p ), ii) X γx γ X X ) γ γ = o p ), iii) T γ T γ = op ), where X γ ad T γ are defied i the same way as X γ ad T γ, respectively, with R t γ) beig replaced by R t γ). Proof. i) Note that Xγ X ) γ X = 0 x t x tr t γ). Hece, we kow that i) holds by takig a = /2 i equatio A.0). ii) By a similar argumet as for i), we ca show that ii) holds. iii) Note that whe λ 0 = φ 0, h / ), we have T γ T γ = Xγ X γ ) ε Xγ X γ ) XX X) X ε Xγ X γ ) XX X) X X γ0 h X γxx X) X X γ0 X γ0 ) h + X γ X γ0 X γ X ) γ0 h I γ) I 2 γ) I 3 γ) I 4 γ) + I 5 γ) say. First, sice I γ) = 0 h /4 /4 t γ)ε t, it follows that γ I γ) = o p ) by takig a = /4 i equatio A.). Next, sice I 2 γ) = 0 x t x tr t γ) X X ) X ε, we have that γ I 2 γ) = o p ) from i). Similarly, we ca show that γ I i γ) = o p ) for i = 3, 4, 5. Hece, uder H 0 i.e., h 0) or H, we kow that iii) holds. This completes the proof.

TESTING FOR BAR PROCESSES 9 Lemma A.6. If Assumptios 2.-2.3 hold, the it follows that uder H 0 or H, λ γ) λ 0 = O p ). Proof. First, for ay γ Γ, by Taylor s expasio we have [ ε 2 t λ γ), γ) ε 2 t λ 0, γ) ] A.4) = λ γ) λ 0 ) + λ γ) λ 0 ) 2ε t λ 0, γ)x t γ) x t γ)x t γ) λ γ) λ 0 ). Next, whe λ 0 = φ 0, h / ), we ca show that A.5) N ε t λ 0, γ)x t γ) = Z γε + N x t γ)[x t γ 0 ) x t γ)] λ 0 = Z γε + G γ). x t x t[r t γ 0 ) R t γ)] x t x t[r t γ)r t γ 0 ) R t γ)] h Let λ mi γ) > 0 be the miimum eigevalue of K γγ. The, by equatios A.4)- A.5), η > 0, there exists a Mη) > 0 such that ) P λ γ) λ 0 > M = P λ γ) λ 0 > M, for some γ Γ) [ ε 2 t λ γ), γ) ε 2 t λ 0, γ) ] 0 P λ γ) λ 0 > M, 2 λ γ) λ 0 G γ) + λ γ) λ 0 2 [λ mi γ) + o p )] 0 for some γ Γ ) P M < λ γ) λ 0 2[λ mi γ) + o p )] G γ) for some γ Γ) P G γ) > M[λ mi γ) + o p )]/2 for some γ Γ) η,

0 where the last iequality holds because G γ) = O p ) by Lemma 2.2 ad Lemma A.3. Hece, uder H 0 i.e., h 0) or H, our coclusio holds. This completes the proof. Proof of Corollary 2.. The coclusio follows directly from Theorems 2.- 2.2 ad Lemma A.5. Proof of Theorem 3.. We use the method i the proof of Theorem 2 i Hase 996). Let W deote the set of samples ω for which A.6) A.7) lim lim x t γ) ε 2 t < a.s., x t γ)x t δ) ε 2 t σ 2 K γδ γ,δ Γ 0 a.s. Sice x t γ) 2 x t ad E x t ε 2 t ergodic theorem we have < due to Assumptio 2., by the lim 2 x t γ) ε 2 t lim x t ε 2 t < a.s., i.e., A.6) holds. Furthermore, by Assumptios 2.-2.3 ad a similar argumet as for Lemma A.3, it is ot hard to see that lim x t γ)x t δ) ε 2 t σ 2 K γδ 0 a.s., γ,δ Γ i.e., A.7) holds. Thus, P W ) =. Take ay ω W. For the remaider of the proof, all operatios are coditioally o ω, ad hece all of the radomess appears i the i.i.d. N0, ) variables {v t }. Defie Zγ) = N x t γ)ε t v t. By usig the same argumet as i Hase 996, p.426-427), we have A.8) Z γ) σg γ a.s. as. Note that Ẑγ) Z γ) x t γ)x t γ) v t λ γ) λ 0 ).

TESTING FOR BAR PROCESSES Usig the same argumet as for A.8) see, e.g., Hase 996, p.427)), we have A.9) x t γ)x t γ) v t 0 a.s. as. Now, by Lemma A.6 ad A.9), it follows that uder H 0 or H, A.20) Ẑ γ) Z γ) 0 i probability as. Thus, by A.8) ad A.20), we kow that uder H 0 or H, A.2) Ẑ γ) σg γ i probability as. Next, we cosider the fuctioal L : x ) D 2p+2 Γ) σ xγ) Ω 2 γ xγ), where D 2p+2 Γ) deotes the fuctio spaces of all fuctios, mappig R 2 Γ) ito R 2p+2, that are right cotiuous ad have right-had limits. Clearly, L ) is a cotiuous fuctioal; see e.g., Cha 990, p.89). By the cotiuous mappig theory ad A.2), it follows that uder H 0 or H, A.22) LẐγ)) LσG γ ) i probability as. Furthermore, sice σ 2 σ 2 a.s. ad X γ), I) [X 2 γ)] X γ), I) Ω γ uiformly i γ by Lemma A.3, we have that A.23) LR ˆ γ) = LẐγ)) + o p ). Fially, the coclusio follows from A.22)-A.23). This completes the proof. Proof of Corollary 3.. Coditioal o the sample {y 0,, y N }, let ˆF,J ad ˆF be the coditioal empirical c.d.f. ad c.d.f. of LR ˆ, respectively. The, P ) LR c J,α = E [ P )] LR c J,α y 0,, y N = E [ P ˆF,J LR ) α y 0,, y N )].

2 By the Gliveko-Catelli Theorem ad Theorem 3., it follows that uder H 0 or H, A.24) lim lim P ) LR c J,α J = lim E [ P )] ˆF LR ) α y 0,, y N = lim E [P F 0 LR ) α y 0,, y N )] = lim P F 0 LR ) α), where F 0 is the c.d.f. of G γω γ G γ. Thus, by A.24) ad Theorem 2., uder H 0 we have lim lim P ) ) LR c J,α = P G γω γ G γ F0 α) J = α, i.e., i) holds. Furthermore, by A.24) ad Theorem 2.2, uder H we have lim lim lim P ) LR c J h,α = lim P B h F0 α) ) =, J h where B h { G γ Ω γ G γ + h µ γγ0 h } ad the last equatio holds sice B h i probability as h. Thus, ii) holds. This completes the proof. REFERENCES [] Adrews, D.W.K. 993) A itroductio to ecoometric applicatios of fuctioal limit theory for depedet radom variables. Ecoometric Reviews 2, 83-26. [2] Cha, K.S. 990) Testig for threshold autoregressio. Aals of Statistics 8, 886-894. [3] Doukha, P., Massart, P., ad Rio, E. 995) Ivariace priciples for absolutely regular empirical processes. Aales de I Istitut H. Poicare 3 393-427. [4] Fa, J. ad Yao, Q. 2003) Noliear time series: Noparametric ad parametric methods. Spriger, New York. [5] Hase, B.E. 996) Iferece whe a uisace parameter is ot idetified uder the ull hypothesis. Ecoometrica 64, 43-430. [6] Pollard, D. 984) Covergece of Stochastic Processes. New York: Spriger. [7] Pollard, D. 990) Empirical processes: Theory ad applicatios. NSF-CMBS Regioal Coferece Series i Probability ad Statistics, Vol 2. Hayward, CA: Istitute of Mathematical Statistics. Chiese Academy of Scieces Istitute of Applied Mathematics HaiDia District, Zhogguacu Bei Jig, Chia E-mail: zkxaa@ust.hk Departmet of Statistics ad Actuarial Sciece Uiversity of Hog Kog Pokfulam Road, Hog Kog E-mail: plhyu@hku.hk hrtlwk@hku.hk