Field and Wave Electromagnetic

Similar documents
Rectangular Waveguide

ECE 222b Applied Electromagnetics Notes Set 4b

Modes are solutions, of Maxwell s equation applied to a specific device.

2/5/13. y H. Assume propagation in the positive z-direction: β β x

Waveguides. Parallel plate waveguide Rectangular Waveguides Circular Waveguide Dielectric Waveguide

Today in Physics 218: review I

Waveguide Introduction & Analysis Setup

Physics 218, Spring April 2004

Inhomogeneous structure: Due to the fields within two guided-wave media, the microstrip does not support a pure TEM wave.

Class XII - Physics Electromagnetic Waves Chapter-wise Problems

Answers to test yourself questions

If we assume that sustituting (4) into (3), we have d H y A()e ;j (4) d +! ; Letting! ;, (5) ecomes d d + where the independent solutions are Hence, H

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves

ECE 546 Lecture 03 Waveguides

Waveguides. 9.1 Longitudinal-Transverse Decompositions Waveguides

Theory of Optical Waveguide

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 8. Waveguides Part 5: Coaxial Cable

ECE Spring Prof. David R. Jackson ECE Dept. Notes 7

ECE Microwave Engineering

Chapter 4 Reflection and Transmission of Waves

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation

Helmholtz Wave Equation TE, TM, and TEM Modes Rect Rectangular Waveguide TE, TM, and TEM Modes Cyl Cylindrical Waveguide.

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically.

Acoustic Waves in a Duct

Electrodynamics in Uniformly Rotating Frames as Viewed from an Inertial Frame

Lecture 15 (Nov. 1, 2017)

Combined Electric and Magnetic Dipoles for Mesoband Radiation, Part 2

The Wave Equation. The Wave Equation (II) The Wave Equation of a String. initial shape f( z,0) = g( z) subsequent form f( z, t) =?

ELECTROMAGNETIC WAVES

Plane Waves GATE Problems (Part I)

After the completion of this section the student should recall

) 12 = 1+ j. = ε 2. = n 2 n 1. sinθ ic. mπ a. = 1+ j. cos mπ a x. H z. =±j ε 2. sin 2 θ i. cosθ t 1 [3.31] ε 2ε1. θ i. ε =1e jφ. tan φ sin 2.

EECS 117 Lecture 26: TE and TM Waves

Chapter 11. Maxwell's Equations in Special Relativity. 1

ECE Microwave Engineering

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 18

toroidal iron core compass switch battery secondary coil primary coil

1 sin 2 r = 1 n 2 sin 2 i

Basics of Wave Propagation

Practice Exam 2 Solutions

EECS 117. Lecture 25: Field Theory of T-Lines and Waveguides. Prof. Niknejad. University of California, Berkeley

Blackbody radiation and Plank s law

GUIDED MICROWAVES AND OPTICAL WAVES

Acoustic Attenuation Performance of Helicoidal Resonator Due to Distance Change from Different Cross-sectional Elements of Cylindrical Ducts

n n=1 (air) n 1 sin 2 r =

PHYS 2020 Spring 2012 Announcements

Cartesian Coordinates

Physics for Scientists & Engineers 2

σ = σ + σ τ xy σ c2 σ 1 ω = τ = τ Disk of orthogonal reinforcement Consider a square disk of a unit length under shear and normal stresses = =Φ

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution.

BOUNDARY MATCHING TECHNIQUES FOR TERAHERTZ LOSSY GUIDING STRUCTURES YEAP KIM HO DOCTOR OF PHILOSOPHY IN ENGINEERING

( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR

Field and Wave Electromagnetic

v = fy c u = fx c z c The Pinhole Camera Model Camera Projection Models

Finite Formulation of Electromagnetic Field

4. Integrated Photonics. (or optoelectronics on a flatland)

PHY 396 T: SUSY Solutions for problem set #12.

Lightning electromagnetic environment in the presence of a tall grounded strike object

Plane Wave: Introduction

Special Relativity Entirely New Explanation

Analytical Study of Stability of Systems of ODEs

THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD PART IV

Module 3, Learning Objectives:

Physics 218, Spring February 2004

6-1 Chapter 6 Transmission Lines

TASK A. TRANSMISSION LINE AND DISCONTINUITIES

Directional Coupler. 4-port Network

3.1 The Helmoltz Equation and its Solution. In this unit, we shall seek the physical significance of the Maxwell equations, summarized

Plasmonic Waveguide Analysis

Antennas and Propagation

Known: long, aluminum cylinder acts as an extended surface.

Guided Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Guided Waves

TRANSMISSION AND DISTRIBUTION LINES & CABLES

Waves. Daniel S. Weile. ELEG 648 Waves. Department of Electrical and Computer Engineering University of Delaware. Plane Waves Reflection of Waves

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 7

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 17

Green s function for the wave equation

EVALUATION OF RESONANCE PROPERTIES OF THE HUMAN BODY MODELS SITUATED IN THE RF FIELD

Electromagnetism. Christopher R Prior. ASTeC Intense Beams Group Rutherford Appleton Laboratory

Particle Properties of Wave

Uniform Plane Waves. Ranga Rodrigo. University of Moratuwa. November 7, 2008

Buckling loads of columns of regular polygon cross-section with constant volume and clamped ends

Math 151 Introduction to Eigenvectors

Transmission Lines, Waveguides, and Resonators

ECE 107: Electromagnetism

FDFD. The Finite-Difference Frequency-Domain Method. Hans-Dieter Lang

Essentials of Electromagnetic Field Theory. Maxwell s equations serve as a fundamental tool in photonics

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when

Chapter 5 Waveguides and Resonators

ECE Spring Prof. David R. Jackson ECE Dept. Notes 1

Dielectric Slab Waveguide

Lecture 17. Phys. 207: Waves and Light Physics Department Yarmouk University Irbid Jordan

Complex Wave Parameters Visualization of EM Waves Complex Wave Parameters for Special Cases

10 (4π 10 7 ) 2σ 2( = (1 + j)(.0104) = = j.0001 η c + η j.0104

Outline. Propagation of Signals in Optical Fiber. Outline. Geometric Approach. Refraction. How do we use this?

Dynamics of the Electromagnetic Fields

EECS 117. Lecture 23: Oblique Incidence and Reflection. Prof. Niknejad. University of California, Berkeley

Supplementary Figures

High Energy Astrophysics

Lecture 7 Waveguides. TC 412 Microwave Communications

Transcription:

Field and Wave Eletromagneti Chapter Waveguides and Cavit Resonators Introdution () * Waveguide - TEM waves are not the onl mode o guided waves - The three tpes o transmission lines (parallel-plate, two-wire, and oaial) are not the onl possile wave-guiding struture. - Attenuation onstant α or loss line C L α ( R + G ) R L C Rs π μ R = ( ) = w w σ Attenuation o TEM waves tends to inrease monotoniall with requen prohiitivel high in the mirowave range. Eletromagneti Theor

Introdution () - TEM waves : E = H = - TM waves : transverse magneti waves ( H =, E ) - TE waves : transverse eletri(te) waves - single ondutor wave guide : retangular and lindrial wave guide. - dieletri-sla waveguide : surae waves Eletromagneti Theor 3 General Wave Behaviors along Uniorm Guiding Strutures () * General wave ehaviors along uniorm g uiding strutures - straight guiding strutures with a uniorm ross setion. - Assume that the waves propagate in the + diretion with a propagation onstant γ = α + jβ - For harmoni time dependene on and t or all ield omponents : e e = e = e e γ j ω t ( j ω t γ ) α j( ω t β ) Eletromagneti Theor 4

General Wave Behaviors along Uniorm Guiding Strutures () - For a osine reerene Et ee e ( jωt γ) (,, ; ) =R [ (, ) ] where E (, ): two-dimensional vetor phasor - jw, γ, in using a phasor representation t - In the harge-ree dieletri region inside, Helmholt's equations should e satisied E+ k E = where H + k H =, k = ( ) E ( ) E = + = ω με - In Cartesian oordinates, retangular wave guide + E = E+ γ E Eletromagneti Theor 5 General Wave Behaviors along Uniorm Guiding Strutures (3) E+ ( γ + k ) E = H + ( γ + k ) H = ) E+ ( γ + k ) E = ( E + E + E ) + ( γ + k )( E + E + E ) = i.e E + ( γ + k ) E =, E + ( γ + k ) E = E + ( γ + k ) E = The solution o aove equations depends on the ross-setional geometr and the oundar onditions ) instead o or waveguides with a irular ross setion rφ Eletromagneti Theor 6

General Wave Behaviors along Uniorm Guiding Strutures (4) - Interrelationships among the si omponents in Cartesian oordinates E = jωμh H = jωε E E 4 + γe = jωμh + γh = jωεe E γ E E 3 6 = jωμh 5 γ H = jωε E E = jωμh = jωε E ) E E jωμh E E = jωμh = j H ωμ E E E E jωμh E γ γ where and is surpressed e Eletromagneti Theor 7 General Wave Behaviors along Uniorm Guiding Strutures (5) - Transverse omponent an e epressed in terms o longitudinal omponents. E) Comining and 5 : E + γe = jωμh 5 : γh = j E eliminating E rom,5 ' : ωε E jωε + γ jωε E = ω με H 5' : γ γ = γ ωε E ( k + γ ) H = jωε γ H j E E H = ( j + ) h = k h ωε γ where + γ Eletromagneti Theor 8

General Wave Behaviors along Uniorm Guiding Strutures (6) - i.e H H E E = + h ( jωε γ ) E = + + h ( jωε γ ) E = + h ( jωμ γ ) E E ( j ) h k h = ωμ + γ where = + γ note First, solve E+ h E = and H + h H = then ind H, H, E, E or longitudinal omponents using aove equation Eletromagneti Theor 9 TEM Waves () * TEM wave - E =, H = or TEM waves E = E = H = H = h = unless - TEM waves eist onl where or γ TEM TEM + k = γ = jk = jω με : propagation onstant o a uniorm plane wave on a lossless transmission line. - Phase veloit μ ptem ( ) ω = = k με Eletromagneti Theor

TEM Waves () E jωμ γ ΤΕΜ - Wave impedane ZTEM = = = rom,4 H γ jωε μ = = η ε ΤΕΜ note Z Z TEM TEM is the same as the intrinsi impedane o the dieletri medium E μ = = H ε H = E Z TEM Eletromagneti Theor TEM Waves (3) * Single-ondutor waveguides annot support TEM waves. Wh?. B lines alwas lose upon themselves. For TEM waves to eist, B and H lines would orm losed loops in a transverse plane. 3. B the Ampere's iruital law. Hdl i = I + I I I d d transverse plane : ondutor urrent : displaement urrent 4. Without an inner ondutor I = Eletromagneti Theor

TEM Waves (4) 5. For TEM wave, E = no longitudinal displaement urrent ) I d D = ids = in the diretion s t E = 6. Thereore there an e no losed loops o magneti ield lines in an transverse plane 7. Assuming peret ondutors, a oaial transmission line having an inner ondutor an support TEM waves 8. When the ondutors have losses, no longer TEM waves Eletromagneti Theor 3 TM / TE Waves () For TM waves H = For TE waves E = solving solving E + h E = or E H H E E =. jωε E h jωε E = h γ E = h γ E = h with proper or H oundar onditions oundar onditions : : : 3 : 4 H + h H = H H E E. γ = h γ = h = = jωμ h jωμ h with proper : 5 : 6 : 7 : 8 Eletromagneti Theor 4

TM / TE Waves () γ ( E ˆ ˆ T ) TM = E + E = TE h E, E are given, H, H an e determined rom the wave impedane or the TM mode rom 3, and 4, E E γ Z TM = = = H H jωε jωμ ) ZTM γ γ or TM is not equal to jω με, whih is γ H = ( ˆ E) Z TM TEM γ ( H ) = H ˆ + H ˆ = H h similar wa, E, E an e T TE T otained rom, H E = ZTE ( ˆ H ) = Z ( H ˆ ) TE H rom 67, and 58, E E jωμ Z TE = = = H H γ γ ) ZTE ZTM = jωε Eletromagneti Theor 5 TM / TE Waves (3) solution o E + h E = or a given oundar ondition are possile onl or disrete values o h ininit o h's ut solutions are not possile or all values o h eigenvalues or harateristi values h = γ + k γ = h k = h ω με H + h H = eigen values Eletromagneti Theor 6

TM / TE Waves (4) or γ =, ω με = h h = : uto requen π με ) The value o or a partiular mode in a waveguide depends on the eigenvalue o this mode H + h H = eigen values γ = h ( ) Eletromagneti Theor 7 TM / TE Waves (5) γ = h ( ) (a) ( ) > or > in this range, > and is imaginar h γ = jβ = jk ( ) k = jk ( ) ωμε propagation mode with a phase onstant β h γ β = k ( ) (rad/m) Eletromagneti Theor 8

TM / TE Waves (6) - Guided wavelength π λ π λg = = > λ where λ = = = β k με ( ) let uto wavelength, λ = then ( ( = ) ) g λ λ = ( ) = g u + = λ λ λ g u λ λ λ λ u Eletromagneti Theor 9 TM / TE Waves (7) - Phase veloit u g u = ω λ p u u β = = λ > ( ) ). Phase veloit o guided wave is aster than that o unounded medium.. Phase veloit depends on requen so that single ondutor waveguides are dispersive transmission sstems Eletromagneti Theor

TM / TE Waves (8) - Group veloit λ = = = < ug u ( ) u u dβ/ dω λg uu = u g p ) dk d π με dβ = = dω dω d( π ) ( ( ) [ ( ) ] d = ( ) d u = u ( ) Eletromagneti Theor - Z TM jk γ = = jωε ( ) jωε TM / TE Waves (9) μ = ( ) = η ( ) ε ; purel resistive and less than the intrinsi impedane o the dieletri medium - Z TE jωμ = = γ jk jωμ ( ) μ η = = ε ( ) ( ) ; purel resistive larger than the intrinsi impedane o the dieletri medium Eletromagneti Theor

TM / TE Waves () () ( ) < or < γ = α = h ( ) e e γ α = to e evanesent waveguide : high-pass ilter : real numer wave diminishes rapidl with and is said h ( ) γ h ZTM = = = j ( ), < jωε jωε ωε purel reative no power low assoiated with evanesent mode Z TE jωμ = = γ j h ωμ ( ) : purel reative. no power low. Eletromagneti Theor 3 TM / TE Waves () - ω β diagram ω ω β = ( ) u ω Eletromagneti Theor 4

Parallel-Plate Waveguide () - Parallel plate waveguide an support TM and TE waves as well as TEM waves * TM waves etween parallel plates. Assuming ε and μ. Ininite in etent in the - diretion 3. TM waves ( H = ) 4. ( j t ) e ω γ Eletromagneti Theor 5 Parallel-Plate Waveguide () E E e (no variation along γ (, ) = ( ) - diretion) d E ( ) + he( ) = d where B.C. E ( ) = at = and = nπ nπ E( ) = Ansin( ) rom h= where A depends on the strength o eitation o n h = γ + k the partiular TM wave Eletromagneti Theor 6

Parallel-Plate Waveguide (3) jωε E jωε nπ H ( ) = = A os( ) h h n jωε E H ( ) = = h γ E E ( ) = = h γ E γ nπ E ( ) = = A os( ) h h n nπ γ = ( ) ω με Cuto requen that makes γ = = n με Eletromagneti Theor 7 Parallel-Plate Waveguide (4) ) = or TM mode with n= με = or TM mode with n= με ) TM mode is the TEM mode with E = = - Dominant mode o the waveguide = the mode having the lowest uto requen - For parallel plate waveguides, the dominant mode is the TEM mode Eletromagneti Theor 8

E. -3() ) Field line : the diretion o the ield in spae i.e. dl = d ˆ + d ˆ + d ˆ = ke = k( E ˆ + E ˆ + E ˆ ) d d d = = = k E E E ield line Eletromagneti Theor 9 E. -3() d E (, ; t = ) in the plane = d E (, ; t = ) For TM mode at t=, ωε π H (, ;) = A os( )sinβ π At = and = - There are surae urrents eause o a disontinuit in the tangential magneti ield. - There are surae harges eause o the presene o a normal eletri ield Eletromagneti Theor 3

E. -4 () (a) A propagating TM wave = the superposition o two plane waves ouning ak and orth oliquel etween the two onduting plates proo> A E A e e e j A ( / ) ( / ) [ e j β π e j β+ π = ] j π jβ jπ/ jπ/ (, ) = sin( ) = ( ) e jβ Eletromagneti Theor 3 E. -4 () Term : A plane wave propagating oliquel in the + and π diretions with phase onstants β and Term : A plane wave propagating oliquel in the + and + diretions with the same phase onstants H = H ˆ E = E ˆ sinθ E ˆ osθ E = E ˆ sinθ E ˆ osθ i i i i i r r i r i = E ˆ sinθ + E ˆ osθ i i i i β = ˆβ osθ + ˆβ sinθ β = ˆβ osθ + ˆβ sinθ i i i r i i Eletromagneti Theor 3

E. -4 (3) E (, ) = E os θ ( e e ) e i i π βsin θi = β, βosθi = jβ osθ jβ osθ jβ sinθ i i i π π β = β ( ) = ω με ( ) π λ osθi = = solution eists onl or λ β λ u at =, = = uto requen λ με then θ = i waves oune ak and orth in the - diretion and no propagation in the - diretion TM mode propagates onl when λ < λ = or >. λ λ u osθi = = sinθi = = = ( ) λ λ u g p Eletromagneti Theor 33 TE Waves etween Parallel Plates () * TE waves E =, = d H ( ) + hh ( ) = d We note that H = H e (, ) ( ) γ jωμ B.C. E = = h dh ( ) i.e = at = and = d nπ H( ) = Bnos( ) Eletromagneti Theor 34

TE Waves etween Parallel Plates () γ H ( ) = = ( = ) Z h γ γ nπ H ( ) = = B sin( ) h h n jωμ jωμ nπ E ( ) = = B sin( ) h h n jωμ E ( ) = = ( = ) Z h nπ γ = h k = ( ) ω με the same as that or TM waves The uto requen is the same For n=, H = and E = Eletromagneti Theor 35 TE Waves etween Parallel Plates (3) i.e, TE mode doesn't eist ) TM = TEM ) TM or TM ) TM or TM does not eist mπ mπ E (, ) = E sin( )sin( ) a does eist or the retangular waveguide mπ mπ H (, ) = H os( )os( ) a Eletromagneti Theor 36

Energ-transport Veloit () * Energ-transport veloit - Wave guide high pass ilter - Broadand signal. low requen omponents ma e elow uto. high requen omponents will travel widel dierent veloit - Energ-transport veloit : veloit at whih energ propagates along a waveguide u en ( P) = W av av (m/s) ( P) = P ids av s av : the time average power Eletromagneti Theor 37 Energ-transport Veloit () W av = [( we ) av + ( wm ) av ] ds : the time average stored u en s = u ( ) energ per unit length [ H.W] prove that ε * ( we) av= ReEE ( i ) 4 μ * ( wm) av= Re( HiH ) 4 Eletromagneti Theor 38

Energ-transport Veloit (3) ε nπ β nπ ( we) av= An[sin ( ) + os ( )] 4 h * ) ( EE i ) jβ i( jβ) = β ε β ε ( w ) d A [ ] k A 8 h 8h e av = n + = n ( wm) av= ( ) A os ( ) n μ ω ε nπ 4 h μ ε ( w ) d = ( ωε ) A = k A 8h 8h m av n n ( P) = P id ˆ av av = ωεβ A h nπ ωεβ os ( ) d = 4h n A n Eletromagneti Theor 39 Energ-transport Veloit (4) * ) Pav = R e( E H ) = Re E ˆ H + E ˆ H * ( Pav) i = Re( E H ) ωεβ nπ = A os ( ) n h * * ( ) u en ωβ ω β = = ( ) = u ( ) k k k Eletromagneti Theor 4

Attenuation in Parallel-plate Waveguides () * Attenuation in parallel-plate waveguide - Losses are ver small - α = α + α d Ohmi losses Dieletri losses For TEM mode ) For a loss transmission line the time-average power loss per unit length V PL ( ) = [ I ( ) R+ V ( ) G ] = ( R+ G Z ) e Z α V P ( ) = R ev [ ( I ) ( )] = Re Z * α Eletromagneti Theor 4 Attenuation in Parallel-plate Waveguides () P ( ) = PL ( ) = α P( ) P α = = + ( ) L ( ) ( R G Z ) P R G σ μ σ αd = R = = η ( Z R or low loss ondutor) ε ω G = σ where independent o requen R = η ω Eletromagneti Theor 4

Attenuation in Parallel-plate Waveguides (3) R π ε α = = R σ μ ) R = η = ω ω ε R = ω π μ σ For TM mode to ind dieletri losses, α σ - εd = ε + ( ) jω d at > Eletromagneti Theor 43 Attenuation in Parallel-plate Waveguides (4) jσ nπ γ = j[ ω με( ) ( ) ] ωε / nπ nπ = j ωμε ( ) { jωμσωμε [ ( ) ] } / nπ jωμσ nπ j ωμε ( ) { [ ωμε ( ) ] } nπ Assumption that ωμσ ω με ( ) Eletromagneti Theor 44

Attenuation in Parallel-plate Waveguides (5) For uto requen nπ = π nπ ω ωμε ( ) = ω με ( ) ω = ω με ( ) σ μ γ = αd + jβ = + jω με ( ) ε ( ) με Eletromagneti Theor 45 Attenuation in Parallel-plate Waveguides (6) We otain and ση αd = ( ) β = ω με ( ) dereases when requen inreases To ind α PL ( ) α = P ( ) * P ( ) = w ( E)( ) H d wωεβ A nπ A = ( ) os ( ) d = w ( ) π π n n n ωεβ n Eletromagneti Theor 46

Attenuation in Parallel-plate Waveguides (7) P ( ) = w( J ) L s Rs ωεan ωεa = w( ) Rs where Js = H( = ) = nπ nπ P ( ) ωε R L s α = = Rs = P ( ) β η ( ) R s = π μ σ n πμ α = η σ ( )[ ( ) ] Eletromagneti Theor 47 Attenuation in Parallel-plate Waveguides (8) TE modes α : the same as TM α d P w E H d wωμβ B nπ B = ( ) sin ( ) d = w ( ) P ( ) = w( J ) L s Rs * : ( ) = ( )( ) n n ωμβ nπ nπ ( ) n s = wh = R = wbr PL ( ) Rs nπ Rs α = = ( ) = P ( ) ωμβ η ( ) dereases monotoniall as requen inreases Eletromagneti Theor 48

Attenuation in Parallel-plate Waveguides (9) Eletromagneti Theor 49 Homework H.W -, -4, -5, -8, -9, -, -4 Eletromagneti Theor 5