LEP Hall effect in p-germanium with Cobra3

Similar documents
Physical Structure of Matter Hall effect in p-germanium with Cobra3. Solid-state Physics, Plasma Physics.

Physical Structure of Matter. Hall effect in p-germanium Solid-state Physics, Plasma Physics. What you need:

Physical structure of matter Band gap of germanium with Cobra3. Solid-state Physics, Plasma Physics. What you need:

Hall effect in germanium

/15 Current balance / Force acting on a current-carrying conductor

Magnetic field of single coils/ Biot-Savart s law with Cobra4

Electricity. Temperature dependence of different resistors and diodes /15. Stationary currents. What you need:

Capacitor in the AC circuit with Cobra3

β-spectroscopy Fig. 1: Experimental set-up for determining inductance from the resonant frequency of an oscillatory circuit.

Newton s 2nd Law with demonstration track and Cobra4

Magnetic field outside a straight conductor (Item No.: P )

Electricity. Measuring the force on current-carrying conductors in a homogeneous magnetic field. LEYBOLD Physics Leaflets P

X-ray fluorescence analysis - calibration of the X-ray energy detector

Forced oscillation - Pohl s pendulum with measure Dynamics. Equipment TEP

n i exp E g 2kT lnn i E g 2kT

Coulomb s law with Cobra3

Physical structure of matter. Duane-Hunt displacement law and Planck's quantum of action X-ray Physics. What you need:

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Magnetic field of single coils / Biot-Savart's law

Mechanics. Coupled Pendula with Cobra Dynamics. What you need:

Last Revision: August,

Moment of inertia and angular acceleration with Cobra 3

Electrochemistry. Conductivity of strong and weak electrolytes LEC 06. What you need: What you can learn about. Principle and tasks

Elementary charge and Millikan experiment Students worksheet

Moment of inertia and angular acceleration with Cobra3

LEP Newton s 2 nd Law / Air track with Cobra3. Related topics Linear motion, velocity, acceleration, conservation of energy.

Centripetal and centrifugal force

This experiment is included in the XRP 4.0 X-ray solid state, XRS 4.0 X-ray structural analysis, and XRC 4.0 X-ray characteristics upgrade sets.

Semiconductor thermogenerator

Free fall with an interface system

HALL EFFECT IN SEMICONDUCTORS

Investigating the Hall effect in silver

Physical Structure of Matter

Electricity. Semiconductor thermogenerator Stationary currents. What you need:

Caution! Pay close attention to the special operation and safety instructions in the manual of the ultrasonic echoscope.

Thermochemistry/Calorimetry LEC Heat capacity of gases. What you need: What you can learn about. Principle and tasks

TEP Examination of the structure of NaCl monocrystals with different orientations

LEP Faraday effect

Equation of state of ideal gases Students worksheet

RC Circuit (Power amplifier, Voltage Sensor)

Characteristic curves of a solar cell

Determination of the Rydberg constant, Moseley s law, and screening constant (Item No.: P )

The Hall Effect. c David-Alexander Robinson & Pádraig Ó Conbhuí. 13th December 2010

Physical Structure of Matter. K a doublet splitting of molybdenum X-rays / fine structure Physics of the Electron.

Moment and angular momentum

SEMICONDUCTOR BEHAVIOR AND THE HALL EFFECT

Characteristic X-rays of molybdenum

EE 3324 Electromagnetics Laboratory

Related concepts Electrolyte, electrical conductance, specific conductance, ion mobility, ion conductivity, conductometry, volumetry.

Titration of a strong acid with a strong base with Cobra4

Alpha-Energies of different sources with Multi Channel Analyzer

Observation of the Hall Effect, and measurement of the Hall constant of a few semi-conductors and metals samples.

Electrochemistry LEC Potentiometric ph titration (phosphoric acid in a soft drink) What you need: What you can learn about

Hall Coefficient of Germanium

RECORD AND EVALUATE OSCILLATION OF TWO IDENTICAL COUPLED PENDULUMS.

Absorption of X-rays

RECORD AND EVALUATE OSCILLATION OF TWO IDENTICAL COUPLED PENDULUMS. Record the oscillations when they are in phase and determine the period T +

Mechanics. Reversible pendulum Dynamics. What you need: Complete Equipment Set, Manual on CD-ROM included. What you can learn about

Mechanics. Centrifugal force Dynamics. What you need: Complete Equipment Set, Manual on CD-ROM included. What you can learn about

The Hall Effect. Introduction: The hall effect was discovered by Edwin Hall in 1879, 18 years before the discovery of the electron.

Related topics Velocity, acceleration, force, gravitational acceleration, kinetic energy, and potential energy

CLASS 12th. Semiconductors

THE HALL EFFECT. Theory

Mechanics Moment and angular momentum. Dynamics. What you need:

Nanoscale work function measurements by Scanning Tunneling Spectroscopy

TALLINN UNIVERSITY OF TECHNOLOGY, INSTITUTE OF PHYSICS 6. THE TEMPERATURE DEPENDANCE OF RESISTANCE

Moment of inertia and angular acceleration

MAGNETIC DEFLECTION. OBJECTIVE: To observe the effect of a magnetic field on an electron beam. To measure the Earth s magnetic field.

Stirling engine with Cobra3

Mechanics. Moment of inertia / Steiner s theorem Dynamics. What you need:

UMEÅ UNIVERSITY Department of Physics Agnieszka Iwasiewicz Leif Hassmyr Ludvig Edman SOLID STATE PHYSICS HALL EFFECT

ADVANCED UNDERGRADUATE LABORATORY EXPERIMENT 20. Semiconductor Resistance, Band Gap, and Hall Effect

EXPERIMENT 14. HALL EFFECT AND RESISTIVITY MEASUREMENTS IN DOPED GAAS 1. Hall Effect and Resistivity Measurements in Doped GaAs

THE HALL EFFECT AND CURRENT SENSORS. Experiment 3

III.6. METAL SEMICONDUCTOR CONTACT BIAS

Charge to Mass Ratio of The Electron

Measurement of basic constants: length, weight and time

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.

Relaxation times in nuclear magnetic resonance

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields

1 Fig. 3.1 shows the variation of the magnetic flux linkage with time t for a small generator. magnetic. flux linkage / Wb-turns 1.

In this block the two transport mechanisms will be discussed: diffusion and drift.

Magnetic Fields. Experiment 1. Magnetic Field of a Straight Current-Carrying Conductor

12.01 Determination of the isoelectric point of an amino acid (glycine)

HMS-5000 Manual. Product Name: HMS-5000 Hall Effect Measurement System with variable temperature from 80K to 350K. - Manual version: ver 5.

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

Thermal and electrical conductivity of metals

Thermochemistry/Calorimetry. Determination of the enthalpy of vaporization of liquids LEC 02. What you need: What you can learn about

PHY3901 PHY3905. Hall effect and semiconductors Laboratory protocol

Rutherford experiment with MCA

Shear waves in solid-state materials

LEP Coupled pendula

EXTRINSIC SEMICONDUCTOR

Fall 2014 Nobby Kobayashi

A Determination of Planck s Constant with LED s written by Mark Langella

LEP Stirling engine

Nanoscale characteristics by Scanning Tunneling Spectroscopy

After successfully completing this laboratory assignment, including the assigned reading, the lab

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester.

Digital Fluxmeter CYHT700SP

Transcription:

Hall effect in p-germanium with Cobra3 LEP 5.3.01-11 Related topics Semiconductor, band theory, forbidden zone, intrinsic conductivity, extrinsic conductivity, valence band, conduction band, Lorentz force, magnetic resistance, mobility, conductivity, band spacing, Hall coefficient. Principle The resistivity and Hall voltage of a rectangular germanium sample are measured as a function of temperature and magnetic field. The band spacing, the specific conductivity, the type of charge carrier and the mobility of the charge carriers are determined from the measurements. Equipment 1 Hall effect module, 11801.00 1 Hall effect, p-ge, carrier board 11805.01 2 Coil, 600 turns 06514.01 1 Iron core, U-shaped, laminated 06501.00 1 Pole pieces, plane, 30x30x48 mm, 2 06489.00 1 Hall probe, tangent., prot. cap 13610.02 1 Power supply 0-12 V DC/6 V, 12 V AC 13505.93 1 Tripod base -PASS- 02002.55 1 Support rod -PASS-, square, l = 250 mm 02025.55 1 Right angle clamp -PASS- 02040.55 2 Connecting cord, l = 500 mm, red 07361.01 1 Connecting cord, l = 500 mm, blue 07361.04 2 Connecting cord, l = 750 mm, black 07362.05 1 Cobra3 Basic-Unit 12150.00 1 Power supply, 12 V 12151.99 1 Tesla measuring module 12109.00 1 Cobra3 Software Hall 14521.61 2 RS 232 data cable 14602.00 1 TESS Expert CD-ROM Laboratory 16502-42 PC, Windows 95 or higher Fig. 1: Experimental set-up. www.phywe.com P2530111 PHYWE Systeme GmbH & Co. KG All rights reserved 1

TEP 5.3. 01-111 Hall effect in p-germanium with Cobra3 Set-up and procedure The experimental set-up is shown in Fig.1. The Fig. 3: Start menu of the software Cobra3 Hall effect. test piece on the board has to be put into the Hall-Effect-modul via the guide-groove. The module is directly connected with the 12 V~ outpu of the power unit over the ac-input The connection to the Analog In 2 port of the on the back-side of the module. Cobra3 Basic-Unit is realized via a RS232 ca- The Tesla-module is connected to the module- ble from the RS232-port of the module. port of the Interface. The plate has to be brought up to the magnet very carefully, so as not to damage the crystal in particular, avoid bending the plate. It has to be in the centre between the pole pieces. The different measurements are controlled by the software. The magnetic field has to be meas- put into the groove in the module as shown in Fig.1. So you can be sure that the magnetic flux is measured directly on the Ge-sample. ured with a hall probe, which can be directly Tasks 1. The Hall voltage is measured at room Fig. 2: Hall effect in sample of rectangular section. The polarity sign of the Hall voltage shown applies when the carriers temperaturee and constant magnetic field as a are negatively charged. function of the control current and plotted on a graph (measurement without compensa- tion for defect voltage). 2. The voltage across the sample is measured at room temperature and constant control current as a function of the magnetic induc- tion B. 3. The voltage across the sample is measured at constant control current as a function of the temperature. The band spacing of ger- manium is calculated from the measure- ments. 4. The Hall voltage U H is measured as a func- tion of the magnetic induction B, at room temperature. The sign of the charge carriers and the Hall constant R H together with the Hall mobility μ H and the carrier concentration p are calculated from the measurements. 5. The Hall voltage U H is measured as a function of temperature at constant magnetic induction B and the values are plotted on a graph. To perform the measurements, start the software and choose as gauge the Cobra3 Hall-Effect. You will receive the following window (Fig.3): 2 PHYWE Systeme GmbH & Co. KG All rights reserved P2530111

Hall effect in p-germanium with Cobra3 LEP 5.3.01-11 This is the start-screen which appears before every measurement. Here, you can choose, which parameters have to be measured, displayed, etc., e.g. Hall voltage as a function of Sample current (Fig.4) Fig. 4: Example of measurement parameters. You can also calibrate the Tesla-module via options (Fig.5). Start the measurement-screen by pressing the continue -button. 1. Choose The Hall voltage as the measurementchannel and the Sample current as x-axis. Choose the measurement on key press. Continue. Set the magnetic field to a value of 250 mt by changing the voltage and current on the power supply. Determine the hall voltage as a function of the current from -30 ma up to 30 ma in steps of nearly 5 ma. You will receive a typical measurement like in Fig.6. Fig. 5: Calibration menu. 2. Choose The Sample voltage as the measurement-channel and the Flux density as x-axis. Choose the measurement on key press. Continue. Set the control current to 30 ma. Determine the sample voltage as a function of the magnetic induction B. Start with -300 mt by changing the polarity of the coil-current and increase the magnetic induction in steps of nearly 20 mt. At zero point, you have to change the polarity to receive a positive magnetic induction, as the current and voltage are only positive. You will get a typical graph as shown in Fig.7. Fig. 6: Hall voltage as a function of current. 3. Choose The Sample voltage as the measurement-channel and the sample temperature as x-axis. Choose the measurement every Fig. 7: Change of resistance as a function of magnetic 1 s. Continue. induction. Set the current to a value of 30 ma. The magnetic field is off. The current remains nearly constant during the measurement, but the voltage changes according to a change in temperature. Start the measurement by activating the heating coil with the on/off -knob on the backside of the module and start the measurement in the software. Determine the change in voltage dependent on the change in temperature for a www.phywe.com P2530111 PHYWE Systeme GmbH & Co. KG All rights reserved 3

TEP 5.3. 01-111 Hall effect in p-germanium with Cobra3 temperature range of room temperature to a max- imumm of 170 C. The module automatically con- trols and stops the heating. You will receive a typ- ical curve as shown in Fig.8. 4. Choose The Hall voltage as the measurement- channel and the Flux density as x-axis. Choose the measurement on key press. Continue. Set the current to a value of 30 ma. Determinee the Hall voltage as a function of the magnetic induction. Start with -300 mt by changing the polarity of the coil-current and increase the magnetic induction in steps of nearly 20 mt. At zero point, you have to change the polarity. A typical measurement is shown in Fig.9. 5. Choose The Hall voltage as the measurement- channel and the sample temperature as x-axis. Choose the measurement every 1 s. Contin- ue. Set the current to 30 ma and the magnetic in- duction to 3000 mt. Determine the Hall voltage as a function of the temperature. Start the measurement by activating the heating coil with the on/off -knob on the backside of the module and starting the software. After a channel modification (compare evalua- tion) you will receive a curve like Fig.10. Fig. 8: Reciprocal sample voltage plotted as a function of reciprocal absolute temperature. (Since I stant during the measurement, U 1 was conthe ~ s and graph is therefore equivalent to a plot of conductivi- ty against reciprocal temperature). Fig. 9: Hall voltage as a function of magnetic induction. Theory and evaluation If a current I flows throughh a conducting strip of rectangular section and if the strip is traversed by a magnetic field at right angles to the direction of the current, a voltage the so-called rise to the current flowing through the sample are deflected in the magnetic field B as a function of their sign and their velocity Hall voltage is pro- ducedd between two superposed points on opposite sides of the strip. This phenomenon arises from the Lorentz force: the charge carriers giving v: (F = force acting on charge carriers, e = elementary charge). Since negative and positive charge carriers in semiconductors move in opposite directions, they are deflected in the same direction. The type of charge carrier causing the flow of current can therefore be determined from the polarity of the Hall voltage, knowing the direction of the current and that of the magnetic field. 4 PHYWE Systeme GmbH & Co. KG All rights reserved P2530111

Hall effect in p-germanium with Cobra3 LEP 5.3.01-11 1. Fig. 6 shows that there is a linear relationship between the current I and the Hall voltage U B : where α = proportionality factor. 2. The change in resistance of the sample due to the magnetic field is associated with a reduction in the mean free path of the charge carriers. Fig. 7 shows the non-linear, clearly quadratic, change in resistance as the field strength in-creases. Therefore use the channel modification in the analysismenu. 3. In the region of intrinsic conductivity, we have where σ = conductivity, E g = energy of bandgap, k = Boltzmann constant, T = absolute temperature. If the logarithm of the conductivity is plotted against T -1 a straight line is obtained with a slope from which E g can be determined. From the measured values used in Fig. 8, the slope of the regression line is with a standard deviation s b = ±0.07 10 3 K. 3. To receive the necessary graph, do as follows: Choose the channel modification in the analysis-menu. Set the parameters as shown in Fig.11. Continue. Remember the procedure with the parameters in Fig.12. Now, you have the desired graph. To determine the regression line, choose the Regression -icon. (Since the measurements were made with a constant current, we can put s ~ U 1, where U is the voltage across the sample.) Since we get www.phywe.com P2530111 PHYWE Systeme GmbH & Co. KG All rights reserved 5

TEP 5.3. 01-111 Hall effect in p-germanium with Cobra3 Fig. 11: Parameters for the first channel modification. Fig. 12: Parameters for the second channel modification. 4. With the directions of control current and magnetic field shown in Fig. 2, the charge carriers giving rise to the current in the sample are deflected towards the front edge of the sample. Therefore, if (in an n- doped probe) electrons are the predominant charge carriers, the front edge will becomee negative, and, with hole conduction in a p-doped sample, positive. The conductivity s 0, the charge carrier mobility μ H, and the charge-carrier concentration p are related through the Hall constant R H : Fig. 9 shows a linear connection between Hall voltage and B field. With the values used in Fig. 9, the regression line with the formula has a slope b = 0.125 VT 1, with a standard deviation s b ± 0.003 VT 1 The Hall constant R H thus becomes, according to 1. where the sample thickness d = 1 10 3 m and I = 0.030 A, with the standard deviation 6 PHYWE Systeme GmbH & Co. KG All rights reserved P2530111

Hall effect in p-germanium with Cobra3 LEP 5.3.01-11 The conductivity at room temperature is calculated from the sample length l, the sample cross-section A and the sample resistance R 0 (cf. 2) as follows: With the measured values we have σ 0 = 57.14 Ω 1 m 1. The Hall mobility μ H of the charge carriers can now be determined from Using the measurements given above, we get: The hole concentration p of p-doped samples is calculated from Using the value of the elementary charge e = 1.602 10 19 As we obtain p = 14.9 10 20 m 3. 5. Fig. 10 shows first a decrease in Hall voltage with rising temperature. Since the measurements were made with constant current, it is to be assumed that this is attributable to an increase in the number of charge carriers (transition from extrinsic conduction to intrinsic conduction) and the associated reduction in drift velocity ν. (Equal currents with increased numbers of charge carriers imply reduced drift velocity). The drift velocity in its turn is connected with the Hall voltage through the Lorentz force. The current in the crystal is made up of both electron currents and hole currents Since in the intrinsic velocity range the concentrations of holes p and of electrons n are approximately equal, those charge carriers will in the end make the greater contribution to the Hall effect which have the greater velocity or (since ν = m+e) the greater mobility. Fig. 10 shows accordingly the reversal of sign of the Hall voltage, typical of p-type materials, above a particular temperature. www.phywe.com P2530111 PHYWE Systeme GmbH & Co. KG All rights reserved 7

TEP 5.3. 01-111 Hall effect in p-germanium with Cobra3 8 PHYWE Systeme GmbH & Co. KG All rights reserved P2530111