Solitons in the SU(3) Faddeev-Niemi Model

Similar documents
Localized objects in the Faddeev-Skyrme model

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

Monopoles and Skyrmions. Ya. Shnir. Quarks-2010

Matryoshka Skyrmions, Confined Instantons and (P,Q) Torus Knots. Muneto Nitta (Keio Univ.)

The SU(2) quark-antiquark potential in the pseudoparticle approach

Topological Solitons from Geometry

Extended Soliton Solutions in an Ef fective Action for SU(2) Yang Mills Theory

Solitons, Vortices, Instantons

Baby Skyrmions in AdS 3 and Extensions to (3 + 1) Dimensions

Some selected results of lattice QCD

Instanton constituents in sigma models and Yang-Mills theory at finite temperature

arxiv: v1 [hep-lat] 24 Nov 2009

Lecture 7: N = 2 supersymmetric gauge theory

Lefschetz-thimble path integral for solving the mean-field sign problem

Instantons and Monopoles in Maximal Abelian Projection of SU(2) Gluodynamics

Abelian and non-abelian Hopfions in all odd dimensions

Lefschetz-thimble path integral and its physical application

Suitable operator to test the Abelian dominance for sources in higher representation

The Phases of QCD. Thomas Schaefer. North Carolina State University

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

Seminar presented at the Workshop on Strongly Coupled QCD: The Confinement Problem Rio de Janeiro UERJ November 2011

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt

Infrared Propagators and Confinement: a Perspective from Lattice Simulations

Gauge invariance of the Abelian dual Meissner effect in pure SU(2) QCD

2-Group Global Symmetry

t Hooft-Polyakov Monopoles on the Lattice

arxiv: v4 [hep-th] 17 Aug 2017

t Hooft Loops and S-Duality

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

Skyrme model U : S 3 S 3. d 3 x. The Skyrme field: The topological charge: Q = 1. Rescaling: Sigma-model term Skyrme term Potential term.

Instantons and Sphalerons in a Magnetic Field

Geometry and Physics. Amer Iqbal. March 4, 2010

100 Years after Einstein A New Approach to Quantum Gravity

Hamilton Approach to Yang-Mills Theory Confinement of Quarks and Gluons

Symmetries Then and Now

LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS

in collaboration with K.Furuta, M.Hanada and Y.Kimura. Hikaru Kawai (Kyoto Univ.) There are several types of matrix models, but here for the sake of

arxiv: v1 [hep-lat] 6 Oct 2008

Solitons and point particles

Properties of monopole operators in 3d gauge theories

Chiral symmetry breaking, instantons, and monopoles

CLASSIFICATION OF NON-ABELIAN CHERN-SIMONS VORTICES

The Phases of QCD. Thomas Schaefer. North Carolina State University

5 Topological defects and textures in ordered media

Solitons, Links and Knots

Cold atoms and AdS/CFT

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Singular Monopoles and Instantons on Curved Backgrounds

Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures

Vortices and other topological defects in ultracold atomic gases

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 7: Lectures 13, 14.

The Infrared Behavior of Landau Gauge Yang-Mills Theory in d=2, 3 and 4 Dimensions

A Review of Solitons in Gauge Theories. David Tong

Hopf Fibrations. Consider a classical magnetization field in R 3 which is longitidinally stiff and transversally soft.

Extremal black holes from nilpotent orbits

Lectures April 29, May

NTNU Trondheim, Institutt for fysikk

Exact Results in D=2 Supersymmetric Gauge Theories And Applications

Lecture 12 Holomorphy: Gauge Theory

An origin of light and electrons a unification of gauge interaction and Fermi statistics

Cold atoms and AdS/CFT

towards a holographic approach to the QCD phase diagram

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian

Think Globally, Act Locally

Interacting non-bps black holes

Math. Res. Lett. 13 (2006), no. 1, c International Press 2006 ENERGY IDENTITY FOR ANTI-SELF-DUAL INSTANTONS ON C Σ.

Vortices and vortex states of Rashba spin-orbit coupled condensates

Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

Lattice Gauge Theory and the Maxwell-Klein-Gordon equations

Diffeomorphism Invariant Gauge Theories

arxiv:hep-th/ v3 18 Jul 2001

arxiv: v1 [hep-lat] 25 Apr 2012

String calculation of the long range Q Q potential

Baryon Physics in Holographic QCD Models (and Beyond) in collaboration with A. Wulzer

Generalized Global Symmetries

Electric Dipole Moment of Magnetic Monopole

8.821 String Theory Fall 2008

Electric-Magnetic Duality, Monopole Condensation, And Confinement In N = 2 Supersymmetric Yang-Mills Theory

Superinsulator: a new topological state of matter

BPS states, permutations and information


Meson-Nucleon Coupling. Nobuhito Maru

Scale hierarchy in high-temperature QCD

CHAPTER II: The QCD Lagrangian

Badis Ydri Ph.D.,2001. January 19, 2011

Fractionized Skyrmions in Dense Compact-Star Matter

Effective theories for QCD at finite temperature and density from strong coupling

g abφ b = g ab However, this is not true for a local, or space-time dependant, transformations + g ab

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

Integer quantum Hall effect for bosons: A physical realization

A Brief Introduction to AdS/CFT Correspondence

Quantising Gravitational Instantons

Analytical study of Yang-Mills theory from first principles by a massive expansion

Kontsevich integral in topological models of gravity

Gravity vs Yang-Mills theory. Kirill Krasnov (Nottingham)

Show, for infinitesimal variations of nonabelian Yang Mills gauge fields:

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Pushing dimensional reduction of QCD to lower temperatures

Non-Perturbative Thermal QCD from AdS/QCD

PoS(LAT2005)324. D-branes and Topological Charge in QCD. H. B. Thacker University of Virginia

Transcription:

Solitons in the SU(3) Faddeev-Niemi Model Yuki Amari Tokyo University of Science amari.yuki.ph@gmail.com Based on arxiv:1805,10008 with PRD 97, 065012 (2018) In collaboration with Nobuyuki Sawado (TUS) Quarks-2018 @Valday Russia, 29 May 2018

Contents 1. Background & motivation 2. Hopfions in the SU(2) Faddeev-Niemi model 3. 2D instantons in the F 2 nonlinear σ-model 4. Hopfions in the SU(3) Faddeev-Niemi model 5. Summary & Outlook

Contents 1. Background & motivation 2. Hopfions in the SU(2) Faddeev-Niemi model 3. 2D instantons in the F 2 nonlinear σ-model 4. Hopfions in the SU(3) Faddeev-Niemi model 5. Summary & Outlook

Knots as particles Atoms are knotted vortex tubes in ether. Lord Kelvin

Knots as particles Atoms are knotted vortex tubes in ether. Lord Kelvin The mass spectrum of glueballs R. V. Buniy, T. W. Kephart, A model of glueballs PLB 576, 127 C. J. Morningstar and M. J. Peardon PRD 60, 034509 (1999)

SU(2) Yang-Mills fields in the IR limit L. D. Faddeev & A. J. Niemi,PRL 82, 1624 (1999) QCD in UV limit asymptotic freedom QCD in IR limit color confinement Very different phases! In the IR limit with monopole condensation, some other order parameter could play a central role rather than the gauge field A μ.

SU(2) Yang-Mills fields in the IR limit L. D. Faddeev & A. J. Niemi,PRL 82, 1624 (1999) QCD in UV limit asymptotic freedom QCD in IR limit color confinement Very different phases! In the IR limit with monopole condensation, some other order parameter could play a central role rather than the gauge field A μ. Cho-Faddeev-Niemi (CFN) decomposition A a μ = C μ n a + ε abc μ n b n c + ρ μ n a + σε abc μ n b n c C μ : Abelian gauge field, n = n 1, n 2, n 3 with n = 1, ρ, σ: scalar field If n = Ԧr r, C μ = ρ = σ = 0, it gives the Wu-Yang monopole.

Effective model in confinement phase In the confinement phase φ = 0 where φ = ρ + iσ, we get SU(2) Faddeev-Niemi model S eff = නd 4 x Λ 2 μ n 2 + μ n ν n 2 For static configurations, n defines a mapping S 3 S 2. Preimage of the Hopf map OPS = S 2 Phys. sp. = R 3 ~S 3 π 3 S 2 = Z Knot solitons

CFN decomposition of SU(3) gauge fields Decomposition L. D. Faddeev and A. J. Niemi, PLB 449, 214 (1999) A μ = C μ a n a + i n a, μ n a + ρ ab n a, μ n b + iσ ab n a, μ n b n a = Uh a U U SU 3 SU(3) Faddeev-Niemi model 2 S eff = නd 4 x M 2 Tr μ n a μ n a + 1 e 2 F μν a F a μν a=1 F μν a = i 2 Tr n a μ n b, ν n b OPS= SU 3 /U 1 2 = F 2 π 3 F 2 = Z Knot solitons Cf. S 2 = SU(2)/U(1)

Contents 1. Background & motivation 2. Hopfions in the SU(2) Faddeev-Niemi model 3. 2D instantons in the F 2 nonlinear σ-model 4. Hopfions in the SU(3) Faddeev-Niemi model 5. Summary & Outlook

The SU(2) Faddeev-Niemi model J. Gladikowski & M. Hellmund, PRD 56, 5194 (1997) The static energy L. D. Faddeev & A. J. Niemi, Nature 387, 58 (1997) E = නd 3 x M 2 i n 2 + 1 e 2 in j n 2 The Hopfions P. Sutcliffe, Proc. Roy. Soc. Lond. A 463, 3001 (2007) R. A. Battye & P. M. Putcliffe, PRL 81, 4798 (1998)

The SU(2) Faddeev-Niemi model J. Gladikowski & M. Hellmund, PRD 56, 5194 (1997) The static energy L. D. Faddeev & A. J. Niemi, Nature 387, 58 (1997) E = නd 3 x M 2 i n 2 + 1 e 2 in j n 2 Stereographic projection S 2 CP 1 n = 1 Δ u + u, i u u, u 2 1 Δ = 1 + u 2

The SU(2) Faddeev-Niemi model J. Gladikowski & M. Hellmund, PRD 56, 5194 (1997) The static energy L. D. Faddeev & A. J. Niemi, Nature 387, 58 (1997) E = නd 3 x M 2 i n 2 + 1 e 2 in j n 2 Stereographic projection S 2 CP 1 n = 1 Δ u + u, i u u, u 2 1 Δ = 1 + u 2 At the end of my talk, we see the e.o.m. of the SU 3 model reduces to that of the SU 2 case with the stereographic projection.

Contents 1. Background & motivation 2. Hopfions in the SU(2) Faddeev-Niemi model 3. 2D instantons in the F 2 nonlinear σ-model 4. Hopfions in the SU(3) Faddeev-Niemi model 5. Summary & Outlook

The action density The F 2 nonlinear σ-model S = Z A μ Z B 2 + ZB μ Z C 2 + ZC μ Z A 2

The action density The F 2 nonlinear σ-model S = Z A μ Z B 2 + ZB μ Z C 2 + ZC μ Z A 2 D μ (a) μ Z a μ Z a Copies of the CP 2 NLσ-model A. D'Adda et.al., NPB 146, 63 (1978) S = න d 2 x D μ A Z A 2 + Dμ C Z C 2 ZC μ Z A 2

The action density The F 2 nonlinear σ-model S = Z A μ Z B 2 + ZB μ Z C 2 + ZC μ Z A 2 D μ (a) μ Z a μ Z a Copies of the CP 2 NLσ-model A. D'Adda et.al., NPB 146, 63 (1978) S = න d 2 x D A 2 μ Z A + C 2 Dμ Z C 2 ZC μ Z A 2π N A + N C න d 2 x Z 2 C μ Z A Winding number of a map S 2 CP 2 N a = i 2π නd2 x ε μν D μ a Z a Dν (a) Za N A + N B + N C = 0

Parametrization Isomorphism SU 3 /U 1 2 SL 3, C /B + 1 0 0 u 1 1 0 u 2 u 3 1 = c 1, c 2, c 3 SL 3, C 6 DOF = dim F 2 Gram-Schmidt orthogonalization process U = Z Α, Z Β, Z C SU 3

Parametrization Isomorphism SU 3 /U 1 2 SL 3, C /B + 1 0 0 u 1 1 0 u 2 u 3 1 = c 1, c 2, c 3 SL 3, C 6 DOF = dim F 2 Gram-Schmidt orthogonalization process U = Z Α, Z Β, Z C SU 3 Z A = 1 Δ 1 1 u 1 u 2 Z B = 1 Δ 1 Δ 2 u 1 u 2 u 3 1 u 1 u 2 u 3 + u 2 2 u 1 u 2 + u 3 + u 3 u 1 2 Z C = 1 u 1 u 3 u 2 u 3 Δ 2 1 Δ 1 = 1 + u 1 2 + u 2 2 Δ 2 = 1 + u 3 2 + u 1 u 3 u 2 2

The 2D instantons The BPS-like bound S 2π N A + N C න d 2 x Z 2 C μ Z A satisfied if and only if u j = u j x 1 ± ix 2 for j = 1,2,3.

The 2D instantons The BPS-like bound S 2π N A + N C න d 2 x Z 2 C μ Z A satisfied if and only if u j = u j x 1 ± ix 2 for j = 1,2,3. Stationary points in the bound correspond to the instantons. π N A + N C න d 2 x Z 2 C μ Z A 0 u 1 = u 3 = 0 u 2 = u 2 x 1 ± ix 2 H. T. Ueda, Y. Akagi & N. Shannon, PRA. 93, 021606(R) (2016) Embedding type

The 2D instantons The BPS-like bound S 2π N A + N C න d 2 x Z 2 C μ Z A satisfied if and only if u j = u j x 1 ± ix 2 for j = 1,2,3. Stationary points in the bound correspond to the instantons. π N A + N C න d 2 x Z 2 C μ Z A 0 u 1 = u 3 = 0 u 2 = u 2 x 1 ± ix 2 H. T. Ueda, Y. Akagi & N. Shannon, PRA. 93, 021606(R) (2016) Embedding type u k = u k x 1 ± ix 2 u 3 μ u 1 μ u 2 = 0 Y.A. & N. Sawado, PRD 97, 065012 (2018) Genuine type k = 1,2

Contents 1. Background & motivation 2. Hopfions in the SU(2) Faddeev-Niemi model 3. 2D instantons in the F 2 nonlinear σ-model 4. Hopfions in the SU(3) Faddeev-Niemi model 5. Summary & Outlook

L = The SU(3) Faddeev-Niemi model The Lagrangian 2 a=1 M 2 Tr μ n a μ n a F μν a = i 2 Tr n a μ n b, ν n b 1 e 2 F μν a F a μν For simplicity, we set M = e = 1. n a = Uh a U U = Z Α, Z Β, Z C SU 3 The Cartan-Weyl basis h 1 = λ 3 / 2, h 2 = λ 8 / 2 e 1 = 0 1 0 0 0 0 0 0 0, e 2 = 0 0 0 0 0 0 1 0 0, e 3 = 0 0 0 0 0 1 0 0 0 e p = e p T

Equations of motion Cartan decomposition U μ U = ia μ a h a + ij μ p e p The EL eq. is equivalent to conservation of the Noether current K μ associated to U gu, g SU(3). μ K μ = 0 K μ = UB μ U μ B μ + U μ U, B μ = 0 B μ = i J p μ iα p a F a μν J pν p e p

Equations of motion Cartan decomposition U μ U = ia μ a h a + ij μ p e p The EL eq. is equivalent to conservation of the Noether current K μ associated to U gu, g SU(3). μ K μ = 0 K μ = UB μ U μ B μ + U μ U, B μ = 0 The equations of motion μ J p μ ig p μν J pν B μ = i + ir pμ J p μ ig p μν J p ν +G pμν J p 1 μ J p+1 ν = 0 p J μ p iα a p F μν a J pν e p p = 1,2,3 R μ p = α a p A μ a, G p μν = α a p F μν a α a p = Tr e p h a, e p

Trivial embedding The embedding can be realized if two of the scalars vanish. u 1 = u 3 = 0, u 2 = u U = 1 Δ 1 0 u 0 Δ 0 u 0 1 Δ = 1 + u 2

Trivial embedding The embedding can be realized if two of the scalars vanish. u 1 = u 3 = 0, u 2 = u U = 1 Δ 1 0 u 0 Δ 0 u 0 1 Δ = 1 + u 2 We have J μ 1 = J μ 3 = 0, J μ 2 = i Δ μu The e.o.m for p = 1, 3 are automatically satisfied and for p = 2 reduces to μ μ u ig μν ν u + ir μ μ log Δ μ u ig μν ν u = 0 R μ = i Δ u μ u u μ u G μν = 2i Δ 2 μu ν u μ u ν u

Trivial embedding The embedding can be realized if two of the scalars vanish. u 1 = u 3 = 0, u 2 = u U = 1 Δ 1 0 u 0 Δ 0 u 0 1 Δ = 1 + u 2 We have J μ 1 = J μ 3 = 0, J μ 2 = i Δ μu The e.o.m for p = 1, 3 are automatically satisfied and for p = 2 reduces to μ μ u ig μν ν u + ir μ μ log Δ μ u ig μν ν u = 0 R μ = i Δ u μ u u μ u G μν = 2i Δ 2 μu ν u μ u ν u The EL eq. of the SU 2 Faddeev-Niemi model

Genuine solution Our strategy (i) We impose J μ 2 u 3 μ u 1 μ u 2 = 0. u 2 = f u 1, u 3 = f u 1 (ii)el eq. for p = 1, 3 are proportional to each other. 1 + u 1 2 + u 2 2 / 1 + u 3 2 + u 1 u 3 u 2 2 = const.

Genuine solution Our strategy (i) We impose J μ 2 u 3 μ u 1 μ u 2 = 0. (ii)el eq. for p = 1, 3 are proportional to each other. u 1 = u 3 = u 2 = u 2 u 2 = f u 1, u 3 = f u 1 1 + u 1 2 + u 2 2 / 1 + u 3 2 + u 1 u 3 u 2 2 = const. 2u, U = 1 Δ 1 2u u 2 2u 1 u 2 2u u 2 2u 1 The e.o.m for p = 2 is automatically satisfied and for p = 1, 3 reduce to μ μ u ig μν ν u + ir μ μ log Δ μ u ig μν ν u = 0

Genuine solution Our strategy (i) We impose J μ 2 u 3 μ u 1 μ u 2 = 0. (ii)el eq. for p = 1, 3 are proportional to each other. u 1 = u 3 = u 2 = u 2 u 2 = f u 1, u 3 = f u 1 1 + u 1 2 + u 2 2 / 1 + u 3 2 + u 1 u 3 u 2 2 = const. 2u, U = 1 Δ 1 2u u 2 2u 1 u 2 2u u 2 2u 1 The e.o.m for p = 2 is automatically satisfied and for p = 1, 3 reduce to μ μ u ig μν ν u + ir μ μ log Δ μ u ig μν ν u = 0 The EL eq. of the SU 2 Faddeev-Niemi model!!

Summary We confirmed the existence of Hopfions in the SU 3 Faddeev-Niemi model. The model is an effective model of the SU(3) pure YM theory. We found an ansatz of nonembedding type which the e.o.m. reduces to the SU 2 Faddeev-Niemi model. Outlook Stability of the Hopfions Implication of the constraint Estimation of mass spectrum of glueballs

Summary We confirmed the existence of Hopfions in the SU 3 Faddeev-Niemi model. The model is an effective model of the SU(3) pure YM theory. We found an ansatz of nonembedding type which the e.o.m. reduces to the SU 2 Faddeev-Niemi model. Outlook Stability of the Hopfions Implication of the constraint Estimation of mass spectrum of glueballs Thank you for your attention!

Reformulation Cartan decomposition of the Murer-Cartan form U μ U = ia μ a h a + ij μ p e p p = ±1, ±2, ±3. Under the gauge transformation U U exp iθ a h a, A μ a A μ a + μ θ a, The energy functional 3 E = නd 3 x q=1 J μ p J μ p e iθa α a p J q i J q i 1 4 J q [ij q j] J q+1 q+1 [i J 2 j] J [i q J j] q J i q J j q J j q J i q The energy represents the gauge fixing functional for a nonlinear maximal Abelian gauge.

χ 1 0 0 χ 2 χ 4 0 χ 3 χ 5 1 χ 1 χ 4 Parametrization = c 1, c 2, c 3 χ 1 0, χ 4 0 10 dof Gramm-Schmit orthogonalization process χ 2 /χ 1 = u 1, χ 3 /χ 1 = u 2, χ 5 /χ 4 = u 3 U = Z A e iθ 1, Z Β e iθ 4, Z C e i θ 1+θ 4 θ i = arg χ i 8 dof = dim SU(3) W = Z Α, Z Β, Z C 6 dof = dim F 2 Z A = 1 Δ 1 1 u 1 u 2 Z B = 1 Δ 1 Δ 2 u 1 u 2 u 3 1 u 1 u 2 u 3 + u 2 2 u 1 u 2 + u 3 + u 3 u 1 2 Z C = 1 u 1 u 3 u 2 u 3 Δ 2 1 Δ 1 = 1 + u 1 2 + u 2 2 Δ 2 = 1 + u 3 2 + u 1 u 3 u 2 2

The Hopf invariant M. Kisielowski, J. Phys. A 49, 17, 175206 (2016) Exact sequence 0 π 3 SU 3 π 3 SU 3 /U 1 2 0 Isotropy π 3 F 2 π 3 SU 3 Hopf invariant =Winding number of U: S 3 SU(3) =CS term for the SU 3 pure gauge R H = 1 24π 2 නTr U du 3 = 1 16π 2 න Tr R dr + 2 Tr R R R 3 The Hopf invariant H = 1 8π 2 නd3 x ε ijk A i a F jk a R = U du + 1 8π 2 නd3 x ε ijk Im J i 1 J j 2 J k 3

CFN decomposition of SU(3) gauge fields There are two options of the decomposition: SB pattern Order parameter space Homotopy group SU 3 U 1 2 F 2 = SU 3 /U 1 2 π 3 F 2 = Z SU 3 U 2 CP 2 = SU 3 /U 2 π 3 CP 2 = 0 Decomposition L. D. Faddeev and A. J. Niemi, PLB 449, 214 (1999) A μ = C μ a n a + i n a, μ n a + ρ ab n a, μ n b + iσ ab n a, μ n b SU(3) Faddeev-Niemi model 2 S eff = නd 4 x M 2 Tr μ n a μ n a + 1 e 2 F μν a F a μν a=1 n a = Uh a U U SU 3 F μν a = i 2 Tr n a μ n b, ν n b

Effective models of the SU(2) YM theory (1) Coulomb phase The original Yang-Mills action at low energy (2) Higgs phase φ 0 φ = ρ + iσ S eff = නd 4 x G 2 μν + D μ φ 2 + 1 φ 2 2 G μν = μ C ν ν C μ, D μ = μ + ic μ Abelian Higgs model (3) Confinement phase φ = 0 S eff = නd 4 x Λ 2 μ n 2 + μ n ν n 2 SU(2) Faddeev-Niemi model

The SU(2) Faddeev-Niemi model The static energy J. Gladikowski & M. Hellmund, PRD 56, 5194 (1997) L. D. Faddeev & A. J. Niemi, Nature 387, 58 (1997) E = නd 3 x M 2 i n 2 + 1 e 2 in j n 2 n const. as x n R 3 ~S 3 S 2 π 3 S 2 = Z The top. charge can be defined. Hopf map Derrick s theorem Scaling x λx E = E 2 + E 4 E n; λ = λ 1 E 2 + λe 4 λ E n; 1 = E 2 + E 4 = 0 λ 2 E n; 1 = 2E 2 > 0 If E 4 is absent, there are no stable solitons.

The SU(2) Faddeev-Niemi model J. Gladikowski & M. Hellmund, PRD 56, 5194 (1997) The static energy L. D. Faddeev & A. J. Niemi, Nature 387, 58 (1997) E = නd 3 x M 2 i n 2 + 1 e 2 in j n 2 Stereographic projection S 2 CP 1 n = 1 Δ u + u, i u u, u 2 1 Δ = 1 + u 2 The complex scalar u is convenient to solve the EL eq.. But, the topological charge cannot be defined by n nor u. We need to introduce Z = Z 0, Z 1 T where u = Z 1 /Z 0. Hopf invariant π 3 S 2 H = 1 4π නd3 x A da = Z A = iz dz

Applications in condensed matter physics There are many suggestions that knot solitons appear in condensed matter physics; Triplet superconductor Nematic liquid crystal E. Babaev, PRL 88, 177002 (2002) P. J. Ackerman & I. I. Smalyukh, PRX 7, 011006 (2017) SU(3) analogue Color superconductor Spin-nematic described by the SU 3 Heisenberg model. OPS of the SU 3 AFH model on the Cubic lattice = F 2 Continuum limit The SU(3) Faddeev-Niemi (like) model