(Communicated at the meeting of September 25, 1948.) Izl=6 Izl=6 Izl=6 ~=I. max log lv'i (z)1 = log M;.

Similar documents
Homology groups of disks with holes

A new Type of Fuzzy Functions in Fuzzy Topological Spaces

Lyapunov Stability Stability of Equilibrium Points

Admissibility Conditions and Asymptotic Behavior of Strongly Regular Graphs

f t(y)dy f h(x)g(xy) dx fk 4 a. «..

NAME: Prof. Ruiz. 1. [5 points] What is the difference between simple random sampling and stratified random sampling?

Dead-beat controller design

Trigonometric Ratios Unit 5 Tentative TEST date

LHS Mathematics Department Honors Pre-Calculus Final Exam 2002 Answers

Cambridge Assessment International Education Cambridge Ordinary Level. Published

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

Lim f (x) e. Find the largest possible domain and its discontinuity points. Why is it discontinuous at those points (if any)?

Math Foundations 20 Work Plan

Revisiting the Socrates Example

THE QUADRATIC AND QUARTIC CHARACTER OF CERTAIN QUADRATIC UNITS I PHILIP A. LEONARD AND KENNETH S. WILLIAMS

NUMBERS, MATHEMATICS AND EQUATIONS

Computational modeling techniques

THE FINITENESS OF THE MAPPING CLASS GROUP FOR ATOROIDAL 3-MANIFOLDS WITH GENUINE LAMINATIONS

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Tree Structured Classifier

A Matrix Representation of Panel Data

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are:

NOTE ON APPELL POLYNOMIALS

Competency Statements for Wm. E. Hay Mathematics for grades 7 through 12:

Support-Vector Machines

Equilibrium of Stress

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Lesson Plan. Recode: They will do a graphic organizer to sequence the steps of scientific method.

Emphases in Common Core Standards for Mathematical Content Kindergarten High School

FINITE BOOLEAN ALGEBRA. 1. Deconstructing Boolean algebras with atoms. Let B = <B,,,,,0,1> be a Boolean algebra and c B.

Differentiation Applications 1: Related Rates

A proposition is a statement that can be either true (T) or false (F), (but not both).

Lead/Lag Compensator Frequency Domain Properties and Design Methods

Pattern Recognition 2014 Support Vector Machines

E Z, (n l. and, if in addition, for each integer n E Z there is a unique factorization of the form

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

MAKING DOUGHNUTS OF COHEN REALS

SAMPLE ASSESSMENT TASKS MATHEMATICS SPECIALIST ATAR YEAR 11

[COLLEGE ALGEBRA EXAM I REVIEW TOPICS] ( u s e t h i s t o m a k e s u r e y o u a r e r e a d y )

COVERS OF DEHN FILLINGS ON ONCE-PUNCTURED TORUS BUNDLES

45 K. M. Dyaknv Garsia nrm kfk G = sup zd jfj d z ;jf(z)j = dened riginally fr f L (T m), is in fact an equivalent nrm n BMO. We shall als be cncerned

ECE 5318/6352 Antenna Engineering. Spring 2006 Dr. Stuart Long. Chapter 6. Part 7 Schelkunoff s Polynomial

The Equation αsin x+ βcos family of Heron Cyclic Quadrilaterals

Function notation & composite functions Factoring Dividing polynomials Remainder theorem & factor property

1. What is the difference between complementary and supplementary angles?

A little noticed right triangle

Keysight Technologies Understanding the Kramers-Kronig Relation Using A Pictorial Proof

Here is instructions on how to use the simulation program.(the first simulation is used in question 5)

READING STATECHART DIAGRAMS

You need to be able to define the following terms and answer basic questions about them:

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank

Greedy Algorithms. Kye Halsted. Edited by Chuck Cusack. These notes are based on chapter 17 of [1] and lectures from CSCE423/823, Spring 2001.

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25

ECE 2100 Circuit Analysis

Chapter Summary. Mathematical Induction Strong Induction Recursive Definitions Structural Induction Recursive Algorithms

A NONLINEAR STEADY STATE TEMPERATURE PROBLEM FOR A SEMI-INFINITE SLAB

Drought damaged area

ON THE ABSOLUTE CONVERGENCE OF A SERIES ASSOCIATED WITH A FOURIER SERIES. R. MOHANTY and s. mohapatra

A NOTE ON THE EQUIVAImCE OF SOME TEST CRITERIA. v. P. Bhapkar. University of Horth Carolina. and

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving.

On Topological Structures and. Fuzzy Sets

A Correlation of. to the. South Carolina Academic Standards for Mathematics Precalculus

Unit 1: Introduction to Biology

Floating Point Method for Solving Transportation. Problems with Additional Constraints

The blessing of dimensionality for kernel methods

On small defining sets for some SBIBD(4t - 1, 2t - 1, t - 1)

1 The limitations of Hartree Fock approximation

Lecture 6: Phase Space and Damped Oscillations

Name: Block: Date: Science 10: The Great Geyser Experiment A controlled experiment

Hiding in plain sight

Physics 2010 Motion with Constant Acceleration Experiment 1

ECE 2100 Circuit Analysis

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change?

Chapter 3 Kinematics in Two Dimensions; Vectors

Kinetic Model Completeness

ON PRODUCTS OF SUMMABILITY METHODS OTTO SZÁSZ

Eric Klein and Ning Sa

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS

7 TH GRADE MATH STANDARDS

Higher Mathematics Booklet CONTENTS

Math Foundations 10 Work Plan

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

SOME CONSTRUCTIONS OF OPTIMAL BINARY LINEAR UNEQUAL ERROR PROTECTION CODES

Compressibility Effects

AN INTERMITTENTLY USED SYSTEM WITH PREVENTIVE MAINTENANCE

2.161 Signal Processing: Continuous and Discrete Fall 2008

An Introduction to Complex Numbers - A Complex Solution to a Simple Problem ( If i didn t exist, it would be necessary invent me.

initially lcated away frm the data set never win the cmpetitin, resulting in a nnptimal nal cdebk, [2] [3] [4] and [5]. Khnen's Self Organizing Featur

Hypothesis Tests for One Population Mean

arxiv:hep-ph/ v1 2 Jun 1995

Perturbation approach applied to the asymptotic study of random operators.

Triangle Congruency. Overview. Geometry Mathematics, Quarter 2, Unit 2.1. Number of Instructional Days: 15 (1 day = 45 minutes)

Chapter 9 Vector Differential Calculus, Grad, Div, Curl

EASTERN ARIZONA COLLEGE Introduction to Statistics

Source Coding and Compression

SUPPLEMENTARY MATERIAL GaGa: a simple and flexible hierarchical model for microarray data analysis

Chapter 2 GAUSS LAW Recommended Problems:

Transcription:

Mathematics. - On a prblem in the thery f unifrm distributin. By P. ERDÖS and P. TURÁN. 11. Ommunicated by Prf. J. G. VAN DER CORPUT.) Cmmunicated at the meeting f September 5, 1948.) 9. Af ter this first reductin f ur prblem we transfrm it in the fllwing way. Let fr the plynmial V'z) defined in 8.4) Then M;= max 1V'z)l= max lv'i z)l= max 1 ii1-ze-il'~)i 9.1) Izl=6 Izl=6 Izl=6 ~=I max lg lv'i z)1 = lg M;. 1 z 1=6. 9.) Since lg V'd z) is regular fr I z I = {} we have by the classica 1 therem {}. f HADAMARD-BREL-CARATHEODORY that fr I z I :;;;;,smce 10gV'1 0) =0, i.e. Ilg '1'1 z) 1-= lg M; r denting I e-ki'f~ n 1'=1 by Sk. 1 k~: ~ S-k 1-= lg M;. I z 1-= ~. 9.3) Then CAUCHY's estimatin gives I I -I I -= 10g M; st - s_. = k ~ )' = k! r lg M; <! r lg M; =! r g* :, })' 9.4) Owing t the trivial inequality I Sk I :;;;; n the inequality 9. 4) is restrictive nly fr thse k's fr which k -= lg g* ~' })..... 9. 5) lg-; Hence the prf f Therem 11 is reduced t the questin whether r nt the inequalities 9.4) with the restrictin 9. 5) invlve equidistributin

163 f the cp/s md n. In ther wrds we reduced the prf f Therem Il t the prf f Therem III with Since m 1jJ k) n 4 m ) m ) n 4 ) m m. ~~I k < f/ n'1) -:& 1 + lg + u n. d) -:&. m. < arid m < u. :'1)!) m ~ 1 +!) lg ; ~ -== :::::: n ~)m:::::: n < 3n - u n'1) t'1 - y' g. n'1) lg u n. ij) n 4 n m +1 < lg -:&. lg u n'1) we btain - anticipating Therem III - that fr every 0 :s; a < P :s; n we have I.z 1 - P - a n I < 5 C lg ~. n "~I'~ ~ timdn " t'1 lg u n'1) i.e. Therem Il will be prved. 10. Befre turning t the prf f Therem lil we sketch the crres~ pnding reasning fr Therem 1. In this case - as we remarked in 1) - the general case can be reduced t the case wh en all the rts lie n the unit circle. Then in 9. ) M~ is replaced by maxl1jjz) 1= M. Applying Izl=1 the therem f HADAMARD-BREL-GARATHEODORY t the interir circle I z I = e. where we determine e suitable later. we btain resp. -== lg M Ilg 1jJI z) I = -1--. -e CAUCHY's estimatin gives f Zk S-k I < lg M I k=1 k 1 -e.... 10. 1) -== lg M 1 ISkl =IS-kl=k -1--' k' -e e

164 Chsing e = 1 - k! 1 I Sk I -= 0 k lg M ~ k = I,,... ~....... 10. ) This gives accrding t the crllary f Therem 111 an errr term On" /s ) nly. Hence Therem I seems t he much deeper. This seems t justify the use f mre difficuit analytica I tls in the prf f l). 11. Fr the prf f therem 111 we need sme simple auxiliary cnsideratins. Let Ohviusly n 1,. [mj+ 1 sin t R 1 510". [TJ+l)4 [mj+l)3 "[T] +1) sin t 1 )4 dt.... 11.1) R > 4: t dt = 4: Si; y dy > 0 11. ) > ~ ; tf Si; yr dy > Cl m 3 where Cl and later C. dente numerical cnstants. Further [ m 4 [ J \4 ] +1 m +1) n sin t,. sin - t R=f dt-=n4f dt< t 510 " 0 11. 3) 1. Let a he a parameter suhjected nly t the restrictin n==-a==- ml~1 1.1)

165 and let [ m] + 1 4 a -x nmx,a)= kj sin----t -x sm " dt.. 1.) We have als m +1 [ ] sin t-x) t t-x sin-- 4 dt.. 1.3) and sinee the integrand f 1. ) is an even funetin f t x [m] + 1 sin t nmx,a)= kj x-a sm " dt.... 1. i) Sinee generally. k + 1 ) sm- -y. =k+ 1)+k esy+k-l)csy+... l csky, sm 1L we btain at nee that the integrand f 1. ), i.e. :n m x, a) itself, is a trignmetrie plynmial f rder :s; m :nm x, a) = a a) + av a) cs vx + bv a) sin vx).. 1.5) I~"~m 13. We need sme infrmatin abut the eefficients in 1.5). Evidently, using 1.3),,. a,. a a) = 1 :nj :nm x,a)dx= ~Rj'd1 000 a = :n 1 R J dt. R = a n' m +1 [ ] sin t-x) t-x sin-- 4 dx= 13. 1)

Further using 1. ) 166 n n IJ 1 0 Jà1l: m a,.a)=- 1I:mx.a)csvxdx=-- -à sinvxdx= 11: ' 1I:V X i.e. n =--- IJ. SlDVX similarly 1I:vR n la,.a)l-= 1I:~RJ + [m]+1 1 [m] + 1 sin a-x) sin x. a-x + x sm-- sin - [ m] + I 1 sin a-x). a-x sin-- [m]+ 1 sin x dx=-. X 11: V SlD-! Ib,.a)I-=~ 11: V 1 -= v-= m. + I-=v-=m: 1 dx. 13.)... 13.3) 14. We need ais sme infrinatin abut the shape f the graph f 1I: m x, a). The definitin f Rand representatin 1.) give immediately fr every reai x -= 1I:m x. a) -= 1....... 14. I) We cn si der 1I:m x, a) in the interval -= -= m+ I =x=a- m+ I 14.) this has a meaning wing t 1. 1) ). Using the representatin 1. ) and the 'estimatin 11. 3) we have in the range 14. ) 1I:m x. a) > -1-3 J I sin t I + [-'i] [m] + 1 C m t 1 dt.= 14.3)

167 Further, fr a < x ~ i:n we have, using the estimatin 11. ) and the r~presentatin 1.4) :n m x, a) < _1-3J-:'" cim x-a [m] + 1 sin t 510" 14.4) Finally, fr t :n ~ X ~ :n we have frm the estimatin 11. ) and the 'TC representatin 1. 4), since x - a ~ i:n - :n = x 'TCmx, a) <f [ ~]+1 sin t 510 '" 14.5) 3", [;] + 1 )1 sin y J = C6 Y dg < m 'TC-X»3 "'-x 15. Nw we are ging t prve the fllwing Lemma. Assuming 4.1) and 4.) we have fr the number N f the cp; 5 lying in an arbitrary interval f leng th m 1~ 1 with m > 0 the C7 inequality Prf. n m 1jJ v») N<cs -+-1 + -... 15.1) m ~=I v Withut lss f generality we may suppse that ur interval is We cnsider the plynmial :n m x, y) wh ere 14 y= m + l'.... 15.3)

168 Replacing x in m nm x. r) = a r) + I a~ r) cs vx + b~ r) sin vx) ~=I by cp!. CP... cpn and summing we btain wing t 13. 1) nrm n m n I~ n m CPI. r) = n n + ~/d\ a~ r) I~\ cs VCPI + ~~ b~ r) I~ sin v CPI. In the interval 15. ) cnditin 14. ) is satisfied i.e. frm 14. 3) and the nn~negativity f nm x. y) we have n 7 n m n C3 N -=: I~\ n m CPI. y) -=: -; m + 1 + ~~ I a~ y) 1 + 1 by r) J)~!t ey1'f11 Applying 4.1). 13.) and 13.3) webtain further C3 N < 1-. _n_ + ~ i tp v). n m+1 n ~=\ v Q. e.d. 16. Nw we turn t the prf f therem 111. Let d be given satisfying 10 -=:d-=: m+1= =n.. 16. 1) and cnsider the plynmial nm x. d). Replacing x in d m n m x. d) = n + ':~I a y d) cs v X + b" d) sin v x) by CPl CP... cpn and summing we btain n d m n m n j/dlnm qjj d) = n n +,,~ a" d)j:; cs vqjj +,,~ b.> d) j~1 sin vcpj Arguing as befre we btain n d 4 m tp v) I n m qjj. d) > - n- - I -... 16.) j=\ n n ~ =I v Nw denting the number f cp;s in 0:;;;; x ~ d by Nd)he cntributin f these cp;s is. wing t nm x. d) ~ 1. -=: N d)...... 16.3) T btain an upper estimatin fr the cntributin f the ther cpv's we cnstruct successive cntiguus intervals f length m 1~ 1 each starting frm x = d and cvering the interval d ~ x ~ t n. The cntributins f the cpv in the interval Dk d + k m 1~ 1 -=: x -=: d + k + 1) m 1~ 1

169 is wing t the lemma which is, by 14. 4) Hence summing ver k < C8 -+ 1 +.' -- max n m x, d) n m VI v)) m ~=I v x Dk n m tij < C -- +.' V)) C _T_ max 5 < 8 m+l ~=I v xedkmx-d))3 n m VI v)) 1 <C9 m+l + 3:1-V-. P'.. 16.4) The cntributin E the gjv lying in the remaining interval 3 n < x :s; n we can estimate similarly. Cmbining 16. ), 16. 3) and 16. 4) we btain d n m VI v)) Nd»- ' n-cii -+1 +.' -... n m ~=I v 16. 5) Obviusly the same estimatin hlds Er the nu mb er Nc, c + d) E the lfjv's Er which c :s; gjv :s; c + d md n. The restrictin d :s; n is bviusly unnecessary, ie we replace Cll by Cll = C1' d T btain the upper estimatin E Nc, c + d) - n ~ we have. due t merely t apply 16. 5) twice. Ncl C + d) = n-no, c)-nc + d, n) Q.e.d. University f Syracuse lnstitute fr AdlJ'anced Study.