Lecture Note of Week 2

Similar documents
Introduction to Groups

Kevin James. Quotient Groups and Homomorphisms: Definitions and Examp

1.1 Definition. A monoid is a set M together with a map. 1.3 Definition. A monoid is commutative if x y = y x for all x, y M.

Modern Algebra (MA 521) Synopsis of lectures July-Nov 2015 semester, IIT Guwahati

Solutions for Assignment 4 Math 402

Math 581 Problem Set 8 Solutions

Theorems and Definitions in Group Theory

Abstract Algebra II Groups ( )

MATH 101: ALGEBRA I WORKSHEET, DAY #3. Fill in the blanks as we finish our first pass on prerequisites of group theory.

Your Name MATH 435, EXAM #1

Algebra homework 6 Homomorphisms, isomorphisms

BASIC GROUP THEORY : G G G,

Algebra I: Final 2015 June 24, 2015

2) e = e G G such that if a G 0 =0 G G such that if a G e a = a e = a. 0 +a = a+0 = a.

SUMMARY ALGEBRA I LOUIS-PHILIPPE THIBAULT

School of Mathematics and Statistics. MT5824 Topics in Groups. Problem Sheet I: Revision and Re-Activation

ENTRY GROUP THEORY. [ENTRY GROUP THEORY] Authors: started Mark Lezama: October 2003 Literature: Algebra by Michael Artin, Mathworld.

Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV.

(5.11) (Second Isomorphism Theorem) If K G and N G, then K/(N K) = NK/N. PF: Verify N HK. Find a homomorphism f : K HK/N with ker(f) = (N K).

INTRODUCTION TO THE GROUP THEORY

Group Theory. Hwan Yup Jung. Department of Mathematics Education, Chungbuk National University

Homomorphisms. The kernel of the homomorphism ϕ:g G, denoted Ker(ϕ), is the set of elements in G that are mapped to the identity in G.

Solutions to Assignment 4

MATH 101: ALGEBRA I WORKSHEET, DAY #1. We review the prerequisites for the course in set theory and beginning a first pass on group. 1.

Solutions to Some Review Problems for Exam 3. by properties of determinants and exponents. Therefore, ϕ is a group homomorphism.

Mathematics 331 Solutions to Some Review Problems for Exam a = c = 3 2 1

Name: Solutions - AI FINAL EXAM

120A LECTURE OUTLINES

A Little Beyond: Linear Algebra

Cosets, factor groups, direct products, homomorphisms, isomorphisms

Section 13 Homomorphisms

MATH 4107 (Prof. Heil) PRACTICE PROBLEMS WITH SOLUTIONS Spring 2018

First Semester Abstract Algebra for Undergraduates

MATH3711 Lecture Notes

Fall /29/18 Time Limit: 75 Minutes

MATH 436 Notes: Homomorphisms.

Section 15 Factor-group computation and simple groups

Chapter 5 Groups of permutations (bijections) Basic notation and ideas We study the most general type of groups - groups of permutations

Recall: Properties of Homomorphisms

2MA105 Algebraic Structures I

6 More on simple groups Lecture 20: Group actions and simplicity Lecture 21: Simplicity of some group actions...

Groups. Groups. 1.Introduction. 1.Introduction. TS.NguyễnViết Đông. 1. Introduction 2.Normal subgroups, quotien groups. 3. Homomorphism.

0 Sets and Induction. Sets

Math 546, Exam 2 Information.

Answers to Final Exam


its image and kernel. A subgroup of a group G is a non-empty subset K of G such that k 1 k 1

Algebra. Travis Dirle. December 4, 2016

Normal Subgroups and Factor Groups

φ(xy) = (xy) n = x n y n = φ(x)φ(y)

CS 468: Computational Topology Group Theory Fall b c b a b a c b a c b c c b a

Lecture Notes Math 371: Algebra (Fall 2006) by Nathanael Leedom Ackerman

MA441: Algebraic Structures I. Lecture 14

Chapter I: Groups. 1 Semigroups and Monoids

Math 547, Exam 1 Information.

Cosets and Normal Subgroups

A. (Groups of order 8.) (a) Which of the five groups G (as specified in the question) have the following property: G has a normal subgroup N such that

Ideals, congruence modulo ideal, factor rings

2. normal subgroup and quotient group We begin by stating a couple of elementary lemmas Lemma. Let A and B be sets and f : A B be an onto

Extra exercises for algebra

REU 2007 Discrete Math Lecture 2

Exercises on chapter 1

Solutions of exercise sheet 4

II. Products of Groups

MTH 411 Lecture Notes Based on Hungerford, Abstract Algebra

Lecture 4.1: Homomorphisms and isomorphisms

Groups Subgroups Normal subgroups Quotient groups Homomorphisms Cyclic groups Permutation groups Cayley s theorem Class equations Sylow theorems

Algebra I Notes. Clayton J. Lungstrum. July 18, Based on the textbook Algebra by Serge Lang

Assigment 1. 1 a b. 0 1 c A B = (A B) (B A). 3. In each case, determine whether G is a group with the given operation.

6. The Homomorphism Theorems In this section, we investigate maps between groups which preserve the groupoperations.

Course 311: Abstract Algebra Academic year

The First Isomorphism Theorem

AM 106/206: Applied Algebra Madhu Sudan 1. Lecture Notes 11

Module MA3411: Abstract Algebra Galois Theory Michaelmas Term 2013

Quiz 2 Practice Problems

Isomorphisms. 0 a 1, 1 a 3, 2 a 9, 3 a 7

MODEL ANSWERS TO THE FIFTH HOMEWORK

SUMMARY OF GROUPS AND RINGS GROUPS AND RINGS III Week 1 Lecture 1 Tuesday 3 March.

Teddy Einstein Math 4320

Math 4400, Spring 08, Sample problems Final Exam.

Background Material in Algebra and Number Theory. Groups

Visual Abstract Algebra. Marcus Pivato

Homework #11 Solutions

CHAPTER I. Rings. Definition A ring R is a set with two binary operations, addition + and

MATH 436 Notes: Cyclic groups and Invariant Subgroups.

Lecture 3. Theorem 1: D 6

Chapter 3. Rings. The basic commutative rings in mathematics are the integers Z, the. Examples

book 2005/1/23 20:41 page 132 #146

Algebra. Jim Coykendall

MA441: Algebraic Structures I. Lecture 18

Lecture 7 Cyclic groups and subgroups

The Outer Automorphism of S 6

Part II Permutations, Cosets and Direct Product

Abstract Algebra: Supplementary Lecture Notes

MATH 3005 ABSTRACT ALGEBRA I FINAL SOLUTION

Groups and Symmetries

Section 18 Rings and fields

MAT301H1F Groups and Symmetry: Problem Set 2 Solutions October 20, 2017

DEPARTMENT OF MATHEMATIC EDUCATION MATHEMATIC AND NATURAL SCIENCE FACULTY

Section 10: Counting the Elements of a Finite Group

Transcription:

Lecture Note of Week 2 2. Homomorphisms and Subgroups (2.1) Let G and H be groups. A map f : G H is a homomorphism if for all x, y G, f(xy) = f(x)f(y). f is an isomorphism if it is bijective. If f : G G is a homomorphism (isomorphism, resp.), then f is also called an endomorphism (automorphism), resp.) of G. (2.1a) Linear transformations of vector spaces are examples of homomorphisms; Z 2 Z 3 = Z 6 ; GL 2 (Z 2 ) = S 3. (2.1b) Let f : G H is a group homomorphism. The kernel of f is ker(f) = {a G : f(a) = e in H}. For A G, f(a) = {f(a) : a A} is the image of A, and we denote Im(f) = f(g), called the image of f. If B H, then f 1 (B) = {a G : f(a) B} is the inverse image of B. (2.1c) (Thm 2.3) Let f : G H be a group homomorphism, and let e G and e H denote the identities of G and H, respectively. Let 1 G and 1 H denote the identity maps in G and in H, respectively. Then (i) f(e G ) = e H. (ii) For any a G, f(a 1 ) = [(f(a)] 1. (iii) f is injective (called a monomorphism) iff ker(f) = {e}. (iv) f is onto (called an epimorphism) iff Im(f) = H. (v) f is an isomorphism iff there exists a homomorphism f 1 : H G such that ff 1 = 1 H and f 1 f = 1 G. (2.1d) Let G be a group, and let Aut(G) denote the set of all automorphisms of G. Then Aut(G) with the map composition forms a group itself, called the automorphism group of G. (2.1e) AutZ = Z 2 = Aut(Z6 ). 3. Cyclic Groups (3.1) Recall that the order of x is x. If x = n and if x m = e, then n m. Proof by Long Division, m = qn + r, where 0 r < n. (x n = 1) (x m = e) = x r = e. Hence r = 0. (3.2) (Thm 3.1) Let H be a subgroup of the additive group Z. (i) Either H =< 0 >, or 1

(ii) for some m Z {0}, H =< m >, and H =. (3.3) (Thm 3.2) Let H =< x > be a cyclic group. (i) If H = n <, then H = {x i 0 i n} and the order of x is n. Moreover, H = Z n. (ii) If H =, then H = {x i i Z} and no element of H {1} has a finite order. Moreover, H = Z. Proof Use definition of order. (3.3A) Any two cyclic group with the same order are isomorphic. (finite or infinite) Proof They are iso to either Z n of or to Z. (3.4) Let x G, and let n 0 be an integer. (i) If x =, then x n =. (ii) If x = m <, then x n = m (m, n) = l. (iii) If x = m < and d m, then x d = m/d. Proof: (i) follows by (ii) of (3.2). (ii) Let y = x n and d = y. First y l = e and so by (3.1), d l. Since 1 = (x n ) d = x dn, by (3.1), m (dn) = m/(n, m) dn/(n, m). Since (m/(n, m), n/(n, m)) = 1, l d. (iii) follows by (ii). (3.5) Let H =< x >. (i) Assume x =. Then H =< x m > m = ±1. (ii) Assume x = n <. Then H =< x m > (n, m) = 1. Proof Use (3.3) and then (3.4). (3.6) (Structure of Subgroups of a Cyclic Group) Let H =< x >. (i) If K H, then either K = {e}, or K =< x d >, where d is the smallest positive integer such that x d K. (ii) If H =, then for any distinct nonnegative integer n and m, < x n > < x m >. Furthermore, m Z, < x m >=< x m >. (Thus the number of distinct subgroups of H is the same as the cardinality of Z.) (iii) If H = n <, then for each positive integer m n, there is a unique subgroup < x d > H such that < x d > = m, where d = n/m. Furthermore, < x m >=< x (n,m) >. Proof (i) Assume K {e}. Let P = {(n Z) (n > 0) x n K}. Let d = min P. Then 2

x d K. Use long division to show K < x d >. (ii) < x n >=< x m >, then n m and m n and so n = m. (iii) By (3.4)(iii), < x d > = n/d = m. Let K H be such that K = m. By (3.6)(i), K =< x l >, where l is the smallest non negative integer such that x l K. To prove the uniqueness, write n = ql+r, with 0 r < l. As x r = (x n )(x ql ) 1 = e(x ql ) 1 = (x ql ) 1 K, and by the minimality of l, we have r = 0 and so l n. By (3.4)(ii), and so l = d and K =< x d >. n l = n n, l = xl = K = m = n d, (3.7) More examples of groups: (3.7a) (Define direct product G H) V 2 = Z 2 Z 2, a group each of whose proper subgroups are cyclic, but the group is not cyclic. (3.7b) Q 8, the quaternion group, is defined by Q 8 = {1, 1, i, i, j, j, k, k}, whose identity is 1 and whose multiplication is defined as follows: ( 1) 2 = 1, ( 1)a = a, a Q 8, b 2 = 1, b Q 8 {1, 1}, and ij = k, jk = i, ki = j, ji = k, kj = i, ik = j. Each of the proper subgroup of Q 8 is cyclic, but Q 8 is not abelian. 3

4. Cosets and Counting (4.1) (Thm 4.2) Let G be a group and let H < G. For any a, b G, define a l b (mod H) iff a 1 b H (a r b (mod H) iff ab 1 H, resp.). Then both l and r are equivalence relations. (4.2) (Them 4.2) Each equivalence class of l has the form gh, where g G, and is called a left coset of H in G. Each equivalence class of r has the form Hg, where g G, and is called a right coset of H in G. Any element in a coset if a representative of the coset. (Every statement below about left cosets can also have a right coset version.) PF: Show that a and b are in the same class iff ah = bh. (4.3) (Thm 4.2) g G, gh = H = Hg. PF: define a bijection. (4.4) Let H < G. The index of H in G, denoted [G : H], is the cardinal number of the set of distinct left cosets of H in G. (4.5) If K < H < G, then [G : K] = [G : H][H : K]. PF: Use (4.2). Show that K has [G : H][H : K] cosets in G. (4.6) (Cor. 4.6: Lagrange) If H < G, then G = [G : H] H. (4.7) Let H and K be finite subgroup of G, then HK = H K / H K. 4

5. Normality, Quotients and Homomorphisms (5.1) Let φ : G H be a group homomorphism. (i) φ(e G ) = e H. (ii) φ(g 1 ) = (φ(g)) 1, g G. (iii) φ(g n ) = (φ(g)) n, n Z. (iv) The kernel of φ, kerφ = {g G φ(g) = e H } G. (v) The image of G under φ, imφ = {h H φ(g) = h, for some g G} H. Proof (i): Use φ(e G e G ) and Cancellation Law. (ii): Use uniqueness of inverse. (iii): Induction on n for n > 0, and use (ii) for negative n s. (iv) and (v): (Check ab 1 kerφ). (5.2) For a map φ : X Y and for each y Y, the subset φ 1 (y) = {x X φ(x) = y} is called a fiber of φ. Given a group homomorphism φ : G H with K = kerφ, G/K denotes the set of all fibers of φ. Define a binary operation on G/K by φ 1 (a) φ 1 (b) = φ 1 (ab). Then (i) is well defined. (φ 1 (ab) is independent of the choices of a and b). (ii) (G/K, ) is a group, called the quotient group of factor group. The identity of G/K is K and the inverse of gk is g 1 K. (iii) φ 1 (a) = ak = {ak k K} = Ka = {ka k K}. Proof: (i) Suppose that a φ 1 (a) and b φ 1 (b). The φ(a ) = φ(a) and φ(b ) = φ(b). Thus φ(a b ) = φ(a )φ(b ) = φ(a)φ(b) = φ(ab). (ii) Verify the group axioms. The inverse and the identity conclusions follow from the definition of the binary operation and the uniqueness of identity and inverse. (iii) Since φ(ak) = a, ak φ 1 (a). x φ 1 (a), we can write x = ay (y = a 1 x). Thus φ(a) = φ(x) = φ(a)φ(y) and so y K. (5.3) For any N G and g G, gn and Ng are called the left coset and the right coset of N in G. Any element in a coset if a representative of the coset. (Every theorem below about left cosets can also have a right coset version.) If G is finite, then (i) g G, gn = N, and (ii) G is the disjoint union of distinct left (or right) cosets of N. (Valid even when G =.) (iii) If φ : G H is a homomorphism with ker(φ) = K, then every fiber of φ has the 5

same cardinality. (iv) A homomorphism φ is injective iff ker(φ) = {1}. Proof (i) It suffices to show that if n 1 n 2 and n 1, n 2 N, then gn 1 gn 2, which is assured by Cancellation Laws. (ii) Since G = {g G} g G gn, it suffices to show that if g 1 N g 2 N, then g 1 N g 2 N =. In fact, if g 1 n 1 = g 2 n 2 for some n 1, n 2 N, then g 1 = g 2 n 2 n 1 1 g 2 N, and so g 1 N g 2 N. Similarly, g 2 N g 1 N. (iii) follows from (i) and (iv) follows from (iii). (5.4) (5.1) can be restated in terms of left and right cosets. Let G be a group and let K G be the kernel of some homomorphism from G. Then the set of all left (or all right) cosets of K with the operation defined by uk vk = (uv)k (or Ku Kv = K(uv)) is a group, denoted by G/K. The operation is well defined (independent of the choices of the representatives). (5.4a) Examples: φ : Z nz, for any fixed n 1 and n Z. Projections in R 2. φ : S 3 Z 3. (5.5) Let N G. Then un = vn u 1 v N. Proof un = vn = u vn = u 1 v N = v un = un = vn. (5.6) (Thm 5.1 and Thm 5.5) Let N G. TFAE: (i) The operation on the left cosets of N by un vn = (uv)n is well defined. (ii) g G, and n N, gng 1 N. (iii) g G, gng 1 N. (iv) g G, gn = Ng. (v) N G (N) = G or equivalently g G, gng 1 = N. (vi) N is the kernel of some homomorphism from G. Proof (i) = (ii). Suppose that is well defined. g G and n N, (eg 1 )N = (ng 1 )N, and so by (5.5), gng 1 N. (ii) = (i). Suppose that u un and v vn. Want to show (u v )N = (uv)n. Since u = un and v = vn, for some n, n N, u v = unvn = uv(v 1 nv)n = uvn (uv)n, 6

where n = (v 1 nv)n. (ii) (iii). Definition. (iii) = (iv). By (iii), we have gng 1 N, and so gn Ng. Replace g by g 1 to get Ng gn. (iv) (v). N G (N) = {g G gng 1 = N} = G. (vi) = (i). (i) of (5.2). (v) = (vi). Let P denote all the left cosets of N in G. By (i), (P, ) is a group. Define a map π : G P by π(g) = gn, g G. Then π(gg ) = (gg )N = g(g Ng 1 )gn = gng N = π(g)π(g ), and so a homomorphism. The kernel of π, by (ii) of (6.2), is ker(π) = {g G φ(g) = N} = {g G gn = 1N} = by (6.5) {g G g N} = N. (5.7) A subgroup N satisfying any one properties of (5.6) is called a normal subgroup of G. Denote this fact by N G. The homomorphism π in the proof of (v) = (vi) in (5.6) is called the natural projection or canonical homomorphism of G onto G/N. 7